infpp.fractal
Class ThreadedDoublePrecisionMandelbrotGenerator

java.lang.Object
  extended by infpp.fractal.DoublePrecisionFractalGenerator
      extended by infpp.fractal.ThreadedDoublePrecisionFractalGenerator
          extended by infpp.fractal.ThreadedDoublePrecisionMandelbrotGenerator
All Implemented Interfaces:
FractalGenerator

public class ThreadedDoublePrecisionMandelbrotGenerator
extends ThreadedDoublePrecisionFractalGenerator

The ThreadedDoublePrecisionMandelbrotGenerator provides an implementation for calculating the number of required iterations to determine the divergence of the sequence of points obtained by the recursion z1 := 1, zn + 1 = (zn)2 + c where c is a point determined by screen coordinates. This implementation operates with standard double precision arithmetic and uses multiple threads to speed up the calculation.

Author:
both

Constructor Summary
ThreadedDoublePrecisionMandelbrotGenerator(int maxIterations)
          Constructs a new ThreadedDoublePrecisionMandelbrotGenerator.
 
Method Summary
protected  int calculateNumberOfIterationsAtComplex(Complex c)
          Calculates the number of required iterations to determine the divergence of the sequence of points obtained by the recursion z1 := 1, zn + 1 = (zn)2 + c where c is the specified complex number.
 
Methods inherited from class infpp.fractal.ThreadedDoublePrecisionFractalGenerator
getNumberOfIterationsAtPixel, setComplexOrigin, setRealDimension, setScreenDimension, startWorking
 
Methods inherited from class infpp.fractal.DoublePrecisionFractalGenerator
calculateComplexFromScreenCoordinates, getComplexOrigin, getRealDimension, getScreenHeight, getScreenWidth
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

ThreadedDoublePrecisionMandelbrotGenerator

public ThreadedDoublePrecisionMandelbrotGenerator(int maxIterations)
Constructs a new ThreadedDoublePrecisionMandelbrotGenerator.

Parameters:
maxIterations - the maximum number of iterations to use
Method Detail

calculateNumberOfIterationsAtComplex

protected int calculateNumberOfIterationsAtComplex(Complex c)
Calculates the number of required iterations to determine the divergence of the sequence of points obtained by the recursion z1 := 1, zn + 1 = (zn)2 + c where c is the specified complex number.

Specified by:
calculateNumberOfIterationsAtComplex in class ThreadedDoublePrecisionFractalGenerator
Parameters:
c - the specified complex number
Returns:
the number of required iterations
See Also:
FractalGenerator.getNumberOfIterationsAtPixel(int, int)