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Part I.

Preliminary stuff

What we need to know before we can do stuff.

This is heavily a work in progress.

1. Super-quick overview of number sets

What is a number?

1.1. The natural numbers

When counting things, such as playing cards on a table, you start out with the num-

ber one and, one by one, you advance to the higher numbers. Note the wording “one by

one”, because it implies that when you have reached a certain number, going to the next

number is all you need to reach numbers arbitrarily large so that, while in practice you

cannot keep counting indefinitely, in theory you can. [1] So the set of counting numbers

is infinite. We’ll call it the natural numbers and denote it by the symbol N.

1.1.1. Definition of the natural numbers

So what have we done so far? We have seen that

(1) 1 is a natural number and

(2) whenever n is a natural number, the next number is a natural number as well.

For every natural number n , we call the next number the successor of n and denote it

by n ∗.

We also call n the predecessor of n ∗. We’ll denote the predecessor of a natural number n

by n ∗.

Suppose a few cards are lying on the table and we pick them up, again one by one. As

long as we haven’t picked up all of them, the number of cards on the table is a natural

number. When we pick up the last card, there are no more cards left on the table. So the

[1] From a mathematical point of view, you don’t even need names for the numbers.
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number of cards on the table should be the predecessor of 1, which does not exist in N,

as we started out with the number 1 when defining the natural numbers. Another way

of saying this is

(3) 1 is not the successor of any natural number.

So far, we do not have a symbol for the concept of nothing being there. But fortunately,

someone came up with a new symbol, 0, to represent this. The set of natural numbers,

united with the set that contains the new symbol 0, is written N0.

Now we get the usual names of the natural numbers as follows:

1 ∈ N
2 := 1∗ ∈ N
3 := 2∗ ∈ N
4 := 3∗ ∈ N

and so on.

1.1.2. Adding natural numbers

Now, using the definitions above, we can define the addition of natural numbers as

follows:

Definition 1 (Addition of natural numbers).

(AddN – 1) For all natural numbers n , adding 1 to n is defined as advancing to the

successor of n , i. e.

n +1 := n ∗ for all n ∈N .

(AddN – 2) For all natural numbers n and for all natural numbers k , adding the suc-

cessor of k to n is defined as adding k to n and advancing to the successor

of the sum, i. e.

n +k ∗ := (n +k )∗ for all k ∈N and for all n ∈N .
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How does adding numbers this way work? Consider the following example:

3+4 = 3+3∗ (Definition of the number 4)

= (3+3)∗ (AddN – 2)

= (3+2∗)∗ (Definition of the number 3)

=
�

(3+2)∗
�∗ (AddN – 2)

=
�

(3+1∗)∗
�∗ (Definition of the number 2)

=
�

�

(3+1)∗
�∗�∗ (AddN – 2)

=
�

�

(3∗)∗
�∗�∗ (AddN – 1)

=
�

�

(4)∗
�∗�∗ (The successor of 3 is 4)

=
�

(4∗)∗
�∗ (Leave off the innermost parentheses)

=
�

(5)∗
�∗ (The successor of 4 is 5)

= (5∗)∗ (Leave off the innermost parentheses)

= (6)∗ (The successor of 5 is 6)

= 6∗ (Leave off the innermost parentheses)

= 7 (The successor of 6 is 7)

1.1.3. Is 1 really the first natural number?

Earlier we defined the natural numbers as beginning with the number 1. It is quite

clear, however, that we could just as well have taken the number 0 to be the first natural

number. Then we have to alter the three laws from that section as follows:

(1’) 1 is a natural number and

(2’) whenever n is a natural number, the next number is a natural number as well.

(3’) 1 is not the successor of any natural number.

Once we have done that, we define 1 to be the successor of 0. We also have to redefine

addition to include the law n +0 := n for all natural numbers n . But that’s pretty much

all we have to do. So in effect, it does not really matter what number we choose to be

the first natural number – but having it be anything other than 0 or 1 would be highly

“unnatural”, if you will forgive the pun.

1.1.4. Comparing natural numbers

The next thing we’ll do is compare natural numbers.
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When looking at the two natural numbers 4 and 9, what does it mean to say that 4 is

smaller than 9?

Well, one answer to this question is obvious: When counting from 1, we reach 4 before

we reach 9. When looking at the definition of addition, we see that this means there is a

natural number, 5 in this case, such that 4+5= 9. Here it is important that the augend

is a natural number! Consider the equation 7+n = 5. Is there any natural number n

such that this equation is true? I can’t find any. I can even say why: Adding a natural

number n to 7 means repeatedly advancing to the next number, exactly n times. But no

matter how many times we do this, we cannot ever reach 5, as 5 occurred already before

we reached 7 when counting from 1.

Definition 2. [Comparison of natural numbers] Let a and b be natural numbers.

(CompN – 1) a is smaller than b , by definition, if and only if there exists a natural

number m such that a +m =b . We then write a <b .

(CompN – 2) a is greater than b , by definition, if and only if b is smaller than a . We

then write a >b .

(CompN – 3) a is equal to b , by definition, if and only if a is neither smaller nor greater

than b . We then write a =b .

(CompN – 4) a is greater than or equal to b , by definition, if and only if a is not

smaller than b . We then write a ¾b .

(CompN – 5) a is smaller than or equal to b , by definition, if and only if a is not

greater than b . We then write a ¶b .

1.1.5. Subtracting natural numbers

Now that we can compare natural numbers, we can easily introduce subtraction:

Definition 3 (Subtracting natural numbers). Let a and b be natural numbers such

that a is greater than b .

By definition (2), this means that b is smaller than a , i. e. there exists a natural num-

ber m such that b +m = a . The number m is called the difference of a and b , and

the operation of finding it is called subtraction.
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1.1.6. The commutative law of addition

One of the laws governing the natural numbers we use literally every day is the commu-

tative law of addition: For all natural numbers m , n it is true that m +n = n +m . Can

we prove this?

Yes, indeed – but not without doing some work beforehand.

1.1.7. The associative law of addition

So far, we’ve used parentheses whenever there were more than two summands in a sum,

and when evaluating a sum, all we needed to know was how to add exactly two numbers,

as only that kind of sum occurred inside the innermost pair of parentheses. The reason

we did this is that up to now, we have only defined sums of two terms. Whenever the

augend was greater than 1, we used the property (AddN – 2) to break it down until we

reached 1, where we used property (AddN – 1) to advance to the successor.

Now what if we want to add more than two natural numbers? If a 1, a 2, . . . , a n are natural

numbers, we would need to write

�

�

. . .
�

(a 1+a 2)+a 3
�

+ . . .
�

+a n∗

�

+a n

to denote their sum, which is quite cumbersome, if you ask me. So it would be nice if

we could do away with the parentheses and simply write

a 1+a 2+a 3+ . . . +a n∗ +a n .
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Part II.

The real stuff

2. Systems of linear equations

Definition 4. A system of linear equations, or linear system for short, is a collection of

linear equations all involving the same set of variables or unknowns. Note that there is

no requirement for the number of equations to be the same as the number of variables.

A linear system of m equations in the n variables x1, . . . ,xn can always be written in the

standard form


















a 1, 1 ·x1+a 1, 2 ·x2+ . . .+a 1, n ·xn = b1

a 2, 1 ·x1+a 2, 2 ·x2+ . . .+a 2, n ·xn = b2

...

a m , 1 ·x1+a m , 2 ·x2+ . . .+a m , n ·xn = bm

where the numbers a i , j and b i are known real numbers.[2] The numbers a i ,j are called

the system’s coefficients. The numbers b i form the right-hand side (RHS). If the RHS

is zero in all the equations, the system is called homogenous, otherwise we say it is

inhomogenous.

The brace to the left of the equations is not eye candy. It is intended to signify that

they form a set that is to be solved simultaneously; simply writing an equation beneath

[2] At least that’s the way things are in high school. Generally, R is not the only field those numbers can
be taken from. However, in any given linear system, only one field is involved. — What does field
mean in this context? The short answer is that a field F is a set of numbers endowed with a certain
structure that allows one to take any sum, difference, product and quotient of two numbers x , y ∈ F
and know that the result will also be a member of F . In the case of division, however, the divisor may
not be 0. In particular, this means that for every x ∈ F \ {0} there exists y ∈ F such that x · y = 1. In that
case, y is denoted x−1 or 1

x
and called the multiplicative inverse of x .

One of the most important characteristics of fields is that they do not have any zero divisors, that is,
for any two x , y ∈ F that satisfy x · y = 0, it follows that at least one of x and y is itself zero. Why is that
so? Well, let x and y belong to F such that their product is zero. If x = 0, we are done. If, however,
x 6= 0, then all we have to show is that y = 0. Because x 6= 0, x−1 exists in F . Consequently,

0 = x−1 ·0 = x−1 · (x · y ) = (x−1 ·x ) · y = 1 · y = y ,

i. e. y = 0.

If you are turning this over in your head and asking yourself what magic property the reals have that
the rationals lack, the answer is in the concept of completeness as explained in calculus. As an example,
consider the well-known case of

p
2 not belonging to Q. – If one restricts the set of numbers even

further – to the integers, say –, things get rather boring, as the simplest of equations, such as 2x = 3,
are unsolvable.
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another means that the second one follows from the first.[3]

Solving a linear system means finding numbers x1, . . . ,xn ∈ F such that all of the equa-

tions are satisfied simultaneously. That’s why simultaneous equations is another term

for a collection of equations (not necessarily linear ones).

Writing a system down is one thing, solving it is quite another. Over the reals, consider

the system
(

2 ·x1+3 ·x2 = 13

2 ·x1+3 ·x2 = 12 ,

which is unsolvable because no matter what we set x1 and x2 to be, 2x1+3x2 cannot be

12 and 13 at the same time, or even (again over the reals)

n

0 ·x1 = 7 .

Even when a system has a solution, that solution does not at all have to be unique. Over

the reals, let S be the set of solutions to the system

(

x + y = 2

3x +3y = 6 .

We can mangle the first equation to read y = 2−x ; plugging this into the second equa-

tion yields 3x +3 · (2−x ) = 6, which simplifies to 6= 6. This last statement is true for

any x and y we care to choose and only serves to indicate that the system is solvable

at all. We have thus “used up” both of the given equations, but obtained only one real

constraint on the unknowns, namely y = 2−x . Therefore we are free to choose one of

the variables, say x , to write down the solution set as follows

S = {(t , 2− t ) | t ∈R}

and read it as “all those pairs of numbers where [the first component is a real number

and] the second component is two minus the first component”.

But we can just as well choose y as the free variable and state the solution set as

S = {(2− t , t ) | t ∈R} .

[3] It does not mean that the lines are equivalent! If one wishes to express that, the equivalence sign⇐⇒
is needed in front of the second line.
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2.1. Einsetzungsverfahren

There are many methods of solving linear systems, and we’ve seen one of them above.

It is called „Einsetzungsverfahren“ in German, which might be called “substitution

method” in English. The idea is to pick one of the equations and solve it for one of the

unknowns in terms of the remaining unknowns. After that, plug the expression for the

single unknown into the other equations. That way, one variable has been eliminated

from all the equations save the one we used to derive the expression. Now we repeat

this process until we have reached a point where we can solve one equation completely,

and back-substitute until the entire solution is found.

An example will probably make things clear. Over the real numbers, consider the system







x +3y −2z = 5

3x +5y +6z = 7

2x +4y +3z = 8 .

We’ll take the first equation and rewrite it as x = 5−3y +2z . Plugging this into the

second and third equation yields







x = 5−3y +2z

3 · (5−3y +2z )+5y +6z = 7

2 · (5−3y +2z )+4y +3z = 8 ,

which simplifies to






x = 5−3y +2z

−4y +12z = −8

−2y +7z = −2 ,

and so we have eliminated the variable x from the second and third equation. Now

we can apply the same technique to those equations. Manipulate the second equation

into the form y = 2+3z , so one of the variables is isolated, and plug this into the third

equation and simplify. Now the system is

(∗)







x = 5−3y +2z

y = 2+3z

z = 2 ,

so one of the unknowns has a numeric value that we can simply read off. What is more,

we can also plug this value into the second equation to get y = 8, which we can plug

into the first equation and obtain x =−15. So the system’s unique solution is (−15, 8, 2).
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Also note that the system (∗) resembles a triangle in that, when reading it from bottom

to top, each equation has one more variable than the previous one. This might have

given rise to the term “triangular form” (German: „Dreiecksform“ ) to describe such

systems.

2.2. Additionsverfahren

Another way of solving linear systems is called „Additionsverfahren“. This time, I’ll risk

an attempt at translating it as “addition method”. As the name suggests, the idea is

adding two equations in such a way that the resulting equation contains fewer variables

than the summands, and repeating the process. Care should be taken to treat the

variables one by one.

Over the reals, consider the system







(I) 2x + 3y + 4z = 20

(II) 3x + 2y + 5z = 22

(III) 4x + 5y + z = 17 .

This looks like a lot of work using the Einsetzungsverfahren, so let’s do it as follows: We’ll

multiply the first equation by 3 and the second one by (−2), then add them:

3 · (I) 6x + 9y + 12z = 60

⊕ −2 · (II) −6x − 4y − 10z = −44

(IV) 5y + 2z = 16

In this way, x has vanished from the result. We’ll now multiply the first equation by 4

and the third one by (−2), then add them:

4 · (I) 8x + 12y + 16z = 80

⊕ −2 · (III) −8x − 10y − 2z = −34

(V) 2y + 14z = 46

So x has also vanished from this sum. It should be clear now that we’ll next multiply

equation (IV) by (−7), then add it to equation (V):

−7 · (IV) −35y − 14z = −112

⊕ (V) 2y + 14z = 46

(VI) −33y = −66

We can now read off y = 2. Back-substituting as above yields z = 3 and, finally, x = 1.
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2.3. Matrix representation of linear systems

When looking at a linear system



















a 1,1 ·x1+a 1,2 ·x2+ . . .+a 1,n ·xn = b1

a 2,1 ·x1+a 2,2 ·x2+ . . .+a 2,n ·xn = b2

...

a m ,1 ·x1+a m ,2 ·x2+ . . .+a m ,n ·xn = bm

we see that we need to write down quite a lot of boilerplate in every step: the set

{x1, . . . ,xn} of variables does not change, and we know that the LHS is a sum of mono-

mials (that is, products of coefficients and their corresponding variables) so that we can

also do away with the plus and minus signs. In this way, we can encode all the system’s

information using the augmented coefficient matrix[4]















a 1, 1 a 1, 2 . . . a 1, n b1

a 2, 1 a 2, 2 . . . a 2, n b2

...
...

...
...

...

a m , 1 a m , 2 . . . a m , n bm















where every row contains the information of an equation in the system, and every

column except for the rightmost one corresponds to an unknown; the rightmost column

contains the system’s right-hand side.

2.4. Gaussian Elimination

The basic idea of Gaussian elimination is adding equations (that is, rows in the matrix)

in such a way that the resulting system is in triangular form so that we can obtain the

entire solution recursively. This is done in a specified order – in the beginning, only the

first column is treated, and all its entries below the first row are set to zero, essentially

by using the addition method. Then the other columns are treated in order until – if the

system has a unique solution – the system is in triangular form.

[4] We call it the augmented coefficient matrix because it contains the system’s right-hand side as its
last column. Therefore, if we put only the system’s coefficients into a matrix, we call it the coefficient
matrix. This is quite useful if the same coefficents, but different right-hand sides occur across a
number of systems.
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2.5. First example

Over the real numbers, look at the system







(I) x1 + 2x2 + 3x3 = 6

(II) x1 + 3x2 + 7x3 = 16

(III) 3x1 + 3x2 − 2x3 = −9 .

If it has a unique solution, then the system can be rewritten as







(I) x1 = α1

(II) x2 = α2

(III) x3 = α3 ,

where (α1,α2,α3) is the system’s unique solution. So, in matrix-speak, we want to get the

matrix

A :=











1 2 3 6

1 3 7 16

3 3 −2 −9











into the form

U :=











1 ea 1, 2 ea 1, 3 α1

0 1 ea 2, 3 α2

0 0 1 α3











so that we can read off the solution for the variable x3 and back-substitute to generate

the entire solution. Here I use the notation ea i , j to indicate that the value of a i , j will

most likely have changed.

How do we go about this? Well, we have already seen the addition method in action. So

if we take the second row of A and subtract the first row from it (that is, multiply the first

row by (−1) and add it to the second row, in the terminology of the addition method),

we get

(1, 3, 7, 16) − (1, 2, 3, 6) = (0, 1, 4, 10) ,

we see that the resulting row has a zero in its first component, so we’ve done the first

step in getting to the matrix U . Now we take the third row and again add some multiple

of the first row to it so that the first component of the sum is zero. How do we know

which multiple to add? Obviously, all we need to do is look at the first component of the

first row, which is 1 in our case. So if we multiply the first row by (−3), we get (−3), which

we can add to the first component of the third row to get zero. So in effect, we multiply
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the first row by a 3, 1

a 1, 1
and subtract the result from the third row, which we’ll denote as

follows.[5]

III 7→ III −
a 3, 1

a 1, 1
· I

It is worth noting that for this to work, a 1, 1 had better not be zero!

Now the matrix is










1 2 3 6

0 1 4 10

0 −3 −11 −27











,

and we’ll now treat the second column.

All we do here is produce a zero entry at the position (3, 2), that is, the third row should

get a zero in the second column. Can we use our familiar recipe here, that is, can we

subtract some multiple of the first row from the third row? Well, if we do

III 7→ III −
a 3, 2

a 1, 2
· I

that is,

III 7→ III +
3

2
· I ,

we end up with

III 7→ III +
3

2
· I = (0, −3, −11, −27) +

3

2
· (1, 2, 3, 6) =

�

3
2

, 0, − 13
2

, −18
�

,

so there is a zero in the third row of the second column, all right, but we have destroyed

the zero entry in the third row of the first column!

So are we out of luck? No.

What we can do is subtract some multiple from the second row instead of subtracting it

from the first row. Let’s do

III 7→ III −
a 3, 2

a 2, 2
· II .

The result is

III 7→ III −
−3

1
· II = (0, −3, −11, −27) + 3 · (0,1,4,10) = (0, 0, 1, 3) .

Presto! We produced a zero entry at (3, 2) and at the same time we retained the zero

entry at (3, 1).

[5] Technically, the third row has changed as a result of the transformation, so we should introduce a new
symbol, like III’, III”, etc. after each step, but I can’t be bothered.
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The matrix is now










1 2 3 6

0 1 4 10

0 0 1 3











,

so we can read off x3 = 3. (So the system has a unique solution.) As usual, we plug this

into the second equation to get x2 = 10−4x3 = 10−4 ·3=−2, and, plugging these two

values into the first equation, we get x1 = 6−2x2−3x3 = 6−2 · (−2)−3 ·3= 1. So the

system’s solution is (1, −2, 3).

2.6. Second example: No solution

Why don’t we do a more complex example? Over the real numbers, let’s look at the

system

Dieses Beispiel fertig stellen.

2.7. Third example: More than one solution

Now what does the resulting matrix look like when the system has more than one

solution?

Dieses Beispiel fertig stellen.

2.8. What to do if you can’t divide

We noted earlier that for the row transformations

III 7→ III −
a i , j

a j , j
· I

to be meaningful, the entry a j , j must not be zero.

We’ll now do a bigger example using a system that has a unique solution. This will also

show how to avoid fractions.
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(I) + x2 + 4x3 + 2x5 − 3x6 + 3x7 = −7

(II) 4x1 + 3x3 − 3x4 + x5 − x6 + 2x7 = 5

(III) −2x1 + x3 + 2x4 + 3x7 = −5

(IV) 2x1 − x2 + 3x4 − 2x6 + x7 = 13

(V) −3x1 + 2x3 + x4 + 4x5 + 3x6 − x7 = −21

(VI) x1 − 2x2 − x3 + 2x6 − 3x7 = 6

(VII) −x1 − 3x2 + 2x3 + x4 + 3x6 − 2x7 = −1 .

The matrix form of this system is





























0 1 4 0 2 −3 3 −7

4 0 3 −3 1 −1 2 5

−2 0 1 2 0 0 3 −5

2 −1 0 3 0 −2 1 13

−3 0 2 1 4 3 −1 −21

1 −2 −1 0 0 2 −3 6

−1 −3 2 1 0 3 −2 −1





























Dieses Beispiel fertig stellen.

2.9. Gauss-Jordan elimination

There is a special twist to Gaussian elimination particularly useful for systems that have

a unique solution.

Let’s return to the system







(I) x1 + 2x2 + 3x3 = 6

(II) x1 + 3x2 + 7x3 = 16

(III) 3x1 + 3x2 − 2x3 = −9 .

with its matrix form

A =











1 2 3 6

1 3 7 16

3 3 −2 −9











.
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We’ve already seen that we can manipulate the matrix A into triangular form











1 2 3 6

0 1 4 10

0 0 1 3











using Gaussian elimination. We then had to do back-substitution to find the entire

solution. As the system has a unique solution,







(I) x1 = 1

(II) x2 = −2

(III) x3 = 3 ,

it is possible to get the matrix into the form











1 0 0 1

0 1 0 −2

0 0 1 3











.

Can this be done using Gaussian-elimination-like manipulations? Indeed it can. First

do

II 7→ II − 4 · III

to get










1 2 3 6

0 1 0 −2

0 0 1 3











,

then do

I 7→ I − 3 · III

to get










1 2 0 −3

0 1 0 −2

0 0 1 3











,

finally do

I 7→ I − 2 · II
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to get










1 0 0 1

0 1 0 −2

0 0 1 3











,

so you can read off the entire solution. Of course this only works if the system has

a unique solution. So whenever, at the end of Gaussian elimination, you find that a

system has a unique solution, you can do Gauss-Jordan elimination to find the entire

solution more quickly than by doing back-substitution.

Gauss-Jordan elimination is also useful if a system does not have a unique solution.

Genauer ausführen.

2.10. Other methods

Other methods of solving linear systems include the „Gleichsetzungsverfahren“ which

consists of solving two equations for the same variable and equating the two expressions

obtained. Naturally, those expressions no longer contain the variable in question so

that, once again, a finite number of steps leaves an equation with only one unknown,

and back-substituting generates the entire solution.
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3. Quadratic equations

Definition 5. A quadratic equation is an equation of the form

a x 2+bx + c = 0 . (1)

Here a 6= 0,b and c are known real numbers[6], the coefficients. The left-hand side of this

equation is a second-degree polynomial. a x 2 is called the quadratic term, bx is called

the linear term, c is called the constant term. If a = 1, then the quadratic equation is

said to be in monic form, otherwise to be in general form.

Over the reals, a given quadratic equation does not have to be solvable, and if it is

solvable, there are at most two solutions.[7]

So how do we solve these?

3.1. Special cases

Missing linear term. If the linear term is missing (that is, b = 0), equation (1) reads

a x 2+ c = 0, which is equivalent to x 2 =− c
a

. Therefore, if − c
a

is positive or zero, we can

take the square root and state the solution(s) as x1, 2 =±
p

− c
a

.

Missing constant term. Now equation (1) is a x 2+bx = 0, that is x · (a x +b ) = 0, which

we’ll write in the form

x = 0 ∨ a x +b = 0

where the symbol ∨ is a fancy way of saying “or”. So x = 0 is one solution, and the other

one is x =−b
a

.

[6] At least in high school.

[7] There is a field, called the complex numbers, in which every quadratic equation is solvable, and there
are other sets of numbers where a quadratic equation can have more than two solutions. But those
definitely won’t be on the exam.

..
^

2012-09-25 20:08 Page 20 of 26



Thure Dührsen Systems of linear equations; quadratic equations

3.2. General case.

A number of other ways of solving quadratic equations exist.

Vieta’s formulas. For a moment, let’s only consider quadratic equations in monic

form, that is,

x 2+px +q = 0 .

If we call the two solutions (assuming for a moment that they exist) s1 and s2, we may

write

(x − s1) · (x − s2) = 0

or, equivalently,

x 2− (s1+ s2) ·x + s1 · s2 = 0

from which we see, by equating coefficients, that

s1+ s2 =−p and s1 · s2 =q .

So given an equation like x 2−7x −44= 0, what do you do? You look for two numbers

s1 and s2 such that s1+ s2 = 7 and s1 · s2 = −44. (This is a system of equations, albeit

not a linear system.) Do such numbers exist? Yes, they do, and all you need is mental

arithmetic: s1 = 11, s2 =−4.

This also works in reverse: Given the numbers s1 =−7 and s2 = 5, can you state the
[8] quadratic equation with those numbers as its solutions? Yes, you can, without

clumsy four-term binomial expansions: s1+ s2 =−2, s1 · s2 =−35, and so the equation is

x 2+2x −35= 0.

As a side note, Vieta’s formulas easily generalise to higher-degree polynomials. By way of

example, if the real cubic equation x 3+a 2x 2+a 1x +a 0 = 0 has the three real solutions

s1, s2 and s3, we expand the product, collect like powers, and write

x 3+a 2x 2+a 1x +a 0 = (x − s1) · (x − s2) · (x − s3)

= (x 2− s1x − s2x + s1s2) · (x − s3)

= x 3− s1x 2− s2x 2+ s1s2x − s3x 2+ s1s3x + s2s3x − s1s2s3

= x 3− (s1+ s2+ s3) ·x 2+(s1s2+ s1s3+ s2s3) ·x − s1s2s3

[8] Over the real numbers this problem has, of course, a unique solution, so that we can speak of the
equation instead of an equation.
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to conclude, again by equating coefficients, that

a 2 = − (s1+ s2+ s3)

a 1 = s1s2+ s1s3+ s2s3

a 0 = −s1s2s3 .

This is, again, a non-linear system of equations. Already in the case of three equations

with three variables, it is rather more difficult to solve offhand than the system with

two equations and two variables, but it (and its higher-degree analogues) does have

its applications. For example, it can be used to show that any integer solution of a

polynomial equation with integer coefficients divides the polynomial’s constant term –

a fact that comes in very handy when guessing zeros of high-degree polynomials.

Completing the square. Another method, and perhaps the most intuitive one, is

called completing the square. We’ll first do two examples, then derive a formula for

solving quadratic equations from it.

Looking, over the reals, at the equation

2x 2−12x = 32 ,

we express it in monic form,

x 2−6x = 16 ,

and see that the left-hand side would be a perfect square if we added 9 to it, because

x 2−6x +9= (x −3)2. So we add 9 to both sides,

x 2−6x +9= 16+9 ,

and simplify

(x −3)2 = 25

⇐⇒ x −3= 5 ∨ x −3=−5

⇐⇒ x = 8 ∨ x =−2

to arrive at the solution set {−2, 8}.

Now consider the quadratic equation

−3x 2−12x −15= 0 ,
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again over the real numbers. As before, we put it into monic form,

x 2+4x +5= 0 ,

shift the constant term to the right-hand side,

x 2+4x =−5 ,

and see that the left-hand side would be a perfect square if we added 4 to it, because

x 2+4x +4= (x +2)2. So we add 4 to both sides,

x 2+4x +4=−5+4 ,

and simplify

(x +2)2 =−1

to arrive at an equation that is clearly unsolvable, as the square of a real number is always

greater than or equal to zero. Therefore, the original equation,−3x 2−12x −15= 0, has

no solution over the reals.

It should be noted that completing the square is a much simpler way to show that

a quadratic equation is unsolvable than using Vieta’s formulas. Revisiting the equa-

tion x 2+4x +5= 0, to use Vieta’s formulas we are asked to find two real numbers s1

and s2 such that s1+ s2 =−4 and s1 · s2 = 5. Here, all I can come up with is guessing,

because the methods from the previous section, such as the substitution method,

s1+ s2 =−4 ⇐⇒ s1 =−s2−4

s1 · s2 = 5 ⇐⇒ (−s2−4) · s2 = 5 ⇐⇒ −s 2
2 −4s2 = 5 ⇐⇒ s 2

2 +4s2 =−5

yield the very same quadratic equation we started out with! So one needs to use some

other method – completing the square, for example.
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We can of course also use this method to factor

polynomials. As we can split off a linear factor

(t −a ) from a polynomial p ∈ F [t ] a if and only

if p has a zero at a – that is p (a ) = 0 – b , we solve

the equation p (x ) = 0 to find the factors of p .

As an example, consider the polynomial

t 2+ t −1∈R[t ]. We have to solve the equa-

tion x 2+x −1= 0. We’ll first look at the term

x 2+x only. What must be added to it in order

to make it a perfect square? The answer is 1
4

, as

x 2+x + 1
4
=
�

x + 1
2

�2
. Of course we have to sub-

tract that 1
4

again in order to leave the equation

intact, but as we have produced a perfect square

we can take the square root and simplify. In this

way, we end up with the following decomposi-

tion:

t 2+ t −1=
�

t − −1+
p

5
2

�

·
�

t − −1−
p

5
2

�

a F [t ] is shorthand for “the set of polynomials in the
variable t with coefficients from F ”, where F , at least
in high school, is any field. (See the first footnote on
page 9.)

b Let’s quickly prove that. — For all p ∈ F [t ], let deg(p )
denote the degree of p .

„=⇒“ If a is a zero of p , we do polynomial long di-
vision to obtain polynomials r, s ∈ F [t ] such
that

p = (t −a )·s+r , deg(r )< 1= deg(t −a ) .

Therefore deg(r ) = 0, that is, r is a constant
polynomial. Observing

0= p (a ) = (a −a ) ·s +r = 0 ·s +r = 0+r = r ,

we find r = 0, that is, the division leaves no
remainder.

„⇐=“ If (t −a ) divides p with no remainder, we have
p = (t −a ) · s for some s ∈ F [t ]. Plugging in a
for t , we get p (a ) = 0 · s (a ). As s (a ) belongs to
F and as F does not have any zero divisors,
we conclude p (a ) = 0. Therefore a is a zero of
p .

x 2+x −1 = 0

x 2+x + 1
4
− 5

4
= 0

�

x + 1
2

�2
− 5

4
= 0

�

x + 1
2

�2
= 5

4

x + 1
2
= ±

p

5
4

x + 1
2
= ±

p
5

2

x = − 1
2
±
p

5
2

x = −1±
p

5
2
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So what happens here?

a x 2+bx + c = 0

a x 2+bx = −c

x 2+ b
a
·x = − c

a

x 2+2 · b
2a
·x = − c

a

x 2+2 · b
2a
·x +

�

b
2a

�2
=

�

b
2a

�2
− c

a

�

x + b
2a

�2
=

�

b
2a

�2
− c

a

�

x + b
2a

�2
= b 2

4a 2 − c
a

�

x + b
2a

�2
= b 2

4a 2 − 4a c
4a 2

x + b
2a
= ±

Æ

b 2−4a c
4a 2

x1, 2 = − b
2a
±
p

b 2−4a c
2a

x1, 2 = −b±
p

b 2−4a c
2a

We start out with the quadratic equa-

tion in the general form, bring it into

monic form and manipulate the LHS in

order to apply the binomial theorem.

The term b
2a

is the „quadratische Er-

gänzung“ that is used to complete the

square.

Then take the square root and simplify,

and there you have it: a simple for-

mula you can stick values into and read

off the solutions. But don’t neglect

the other methods if they can save you

time!
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