
Simulation and High-Performance
Computing

Steffen Börm

October 11, 2020

Contents

1 Simulations based on ordinary differential equations 3
1.1 Timestepping for ordinary differential equations 3
1.2 Timestepping methods for special applications 8

2 Higher-order methods 14
2.1 Higher-order methods . 14
2.2 Runge-Kutta methods and multi-step methods 24

3 Partial differential equations 29
3.1 Finite difference methods for partial differential equations 29
3.2 LR decomposition and BLAS . 33
3.3 Method of lines for the heat equation and the wave equation 39

4 Iterative and semi-iterative solvers 43
4.1 Iterations . 43
4.2 Krylov methods for linear systems of equations 49

5 Algorithms for large systems 54
5.1 Multigrid methods . 54
5.2 Non-local force fields . 58

6 Shared-memory parallelization 61
6.1 Multithreading and OpenMP . 61
6.2 Tasks . 66

7 Vectorization 70
7.1 Vectorization . 70
7.2 Explicit vectorization . 74

8 Computing with graphics cards 78
8.1 Computing with graphics cards using CUDA 78
8.2 Streams, blocks, and shared memory . 82

9 Distributed computing 86
9.1 Message passing and MPI . 86
9.2 Collective communication . 91

2

1 Simulations based on ordinary differential
equations

1.1 Timestepping for ordinary differential equations

Our goal: Predict the future, based on given natural laws.

Examples

Predator-prey system: (Alfred J. Lotka, Vito Volterra)

b′(t) = b(t)(α− βr(t)), r′(t) = r(t)(γb(t)− δ).

b(t) is the number of prey, r(t) the number of predators at time t.

Logistic differential equation: (Pierre-François Verhulst)

x′(t) = x(t) (1− x(t)) .

In population models, e.g., x(t) could be the number of bacteria at time t.

Classical mechanics: (Isaac Newton)

x′(t) = v(t), v′(t) =
1

m
f(t).

m is the mass, x(t) is the position, v(t) is the velocity, f(t) is the force of a body.

Simple mass-spring system: (Isaac Newton, Robert Hooke)

x′(t) = v(t), v′(t) = − c

m
x(t).

c is the spring constant, m is the mass, x(t) is the extension of the spring, v(t) the
velocity.

Many-body mass-spring system:

x′i(t) = vi(t), v′i(t) =
∑
j 6=i

cij
mi

(Lij − ‖xi(t)− xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

.

cij is the spring constant for the spring between bodies i and j. Lij is the resting length
of this spring. mi is the mass of the i-th body.

3

Many-body gravitational system: (Isaac Newton)

x′i(t) = vi(t), v′i(t) = γ
∑
j 6=i

mj
xj(t)− xi(t)
‖xj(t)− xi(t)‖3

.

γ is the gravitational constant, mj is the mass of the j-th body, xi(t) is the position and
vi(t) is the velocity of the i-th body at time t.

Common form

All equations share the same form

y′(t) = f(t, y(t))

with a vector-valued function y and a right-hand side function f .

Difference quotient: Taylor expansion centered at t yields

y(t+ δ) = y(t) + δy′(t) +
δ2

2
y′′(η),

y(t+ δ)− y(t) = δy′(t) +
δ2

2
y′′(η),

y(t+ δ)− y(t)

δ
= y′(t) +

δ

2
y′′(η)

with η ∈ [t, t+ δ], i.e., the difference quotient on the left side of the equation converges
to y′(t) with an error on the order of δ.

Explicit Euler method: (Leonhard Euler)

y(t+ δ)− y(t)

δ
≈ y′(t) = f(t, y(t)),

y(t+ δ)− y(t) ≈ δf(t, y(t)),

y(t+ δ) ≈ y(t) + δf(t, y(t))︸ ︷︷ ︸
=:ỹ(t+δ)

.

Accuracy determined by the accuracy of the difference quotient:

y(t+ δ)− ỹ(t+ δ) =
δ2

2
y′′(η)

with η ∈ [t, t+ δ]. Taking the maximum on the right-hand side yields

‖y(t+ δ)− ỹ(t+ δ)‖ ≤ δ2

2
‖y′′‖∞,[t,t+δ],

so we need small timesteps to reach a high accuracy.

4

Timestepping Consider the solution at times tk = t0 + δk, proceed iteratively

ỹ(t0)← y(t0),

ỹ(tk+1)← ỹ(tk) + δf(tk, ỹ(tk)).

Example: logistic differential equation

y′(t) = y(t)(1− y(t)),

applying Euler yields

ỹ(tk+1)← ỹ(tk) + δỹ(tk)(1− ỹ(tk)).

Example: simple mass-spring system

x′(t) = v(t), v′(t) = − c

m
x(t),

equivalent with

y(t) =

(
x(t)
v(t)

)
, y′(t) =

(
y2(t)
− c
my1(t)

)
,

and applying Euler yields

ỹ(tk+1)← ỹ(tk) + δ

(
ỹ2(t)
− c
m ỹ1(t)

)
,

which is equivalent to

x̃(tk+1) = x̃(tk) + δṽ(tk),

ṽ(tk+1) = ṽ(tk)− δ
c

m
x̃(tk).

Experiment: Convergence Simulate the mass-spring system starting at t = 0 and
stopping at t = 20.

δ error ratio

1 1.02+3

1/2 8.24+1 12.4
1/4 7.87+0 10.5
1/8 1.32+0 6.0

1/16 3.97−1 3.3
1/32 1.58−1 2.5
1/64 7.07−2 2.2

1/128 3.36−2 2.1
1/256 1.64−2 2.1

Under typical conditions, the Euler method exhibits first-order convergence if the solu-
tion is twice continuously differentiable, i.e., the error is proportional to the stepsize δ,
therefore a high accuray requires a large number of steps.

5

Central difference quotient: Taylor expansion centered at t+ δ
2 yields

y(t+ δ) = y(t+ δ
2) +

δ

2
y′(t+ δ

2) +
δ2

8
y′′(t+ δ

2) +
δ3

48
y′′′(η+),

y(t) = y(t+ δ
2)− δ

2
y′(t+ δ

2) +
δ2

8
y′′(t+ δ

2)− δ3

48
y′′′(η−),

y(t+ δ)− y(t) = δy′(t+ δ
2) +

δ3

24
y′′′(η),

y(t+ δ)− y(t)

δ
= y′(t+ δ

2) +
δ2

24
y′′′(η)

with η+ ∈ [t, t+ δ
2], η− ∈ [t− δ

2 , t], and η ∈ [η−, η+] ⊆ [t− δ
2 , t+ δ

2].
While the error of the standard difference quotient behaves like δ, the central difference

quotient yields δ2, i.e., significantly faster convergence.

Runge’s method: If we use the central difference quotient, we have

y(t+ δ)− y(t)

δ
≈ y′(t+ δ

2),

y(t+ δ) ≈ y(t) + δy′(t+ δ
2),

y(t+ δ) ≈ y(t) + δf(t+ δ
2 , y(t+ δ

2)).

Unfortunately, we do not know y(t + δ
2), but we can use an explicit Euler step to ap-

proximate it:

y(t+ δ
2) ≈ y(t) +

δ

2
f(t, y(t)).

Combining both approximations yields

y(t+ δ) ≈ y(t) + δf
(
t+ δ

2 , y(t) + δ
2f
(
t, y(t)

))
=: ỹ(t+ δ)

Accuracy similar to that of central difference quotient, i.e., on the order of δ2, if the
solution y is thrice continuously differentiable and additionally if the right-hand side f
is Lipschitz continuous in the second argument, i.e., if

|f(t, x1)− f(t, x2)| ≤ Lf |x1 − x2| for all t, x1, x2.

Runge timestepping: Introduce intermediate steps tk+1/2 = t0 + δ(k + 1/2) and use

ỹ(t0)← y(t0),

ỹ(tk+1/2)← ỹ(tk) + δ
2f(tk, ỹ(tk)),

ỹ(tk+1)← ỹ(tk) + δf(tk+1/2, ỹ(tk+1/2)).

Computational work doubled compared to Euler’s method, but second-order convergence
instead of first-order, i.e., an accuracy of ε requires ∼ 1/ε timesteps with Euler, but only
∼ 2/

√
ε timesteps with Runge.

6

Example: simple mass-spring system

x̃(tk+1/2)← x̃(tk) + δ
2 ṽ(tk), ṽ(tk+1/2)← ṽ(tk)− δ

2
c
m x̃(tk),

x̃(tk+1)← x̃(tk) + δṽ(tk+1/2), ṽ(tk+1)← ṽ(tk)− δ cm x̃(tk+1/2).

Experiment: Convergence Simulate the mass-spring system starting at t = 0 and
stopping at t = 20.

Euler Runge
δ error ratio error ratio

1 1.02+3 9.61+0

1/2 8.24+1 12.4 8.70−1 11.1
1/4 7.87+0 10.5 1.85−1 4.7
1/8 1.32+0 6.0 4.61−2 4.0

1/16 3.97−1 3.3 1.17−2 4.0
1/32 1.58−1 2.5 2.94−3 4.0
1/64 7.07−2 2.2 7.39−4 4.0

1/128 3.36−2 2.1 1.85−4 4.0
1/256 1.64−2 2.1 4.64−5 4.0

Second-order convergence is clearly visible, Runge’s method reaches higher accuracies
than Euler’s method, and the errors converge significantly faster.

7

1.2 Timestepping methods for special applications

Goal of the leapfrog method: Efficiency of Runge at the cost of Euler

Idea: Central difference quotient, as for Runge’s method.

y′(t+ δ
2) ≈ y(t+ δ)− y(t)

δ
,

y(t+ δ) ≈ y(t) + δy′(t+ δ
2),

y(t+ δ) ≈ y(t) + 2δf(t+ δ
2 , y(t+ δ

2)).

Leapfrog: We need y(t) and y(t+ δ
2) to compute y(t+ δ), so we start with a half-step

using Euler’s method to approximate y(t+ δ
2) and then proceed with central differences.

ỹ(t0) = y(t0), ỹ(t1/2) = ỹ(t0) + δ
2f(t0, ỹ(t0)),

ỹ(tk+1) = ỹ(tk) + δf(tk+1/2, ỹ(tk+1/2)),

ỹ(tk+3/2) = ỹ(tk+1/2) + δf(tk+1, ỹ(tk+1)) for all k ∈ N0.

Special case: In mass-spring systems and the gravitational system, the force depends
only on the position of the bodies, not on the velocities, i.e., we have

x′(t) = v(t), v′(t) = f(t, x(t)).

If we are only interested in x̃(tk), we can save work:

x̃(t0) = x(t0), ṽ(t1/2) = v(t0) +
δ

2
f(t0, x̃(t0)),

x̃(tk+1) = x̃(tk) + δṽ(tk+1/2),

ṽ(tk+3/2) = ṽ(tk+1/2) + δf(tk+1, x̃(tk+1)) for all k ∈ N0.

Experiment: Convergence Simulate the mass-spring system starting at t = 0 and
stopping at t = 20.

Euler Runge Leapfrog
δ error ratio error ratio error ratio

1 1.02+3 9.61+0 9.08−1

1/2 8.24+1 12.4 8.70−1 11.1 2.04−1 4.5
1/4 7.87+0 10.5 1.85−1 4.7 4.84−2 4.2
1/8 1.32+0 6.0 4.61−2 4.0 1.19−2 4.1

1/16 3.97−1 3.3 1.17−2 4.0 2.98−3 4.0
1/32 1.58−1 2.5 2.94−3 4.0 7.43−4 4.0
1/64 7.07−2 2.2 7.39−4 4.0 1.86−4 4.0

1/128 3.36−2 2.1 1.85−4 4.0 4.64−5 4.0
1/256 1.64−2 2.1 4.64−5 4.0 1.16−5 4.0

We can see that the leapfrog method also converges like δ2, but is always more accurate
than Runge’s method, although it requires only half the computational work.

8

Goal of the implicit Euler method: Avoid unrealistic behaviour of the numerical ap-
proximation in the pre-asymptotic regime.

Example: Exponential function y(t) = e−λt with λ > 0 satisfies y′(t) = −λy(t).
Applying the explicit Euler method to this equation yields

ỹ(tk+1) = ỹ(tk)− δλỹ(tk) = (1− δλ)ỹ(tk),

i.e., numerical solution changes its sign in each step if δλ > 1.

Implicit Euler method:

y(t+ δ)− y(t)

δ
≈ y′(t+ δ) = f(t+ δ, y(t+ δ)),

y(t+ δ) ≈ y(t) + δf(t+ δ, y(t+ δ)).

Approximation of y(t+ δ) is given implicitly as the solution z of a fixed-point equation.

Timestepping requires us to solve fixed-point equations in each step.

ỹ(t0)← y(t0),

ỹ(tk+1) is solution of ỹ(tk+1) = ỹ(tk) + δf(tk+1, ỹ(tk+1)).

Example: exponential function We have to solve

ỹ(tk+1) = ỹ(tk)− δλỹ(tk+1),

(1 + δλ)ỹ(tk+1) = ỹ(tk),

ỹ(tk+1)← 1

1 + δλ
ỹ(tk).

No oscillations, exponential decay, similar to the exact solution (but at a slower rate).

Figure 1.1: Numerical solutions of y′(t) = −λy(t) with explicit and implicit Euler.

9

Energy conservation: In the simple mass-spring system

x′(t) = v(t), v′(t) = − c

m
x(t),

the energy

E(t) :=
c

2
x(t)2 +

m

2
v(t)2

is conserved over time, since the product rule of differentiation yields

E′(t) = cx(t)x′(t) +mv(t)v′(t) = cx(t)v(t)−mv(t)
c

m
x(t) = 0.

Since the energy is an important quantity, we are interested in finding timestepping
methods that also conserve it.

Energy and Euler’s methods: For the explicit Euler method, we have

Ẽ(t+ δ) :=
c

2
(x(t) + δv(t))2 +

m

2

(
v(t)− δ c

m
x(t)

)2

= E(t) + δc x(t)v(t) + δ2 c

2
v(t)2 − δcv(t)x(t) + δ2 c

2

2m
x(t)2

= E(t) + δ2 c

m

(m
2
v(t)2 +

c

2
x(t)2

)
= E(t) + δ2 c

m
E(t) ≥ E(t),

i.e., the energy increases with each timestep.
For the implicit Euler method, on the other hand, we have

Ẽ(t+ δ) :=
c

2
(x(t) + δṽ(t+ δ))2 +

m

2

(
v(t)− δ c

m
x̃(t+ δ)

)2

= E(t) + δcx(t)ṽ(t+ δ) + δ2 c

2
ṽ(t+ δ)2 − δcv(t)x̃(t+ δ) + δ2 c

2

2m
x̃(t+ δ)2

= E(t) + δc (x(t) + δṽ(t+ δ)) ṽ(t+ δ)− δ2 c

2
ṽ(t+ δ)2

− δc
(
v(t)− δ c

m
x̃(t+ δ)

)
x̃(t+ δ)− δ2 c

2

2m
x̃(t+ δ)2

= E(t) + δx̃(t+ δ)ṽ(t+ δ)− δṽ(t+ δ)x̃(t+ δ)− δ2 c

m
Ẽ(t+ δ)

= E(t)− δ2 c

m
Ẽ(t+ δ) ≤ E(t),

i.e., the energy decreases with each timestep.
Maybe a combination of the explicit and the implicit method could conserve the energy

and therefore preserve the behaviour of the original differential equation?

10

Crank-Nicolson method: Take the arithmetic mean of the forward and backward dif-
ference quotients.

y′(t) ≈ y(t+ δ)− y(t)

δ
,

y′(t+ δ) ≈ y(t+ δ)− y(t)

δ
,

y′(t) + y′(t+ δ)

2
≈ y(t+ δ)− y(t)

δ
,

y(t+ δ) ≈ y(t) + δ
y′(t) + y′(t+ δ)

2
,

y(t+ δ) ≈ y(t) +
δ

2

(
f(t, y(t)) + f(t+ δ, y(t+ δ))

)
.

This is again an implicit method, since y(t+ δ) appears on both sides of the fixed-point
equation.

Timestepping

ỹ(t0)← y(t0),

ỹ(tk+1) is solution of ỹ(tk+1) = ỹ(tk) +
δ

2

(
f(tk, ỹ(tk)) + f(tk+1, ỹ(tk+1))

)
.

Example: mass-spring system

x′(t) = v(t), v′(t) = − c

m
x(t)

leads to

x̃(tk+1) = x̃(tk) +
δ

2
(ṽ(tk) + ṽ(tk+1)),

ṽ(tk+1) = ṽ(tk)−
δ

2

c

m
(x̃(tk) + x̃(tk+1)).

Substituting ṽ(tk+1) in the first equation by the second equation yields

x̃(tk+1) = x̃(tk) +
δ

2

(
ṽ(tk) + ṽ(tk)−

δ

2

c

m
(x̃(tk) + x̃(tk+1))

)
= x̃(tk) + δṽ(tk)−

δ2

4

c

m
x̃(tk)−

δ2

4

c

m
x̃(tk+1),(

1 +
δ2c

4m

)
x̃(tk+1) =

(
1− δ2c

4m

)
x̃(tk) + δṽ(tk),

while substituting x̃(tk+1) in the second equation by the first leads to

ṽ(tk+1) = ṽ(tk)−
δ

2

c

m

(
x̃(tk) + x̃(tk) +

δ

2
(ṽ(tk) + ṽ(tk+1))

)

11

= ṽ(tk)− δ
c

m
x̃(tk)−

δ2

4

c

m
ṽ(tk)−

δ2

4

c

m
ṽ(tk+1),(

1 +
δ2c

4m

)
ṽ(tk+1) =

(
1− δ2c

4m

)
ṽ(tk)− δ

c

m
x̃(tk).

Experiment: Convergence Simulate the mass-spring system starting at t = 0 and
stopping at t = 20.

Explicit Implicit Crank-Nicol
δ error ratio error ratio error ratio

1 1.02+3 4.09−1 5.46−1

1/2 8.24+1 12.4 3.97−1 1.0 3.24−1 1.7
1/4 7.87+0 10.5 3.43−1 1.2 9.19−2 3.5
1/8 1.32+0 6.0 2.63−1 1.3 2.36−2 3.9

1/16 3.97−1 3.3 1.77−1 1.5 5.93−3 4.0
1/32 1.58−1 2.5 1.05−1 1.7 1.49−3 4.0
1/64 7.07−2 2.2 5.78−2 1.8 3.71−4 4.0

1/128 3.36−2 2.1 3.03−2 1.9 9.29−5 4.0
1/256 1.64−2 2.1 1.55−2 2.0 2.32−5 4.0

We observe first-order convergence for the Euler methods and second-order convergence
for the Crank-Nicolson method.

Energy conservation: the Crank-Nicolson method conserves the energy:

Ẽ(tk+1)− Ẽ(tk) =
c

2
(x̃(tk+1)2 − x̃(tk)

2) +
m

2
(ṽ(tk+1)2 − ṽ(tk)

2)

=
c

2
(x̃(tk+1)− x̃(tk))(x̃(tk+1) + x̃(tk))

+
m

2
(ṽ(tk+1)− ṽ(tk))(ṽ(tk+1) + ṽ(tk))

=
c

2

δ

2
(ṽ(tk+1) + ṽ(tk))(x̃(tk+1) + x̃(tk))

− m

2

δ

2

c

m
(x̃(tk+1) + x̃(tk))(ṽ(tk+1) + ṽ(tk)) = 0.

Euler methods do not conserve the energy. For the explicit Euler method, we have

Ẽ(tk+1) =
c

2
x̃(tk+1)2 +

m

2
ṽ(tk+1)2

=
c

2
(x̃(tk) + δṽ(tk))

2 +
m

2

(
ṽ(tk)− δ cm x̃(tk)

)2
=
c

2

(
x̃(tk)

2 + 2δx̃(tk)ṽ(tk) + δ2ṽ(tk)
2
)

+
m

2

(
ṽ(tk)− 2δ

c

m
x̃(tk)ṽ(tk) + δ2 c

2

m2
x̃(tk)

2

)

12

Figure 1.2: Phase diagrams for the spring-mass system plotting the curve (x̃(t), ṽ(t)) in
two-dimensional space with explicit and implicit Euler and Crank-Nicolson.
For c = m = 1, the energy x(t)2 + v(t)2 should remain constant, i.e., the
curve should be contained in the unit circle.

= Ẽ(tk) +
δ2

2

(
cṽ(tk)

2 +
c2

m
x̃(tk)

2

)
=
(

1 + δ2 c

m

)
Ẽ(tk),

so each timestep will lead to an increase in energy (unless we start with zero energy).
For the implicit Euler method, we obtain

Ẽ(tk+1) =
c

2
x̃(tk+1)2 +

m

2
ṽ(tk+1)2

=
c

2
(x̃(tk) + δṽ(tk+1))2 +

m

2

(
ṽ(tk)− δ

c

m
x̃(tk+1)

)2

=
c

2

(
x̃(tk)

2 + 2δx̃(tk)ṽ(tk+1) + δ2ṽ(tk+1)2
)

+
m

2

(
ṽ(tk)

2 − 2δ
c

m
ṽ(tk)x̃(tk+1) + δ2 c

2

m2
x̃(tk+1)2

)
=
c

2

(
x̃(tk)

2 + 2δx̃(tk+1)ṽ(tk+1)− δ2ṽ(tk+1)2
)

+
m

2

(
x̃(tk)

2 − 2δ
c

m
ṽ(tk+1)x̃(tk+1)− δ2 c

2

m2
x̃(tk+1)2

)
= Ẽ(tk)−

δ2

2

(
cṽ(tk+1)2 +

c2

m
x̃(tk+1)2

)
= Ẽ(tk)− δ2 c

m
Ẽ(tk+1).

13

2 Higher-order methods

2.1 Higher-order methods

Observation: In order to reduce the error by a factor of 100, a first-order method like
Euler requires 100 times as many steps, while a second-order method like Runge or
Crank-Nicolson requires only 10 times as many.

Goal: Construct higher-order methods.

Polynomials: Most higher-order methods are based on polynomials.

p(x) = c0 + c1x+ . . .+ cmx
m =

m∑
k=0

ckx
k

Example: Taylor expansion Given a function f ∈ Cm+1[a, b] and x, x0 ∈ [a, b], we find
η ∈ (a, b) with

f(x) =
m∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (m+1)(η)

(m+ 1)!
(x− x0)m+1,

i.e., the Taylor polynomial of degree m

p(x) =

m∑
k=0

f (k)(x0)

k!
(x− x0)k

is a (m+ 1)-th order approximation of f(x).

Interpolation Since computing derivatives all derivatives f, f ′, . . . , f (m) by hand is often
tedious and prone to errors, we frequently prefer to use the values of f in different points
x0, . . . , xm ∈ [a, b] instead: We look for a polynomial p of degree m such that

p(xk) = f(xk) for all k ∈ [0 : m].

Unfortunately, now p is given implicitly as the solution of these equations.

14

Lagrange polynomials In theory, we can represent p by Lagrange polynomials

p(x) =

m∑
j=0

f(xj)`j(x), `j(x) =

m∏
i=0
i 6=j

x− xi
xj − xi

,

since they satisfy

`j(xk) =

{
1 if k = j,

0 otherwise.

Actually evaluating p in this way is time-consuming and not particularly stable.

Application: Numerical differentiation We have already seen that we can construct
approximations of the derivative of a function f from appropriately chosen point values.

With interpolation, we can approximate the derivative in a point y by

f ′(y) ≈ p′(y) =
m∑
j=0

f(xj) `
′
j(y)︸ ︷︷ ︸

=:wj

=
m∑
j=0

wjf(xj).

If f is a polynomial of degree m, this equation is exact, and this property can be used to
determine the weights w0, . . . , wm without the need for the derivatives of the Lagrange
polynomials: we choose linear independent polynomials for which the derivative can be
computed easily, e.g., monomials fi(x) = xi for i ∈ [0 : m] with

f ′i(y) =

{
0 if i = 0,

iyi−1 otherwise.

For all of these monomials, our algorithm should deliver the exact derivative, i.e.,

m∑
j=0

xijwj =
m∑
j=0

wjfi(xj) = f ′i(y) =

{
0 if i = 0,

iyi−1 otherwise

This is a system of m+1 linear equations that can be solved to obtain the m+1 weights
w0, . . . , wm without the need for computing the derivatives of the Lagrange polynomials
explicitly.

Example: Cubic approximation of the first derivative Let f ∈ C1[−2, 2]. We want to
approximation f ′(0) by p′(0), where p is a cubic polynomial interpolating f in x0 = −3,
x1 = −1, x2 = 1, x3 = 3. We obtain the linear system

0 = x0
0w0 + x0

1w1 + x0
2w2 + x0

3w3 = w0 + w1 + w2 + w3,

1 = x1
0w0 + x1

1w1 + x1
2w2 + x1

3w3 = −3w0 − w1 + w2 + 3w3,

0 = x2
0w0 + x2

1w1 + x2
2w2 + x2

3w3 = 9w0 + w1 + w2 + 9w3,

15

0 = x3
0w0 + x3

1w1 + x3
2w2 + x3

3w3 = −27w0 − w1 + w2 + 27w3.

Combining the first and third equation yields w0 = −w3 and w1 = −w2, and the fourth
equation gives us w1 = −27w0.

Substituting these identities in the second equation leads us to w0 = 1
48 and the

approximation

f ′(0) ≈ p′(0) =
f(−3)− 27f(−1) + 27f(1)− f(3)

48
.

Scaling In order to control the accuracy, we fix a scaling paramter h > 0 and apply
the approximation to

f̂(x) := f(hx) (2.1)

instead of f itself. The chain rule yields f̂ ′(x) = hf ′(hx) and we obtain

f ′(0) = 1
h f̂
′(0) ≈ f(−3h)− 27f(−h) + 27f(h)− f(3h)

48h
.

Applying this approximation to f(x) = ex gives us fourth-order accuracy.

h error ratio

1 9.53−2

1/2 4.98−3 19.2
1/4 2.97−4 16.7
1/8 1.84−5 16.2

1/16 1.15−6 16.0
1/32 7.15−8 16.0
1/64 4.47−9 16.0

Usually we would only expect third-order accuracy (fourth order for p, but we lose
one order by differentiating), but our approximation happens to be accurate for quartic
polynomials as well, giving us fourth order.

Example: Quadratic approximation of the second derivative Let f ∈ C2[−1, 1]. We
want to approximate f ′′(0) by p′′(0), where p is a quadratic polynomial interpolating f
in x0 = −1, x1 = 0, x2 = 1.

We obtain the linear system

0 = x0
0w0 + x0

1w1 + x0
2w2 = w0 + w1 + w2,

0 = x1
0w0 + x1

1w1 + x1
2w2 = −w0 + w2,

2 = x2
0w0 + x2

1w1 + x2
2w2 = w0 + w2.

The second row yields w0 = w2, the third w0 + w2 = 2, i.e., w0 = w2 = 1, so that the
first row leads to w1 = −2. We conclude

f ′′(0) ≈ p′′(0) = f(−1)− 2f(0) + f(1).

16

Using scaling again, we observe f̂ ′′(x) = h2f ′′(hx) and arrive at

f ′′(0) = 1
h2
f̂ ′′(0) ≈ f(−h)− 2f(0) + f(h)

h2
.

Quartic approximation of the second derivative Let f ∈ C2[−2, 2]. We want to
approximate f ′′(0) by p′′(0), where p is a quartic polynomial interpolating f in x0 = −2,
x1 = −1, x2 = 0, x3 = 1, and x4 = 2. Since the approximation has to be exact for
quartic polynomials, we obtain the linear system

0 = x0
0w0 + x0

1w1 + x0
2w2 + x0

3w3 + x0
4w4 = w0 + w1 + w2 + w3 + w4,

0 = x1
0w0 + x1

1w1 + x1
2w2 + x1

3w3 + x1
4w4 = −2w0 − w1 + w3 + 2w4,

2 = x2
0w0 + x2

1w1 + x2
2w2 + w2

3w3 + x2
4w4 = 4w0 + w1 + w3 + 4w4,

0 = x3
0w0 + x3

1w1 + x3
2w2 + x3

3w3 + x3
4w4 = −8w0 − w1 + w3 + 8w4,

0 = x4
0w0 + x4

1w1 + x4
2w2 + x4

3w3 + x4
4w4 = 16w0 + w1 + w3 + 16w4.

The second and fourth equations yield w0 = w4 and w1 = w3. The fifth equation gives
us w1 = −16w0, and the third 2 = −24w0, i.e., w0 = − 1

12 . With the first equation we
find 30w0 = w2, and therefore the approximation

f ′′(0) ≈ p′′(0) =
−f(−2) + 16f(−1)− 30f(0) + 16f(1)− f(2)

12
.

We can again use scaling to control the accuracy and arrive at

f ′′(0) = 1
h2
f̂ ′′(0) ≈ −f(−2h) + 16f(−h)− 30f(0) + 16f(h)− f(2h)

12h2
.

To verify the accuracy, we apply the approximations to f(x) = ex.

2nd order 4th order
h error ratio error ratio

1 8.06−2 1.02−2

1/2 2.07−2 3.9 6.79−4 15.0
1/4 5.20−3 4.0 4.32−5 15.7
1/8 1.30−3 4.0 2.71−6 15.9

1/16 3.25−4 4.0 1.69−7 16.0
1/32 8.14−5 4.0 1.06−8 16.0
1/64 2.03−5 4.0 6.62−10 16.0

Usually, we would only expect third-order accuracy (fifth order for p, but we lose two
orders by differentiating), but our approximation happens to be accurate for quintic
polynomials as well due to symmetry, giving us fourth order.

17

Application: Extrapolation Let f ∈ C[0, 1]. We want to approximate the limit f(0) =
limx→0 f(x), but we cannot simply evaluate f in zero, e.g., because evaluating f(x)
involves a division by x. With interpolation, we can approximate the limit by

f(0) = lim
x→0

f(x) ≈ lim
x→0

p(x) = p(0) =
m∑
j=0

f(xj) `j(0)︸ ︷︷ ︸
=:wj

=
m∑
j=0

wjf(xj).

As in the previous application, we can use the fact that the interpolation is exact for
monomials fi(x) = xi to obtain the linear system

m∑
j=0

xijwj =

{
1 if i = 0,

0 otherwise
for all i ∈ [0 : m].

Example: Quadratic extrapolation Let f ∈ C[0, 1]. We want to approximate f(0) by
p(0), where p is a quadratic polynomial interpolating f in x0 = 1/4, x1 = 1/2, x2 = 1.
We obtain the linear system 1 1 1

1/4 1/2 1
1/16 1/4 1

w0

w1

w2

 =

1
0
0


with the solution w0 = 8/3, w1 = −2, w2 = 1/3, i.e.,

f(0) ≈ 8f(1/4)− 6f(1/2) + f(1)

3

We can again use scaling (2.1) to control the accuracy:

f(0) = f̂(0) ≈ 8f(h/4)− 6f(h/2) + f(h)

3

Example: Cubic extrapolation Let f ∈ C[0, 1]. We want to approximate f(0) by p(0),
where p is a cubic polynomial interpolating f in x0 = 1/8, x1 = 1/4, x2 = 1/2, and
x3 = 1. We obtain the linear system

1 1 1 1
1/8 1/4 1/2 1
1/64 1/16 1/4 1
1/512 1/64 1/8 1



w0

w1

w2

w3

 =


1
0
0
0


with the solution w0 = 64/21, w1 = −8/3, w2 = 2/3, w3 = −1/21, this leads to

f(0) ≈ 64f(1/8)− 56f(1/4) + 14f(1/2)− f(1)

21
.

Scaling (2.1) yields

f(0) = f̂(0) ≈ 64f(h/8)− 56f(h/4) + 14f(h/2)− f(h)

21
.

18

Applying this approximation to f(x) = ex−1
x yields

Quadratic Cubic
h error ratio error ratio

1 7.48−3 1.80−4

1/2 7.78−4 9.6 9.54−6 18.8
1/4 8.89−5 8.8 5.50−7 17.3
1/8 1.06−5 8.4 3.31−8 16.6

1/16 1.30−6 8.2 2.03−9 16.3
1/32 1.61−7 8.1 1.26−10 16.1
1/64 2.00−8 8.0 7.74−12 16.2

We can observe cubic convergence for the quadratic approximation and quartic conver-
gence for the cubic approximation.

Application: Numerical integration We can also approximate the integral of f by∫ b

a
f(x) dx ≈

∫ b

a
p(x) dx =

m∑
j=0

f(xj)

∫ b

a
`j(x) dx︸ ︷︷ ︸
=:wj

=
m∑
j=0

wjf(xj).

Once again, if f is a polynomial of degree m, the equation is exact, and we can compute
the weights w0, . . . , wm by solving the system

m∑
j=0

xijwj =

∫ b

a
xi dx =

bi+1 − ai+1

i+ 1
for all i ∈ [0 : m].

Example: Trapezoidal quadrature We approximate the integral
∫ 1
−1 f(x) dx using a

linear polynomial p interpolating in x0 = −1 and x1 = 1. We obtain the linear system

2 =

∫ 1

−1
x0 dx = x0

0w0 + x0
1w1 = w0 + w1,

0 =

∫ 1

−1
x1 dx = x1

0w0 + x1
1w1 = −w0 + w1.

The second row yields w0 = w1, and substituting this equation in the first row gives us
w0 = w1 = 1. Our approximation of the integral takes the form∫ 1

−1
f(x) dx ≈

∫ 1

−1
p(x) dx = f(−1) + f(1).

Example: Simpson’s quadrature We want to approximate the integral
∫ 1
−1 f(x) dx

using a quadratic polynomial p interpolating in x0 = −1, x1 = 0 and x2 = 1. We obtain
the linear system

2 =

∫ 1

−1
x0 dx = x0

0w0 + x0
1w1 + x0

2w2 = w0 + w1 + w2,

19

0 =

∫ 1

−1
x1 dx = x1

0w0 + x1
1w1 + x1

2w2 = −w0 + w2,

2

3
=

∫ 1

−1
x2 dx = x2

0w0 + x2
1w1 + x2

2w2 = w0 + w2,

that can be written in matrix-vector form as 1 1 1
−1 0 1
1 0 1

w0

w1

w2

 =

 2
0

2/3

 .

The second row yields w0 = w2, the third row yields w0 +w2 = 2/3, i.e., w0 = w2 = 1/3,
and the first row leads to w1 = 2− 2/3 = 4/3. We conclude∫ 1

−1
f(x) dx ≈

∫ 1

−1
p(x) dx =

1

3
f(−1) +

4

3
f(0) +

1

3
f(1).

Composite quadrature The simple scaling approach used before cannot be applied
directly to the task of numerical integration: if we use (2.1) and the substitution y = hx,
we find

h

∫ 1

−1
f̂(x) dx =

∫ 1

−1
f(hx)h dx =

∫ h

−h
f(y) dy,

i.e., the interval depends on h.
Since we usually want the interval to be fixed, we have to modify the scaling approach:

assume that a < b are given and we have to compute∫ b

a
f(x) dx.

In order to control the accuracy, we choose k ∈ N, let

ci := a+ h(2i− 1), h :=
b− a

2k
for all i ∈ [1 : k],

and apply the quadrature rule to the functions

f̂i(x) := f(hx+ ci) for all i ∈ [1 : k].

Substitution yields

h

k∑
i=1

∫ 1

−1
f̂i(x) dx =

k∑
i=1

∫ 1

−1
fi(hx+ ci)h dx =

k∑
i=1

∫ ci+h

ci−h
f(y) dy

=
k∑
i=1

∫ a+2hi

a+2h(i−1)
f(y) dy =

∫ a+2hk

a
f(y) dy =

∫ b

a
f(y) dy.

20

Example: Composite trapezoidal and Simpson’s quadrature For the trapezoidal rule,
we obtain∫ b

a
f(y) dy = h

k∑
i=1

∫ 1

−1
f̂i(x) dx ≈ h

k∑
i=1

f̂i(−1) + f̂i(1)

= h
k∑
i=1

f(ci − h) + f(ci + h) = h
k∑
i=1

f(a+ 2h(i− 1)) + f(a+ 2hi)

= h
k−1∑
i=0

f(a+ 2hi) + h
k∑
i=1

f(a+ 2hi)

= h

(
f(a) + 2

k−1∑
i=1

f(a+ 2hi) + f(b)

)
.

for Simpson’s rule, we have∫ b

a
f(y) dy = h

k∑
i=1

∫ 1

−1
f̂i(x) dx ≈ h

3

k∑
i=1

f̂i(−1) + 4f̂i(0) + f̂i(1)

=
1

3

(
h

k∑
i=1

f̂i(−1) + f̂i(1)

)
+

2

3

k∑
i=1

2hf(ci)

=
h

3

(
f(a) + 2

k−1∑
i=1

f(a+ 2hi) + f(b)

)
+

2h

3

k∑
i=1

2f(a+ h(2i− 1)),

i.e., it can be computed by adding a correction term to the trapezoidal rule.
Applied to

∫ 2
0 e

x dx, we obtain the following approximations:

Trapezoidal Simpson’s
k error ratio error ratio

1 2.00+0 3.17−2

2 5.24−1 3.8 2.15−3 14.7
4 1.33−1 4.0 1.38−4 15.7
8 3.32−2 4.0 8.65−6 15.9

16 8.32−3 4.0 5.41−7 16.0
32 2.08−3 4.0 3.38−8 16.0
64 5.20−4 4.0 2.12−9 16.0

We can see that the trapezoidal rule only shows second-order convergence, while Simp-
son’s rule shows fourth-order convergence.

Example: Romberg integration Compared to other methods, the composite trape-
zoidal rule is very easy to apply, but unfortunately offers only second-order convergence.

We can improve the accuracy significantly by combining the trapezoidal rule with ex-
trapolation, i.e., by approximating the trapezoidal rule with infinitely many subintervals.

21

We slightly change the notation: h denoted the radius of the subintervals before, now
it denotes their diameter. The composite trapezoidal rule takes the form

T (h) :=
b− a

2k

(
f(a) + 2

k−1∑
i=1

f
(
a+ b−a

k i
)

+ f(b)

)
, k :=

b− a
h
∈ N,

where we have to ensure that b− a is always a multiple of h.
The error converges like h2, and the exact solution is the limit∫ b

a
f(x) dx = lim

h→0
T (h).

A closer look at the error reveals that we can find constants c1, c2, . . . satisfying

T (h) =

∫ b

a
f(x) dx+ c1h

2 + c2h
4 + c3h

6 + . . . ,

so approximating T (h) directly would “waste” every second term in the polynomial.
To avoid this issue, we approximate the function g(h) := T (

√
h) that satisfies

g(h) =

∫ b

a
f(x) dx+ c1h+ c2h

2 + c3h
3 + . . .

and has no “gaps” in the polynomial expansion.
In order to construct an interpolating polynomial p, we have to evaluate g in inter-

polation points h0, h1, . . ., i.e., we need the values of g(hj) = T (
√
hj). T (h) is only

well-defined if (b− a)/h is an integer, so we have to choose the interpolation points in a
way that guarantees this property. A simple approach is to start with h0 := (b− a)2/k2

for k ∈ N and continue with h1 := h0/4, . . . , hm := h0/4
m. The resulting algorithm is

known as Romberg integration.

Neville-Atiken algorithm Romberg integration requires us to evaluate the interpolating
polynomial p in just one point, h = 0. The idea of the Neville-Aitken algorithm is to
define polynomials of increasing degree that interpolate the given function in increasing
numbers of points: we define polynomials pij of degree j − i such that they interpolate
g in hi, . . . , hj . We obtain the recurrence relation

pij(x) =

{
g(hi) if i = j,
x−hi
hj−hi pi+1,j(x) +

hj−x
hj−hi pi,j−1(x) otherwise

for all i ≤ j.

Since we are only interested in x = 0, we can make use of hk = h04−k and

−hi
hj − hi

=
−4−i

4−j − 4−i
=
−4j−i

1− 4j−i
=

4j−i

4j−1 − 1
,

hj
hj − hi

=
4−j

4−j − 4−i
=

1

1− 4j−i
=

−1

4j−i − 1

22

to obtain the simpler relation

pij(0) =

{
g(hi) if i = j,
4j−ipi+1,j(0)−pi,j−1(0)

4j−i−1
otherwise

for all i ≤ j. (2.2)

This leads to the triangular scheme

g(h0) = p00(0)
↘

g(h1) = p11(0) → p01(0)
↘ ↘

g(h2) = p22(0) → p12(0) → p02(0)
↘ ↘ ↘

g(h3) = p33(0) → p23(0) → p13(0) → p03(0)
↘ ↘ ↘ ↘

g(h4) = p44(0) → p34(0) → p24(0) → p14(0) → p04(0)

that can be evaluated efficiently by storing only the last row: if pmm(0), . . . , p0m(0) are
available, we can compute g(hm+1) = pm+1,m+1(0) and then use the current values to
find pm,m+1(0), . . . , p0,m+1(0) successively by applying (2.2).

Applying the trapezoidal rule and Romberg integration to the exponential function in
[0, 2] yields the following errors:

Trapezoidal Romberg
k error ratio error ratio

2 5.24−1 5.24−1

4 1.33−1 4.0 2.15−3 243.1
8 3.32−2 4.0 3.20−6 647.1

16 8.32−3 4.0 1.25−9 2661.9
32 2.08−3 4.0 1.22−13 10251.7
64 5.20−4 4.0 “0”

We can see that extrapolation significantly improves the accuracy.

23

2.2 Runge-Kutta methods and multi-step methods

Ordinary differential equation in general explicit form

y′(t) = f(t, y(t)).

Goal: Develop higher-order methods that can be easily implemented.

Structure of method discussed so far:

y(t+ δ) ≈ y(t) + δf(t, y(t)), explicit Euler,

y(t+ δ) ≈ y(t) + δf(t+ δ, y(t+ δ)), implicit Euler,

y(t+ δ) ≈ y(t) + δf(t+ δ
2 , y(t) + δ

2f(t, y(t))), Runge,

y(t+ δ) ≈ y(t) + δ
2 (f(t, y(t)) + f(t+ δ, y(t+ δ))) , Crank-Nicolson.

Multiple evaluations of f , some of which depend on previous evaluations.

Implicit methods can be rewritten:

ỹ(t+ δ) = y(t) + δk1, k1 = f(t+ δ, y(t) + δk1),

for the implicit Euler method and

ỹ(t+ δ) = y(t) + δ
2(k1 + k2), k1 = f(t, y(t)),

k2 = f
(
t+ δ, y(t) + δ

2(k1 + k2)
)

for the Crank-Nicolson method.

General Runge-Kutta method with s stages:

ki = f

t+ ciδ, y(t) + δ

s∑
j=1

aijkj

 ,

y(t+ δ) ≈ y(t) + δ

s∑
i=1

biki.

Butcher tableaus provide compact notation for general Runge-Kutta methods:

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

24

Tableaus for the methods we have seen so far:

0 0

1
explicit Euler,

1 1

1
implicit Euler,

0 0
1/2 1/2 0

0 1

Runge,

0 0
1 1/2 1/2

1/2 1/2

Crank-Nicolson

For explicit methods, we have aij = 0 for all j ≥ i, i.e., only k1, . . . , ki−1 are required to
compute ki. For implicit methods, ki may depend on all k1, . . . , ks.

A special case are semi-implicit methods, characterized by aij = 0 for j > i: ki may
depend on k1, . . . , ki, so we still can compute k1, k2, . . . , ks in sequence, but each step
requires us to solve an equation.

Classical Runge-Kutta method of fourth order given by

0 0
1/2 1/2 0
1/2 0 1/2 0

1 0 0 1 0

1/6 1/3 1/3 1/6

Experiment: Runge-Kutta for the mass-spring system If we use the Crank-Nicolson
method and the classic Runge-Kutta method for the mass-spring system starting at time
t = 0 and stopping at time t = 20, we obtain the following results:

Crank-Nicol Runge-Kutta
δ error ratio error ratio

1 5.46−1 4.07−2

1/2 3.24−1 1.7 6.91−3 5.9
1/4 9.19−2 3.5 5.26−4 13.1
1/8 2.36−2 3.9 3.52−5 14.9

1/16 5.93−3 4.0 2.26−6 15.6
1/32 1.49−3 4.0 1.43−7 15.8
1/64 3.71−4 4.0 9.02−9 15.9

1/128 9.29−5 4.0 5.65−10 16.0
1/256 2.32−5 4.0 3.54−11 16.0

We can see that the classic Runge-Kutta method indeed shows fourth-order convergence.

25

Multi-step methods: Runge-Kutta need s evaluations of f in each time step. Multi-
step methods re-use results from previous steps to reduce the work.

Idea of the Adams-Bashforth method : use fundamental theorem of calculus to find

y(ti+1) = y(ti) +

∫ ti+1

ti

y′(s) ds,

replace y′ by interpolating polynomial in ti, ti−1, . . . , ti−m+1.

y(ti+1) ≈ y(ti) +

∫ ti+1

ti

p(s) ds = y(ti) +
m−1∑
j=0

y′(ti−j)

∫ ti+1

ti

`i,j(s) ds︸ ︷︷ ︸
=:aij

= y(ti) +

m−1∑
j=0

aijf(ti−j , y(ti−j)).

Multi-step method stores fi := f(ti, ỹ(ti)) to reduce computational work:

fi ← f(ti, y(ti)) for all i ∈ [0 : m− 1],

ỹ(ti+1)← ỹ(ti) +
m−1∑
j=0

aijfi−j ,

fi+1 ← f(ti+1, ỹ(ti+1)) for all i ∈ [m− 1 :∞).

Only fi, . . . , fi−m+1 have to be stored, so only m auxiliary vectors are required.

Cyclic storage: Since we only need fi, . . . , fi−m+1 to compute ỹ(ti+1), we can subse-
quently overwrite the “oldest” vector fi−m+1 by fi+1. This approach allows us to avoid
copying vectors, but we have to be careful to keep track where which vector is stored.

When implementing multi-step methods in programming languages like C, we can use
the modulo operator (returning the remainder of an integer division) for this purpose:
If we have arrays f[0],. . . ,f[s-1], we keep fi in the array f[i%s].

Equidistant time steps allow us to reduce the number of coefficients. If we choose
ti = iδ, we have

aij =

∫ ti+1

ti

`i,j(s) ds =

∫ ti+1

ti

m−1∏
k=0
k 6=j

s− ti−k
ti−j − ti−k

ds

=

∫ (i+1)δ

iδ

m−1∏
k=0
k 6=j

s− iδ + kδ

iδ − jδ − iδ + kδ
ds =

∫ δ

0

m−1∏
k=0
k 6=j

kδ + s

(k − j)δ
ds

26

We can even substitute s = ŝδ to obtain

aij =

∫ δ

0

m−1∏
k=0
k 6=j

(k + ŝ)δ

(k − j)δ
ds = δ

∫ 1

0

m−1∏
k=0
k 6=j

k + ŝ

k − j
dŝ

︸ ︷︷ ︸
=:âj

with coefficients âj that are independent of δ and i.
These coefficients are the integrals of Lagrange polynomials for the interpolation points

x0 = 0, x1 = −1, . . . , xm = −(m− 1).

Multi-step method with equidistant steps:

fi ← f(ti, y(ti)) for all i ∈ [0 : m− 1],

ỹ(ti+1)← ỹ(ti) + δ

m−1∑
j=0

âjfi−j ,

fi+1 ← f(ti+1, ỹ(ti+1)) for all i ∈ [m− 1 :∞).

Coefficients can be again found by using the fact that interpolation reproduces poly-
nomials exactly, i.e., we have

m−1∑
j=0

âjp(−j) =

∫ 1

0

m−1∑
j=0

p(−j)
m−1∏
k=0
k 6=j

k + ŝ

k − j
dŝ =

∫ 1

0
p(ŝ) dŝ

for all polynomials p of degree m − 1, so we can compute the coefficients by applying
this equation to monomials p(x) = xi and solving the resulting system.

Example: Quadratic Adams-Bashforth method For m = 3, we find1 1 1
0 −1 −2
0 1 4

â0

â1

â2

 =

 1
1/2
1/3


with the solution â0 = 23/12, â1 = −16/12, â2 = 5/12, and one step takes the form

ỹ(ti+1)← ỹ(ti) +
δ

12
(23fi − 16fi−1 + 5fi−2) ,

fi+1 ← f(ti+1, ỹ(ti+1)).

Example: Cubic Adams-Bashforth method For m = 4, we find
1 1 1 1
0 −1 −2 −3
0 1 4 9
0 −1 −8 −27



â0

â1

â2

â3

 =


1

1/2
1/3
1/4


with the solution â0 = 55/24, â1 = −59/24, â2 = 37/24, â3 = −9/24.

27

Experiment: Convergence for the spring-mass system in the time interval [0, 20].

Runge-Kutta Adams-Bash 3 Adams-Bash 4
δ error ratio error ratio error ratio

1 4.07−2 4.23+3 2.74+4

1/2 6.91−3 5.9 3.96−1 10685.8 2.20−1 124462.5
1/4 5.26−4 13.1 6.63−2 6.0 1.76−2 12.5
1/8 3.52−5 14.9 7.52−3 8.8 1.36−3 13.0

1/16 2.26−6 15.6 8.50−4 8.8 9.15−5 14.9
1/32 1.43−6 15.8 1.00−4 8.5 5.90−6 15.5
1/64 9.02−9 15.9 1.21−5 8.3 3.74−7 15.8

1/128 5.65−10 16.0 1.49−6 8.1 2.36−8 15.9
1/256 3.54−11 16.0 1.84−7 8.1 1.48−9 15.9

We can see that the errors of the Adams-Bashforth methods converge like δ3 and δ4,
respectively, although they only require one evaluation of the right-hand side f per step.

28

3 Partial differential equations

3.1 Finite difference methods for partial differential equations

Poisson’s equation in the unit square Ω = (0, 1)× (0, 1):

−∆u(x) = f(x), for all x ∈ Ω

with the Laplace operator

∆ :=
∂2

∂x2
1

+
∂2

∂x2
2

.

Challenge: Solution depends on multiple variables, and we have derivatives with re-
spect to all of these variables.
→ simple timestepping not possible.

Idea: Essentially, the PDE is a linear system of equations, just with an infinite number
of degrees of freedom, i.e., the values u(x) for all x ∈ Ω.
→ turn it into a system with finitely many variables.

Grid: Fix N ∈ N and define the stepsize h := 1
N+1 .

Ω̄h := {(ih, jh) : i, j ∈ [0 : N + 1]} ⊆ Ω̄ domain including boundary,

Ωh := {(ih, jh) : i, j ∈ [1 : N]} ⊆ Ω interior of the domain,

∂Ωh := Ω̄h \ Ωh boundary of the domain.

Grid function: Replace a function u : Ω̄→ R by a grid function uh : Ω̄h → R.
Since uh is characterized by only (N + 2)2 values, we have replaced infinitely many

variables by finitely many.

Representation: Since Ωh is two-dimensional, a first idea could be to use a two-
dimensional array double u[N+2][N+2]. Since the C programming language does not
support multidimensional variable-length arrays, this would mean that we have to fix N
at compilation time.

In order to be able to choose the grid resultion a runtime, we map the two-dimensional
indices (i, j) ∈ [0 : N + 1]× [0 : N + 1] to one-dimensional indices k := i+ j(N + 2).

Our gridfunction is now represented by an array u with (n+ 2)2 coefficients, and the
value uh(ih, jh) can be found at u[i+j*(N+2)].

29

Finite differences: In order to replace u by a grid function uh, we have to be able to
replace the Laplace operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

by an operator acting on grid functions.
We have already seen that we can approximate the second derivative by a difference

quotient

f ′′(0) ≈ f(h)− 2f(0) + f(−h)

h2
,

and applying this approximation to the partial derivatives yields

∂2

∂x2
1

u(x) ≈ u(x1 + h, x2)− 2u(x) + u(x1 − h, x2)

h2
,

∂2

∂x2
2

u(x) ≈ u(x1, x2 + h)− 2u(x) + u(x1, x2 − h)

h2
,

∆hu(x) :=
u(x1 + h, x2) + u(x1 − h, x2) + u(x1, x2 + h) + u(x1, x2 − h)− 4u(x)

h2
.

We call this the discrete Laplace operator.

Discrete Poisson’s equation:

−∆huh(x) = f(x) for all x ∈ Ωh.

Well-defined, since uh provides values for all points in Ω̄h, so all neighbours of a point
in Ωh are available.

Boundary conditions: Discrete equation gives us n := #Ωh = N2 equations for #Ω̄h =
(N + 2)2 = n+ 4N + 4 unknown values, so we cannot expect the solution to be unique.

Easy fix: Add boundary conditions, e.g., of Dirichlet type.

uh(x) = g(x) for all x ∈ ∂Ωh.

Since the 4N+4 boundary values are no longer unknown now, we would like to eliminate
them from the equation.

General index sets: Given general finite sets I,J , we can define general vectors v =
(vi)i∈I , w = (wj)j∈J and general matrices A = (aij)i∈I,j∈J .

The sets of these vectors and matrices are denoted by RI , RJ , and RI×J , as with
standard vectors and matrices.

The matrix-vector multiplication v = Aw is given by

vi =
∑
j∈J

aijwj for all i ∈ I.

30

Grid functions as vectors: We can see uh as a vector in RΩ̄h and the operator −∆h as
a matrix L ∈ RΩh×Ω̄h with the coefficients

`ij =


4h−2 if i = j,

−h−2 if |j1 − i1| = h, i2 = j2,

−h−2 if |j2 − i2| = h, i1 = j1,

0 otherwise

for all i ∈ Ωh, j ∈ Ω̄h.

Elimination of the boundary: Let A := L|Ωh×Ωh and B := L|Ωh×∂Ωh . We have

−∆uh = fh and uh|∂Ω = gh ⇐⇒ Luh = fh and uh|∂Ω = gh

⇐⇒ Auh|Ωh +Buh|∂Ωh = fh and uh|∂Ω = gh

=⇒ Auh|Ωh +Bgh = fh

⇐⇒ Auh|Ωh = fh −Bgh

with fh = f |Ωh and gh = g|∂Ωh .
Now A is a square matrix of dimension n = N2, and we can apply standard linear

algebra to solve the system.

Solvers:

• Gaussian elimination, LR factorization: Requires explicit elimination of boundary
values, adds non-zero entries to the matrix, very slow for high resolutions

• Iterative solvers: Can work with grid functions directly, can handle boundary
values elegantly, matrix is not changed, very fast for some applications.

• H-matrix solvers: Can work with grid functions directly, require elimination of
boundary values, very robust for a large class of applications.

Lexicographic order: If we want to represent A as a matrix with one-dimensional index
sets, i.e., as A ∈ Rn×n, we have to describe how to map the indices k ∈ [1 : n] to the
grid points (ih, jh) ∈ Ωh.

A standard approach is the lexicographic order, i.e., numbering the gridpoints row by
row: we let k = (i− 1) + (j − 1)N + 1.

This means that the left and right neighbours of a gridpoint x = (ih, jh) with index k
are found at k − 1 and k + 1, while the lower and upper neighbours are found at k −N
and k +N .

31

k x

1 (h, h)
2 (2h, h)
...

...
N (Nh, h)

N + 1 (h, 2h)
N + 2 (2h, 2h)

...
...

2N (Nh, 2h)
...

...

(N − 1)N + 1 (h,Nh)
(N − 1)N + 2 (2h,Nh)

...
...

N2 (Nh,Nh)

The entire matrix A can be represented as a block tridiagonal matrix

A =
1

h2


T −I

−I . . .
. . .

. . .
. . . −I
−I T

 ∈ Rn×n, T =


4 −1

−1
. . .

. . .
. . .

. . . −1
−1 4

 ∈ RN×N ,

where the tridiagonal matrix T corresponds to the interactions between grid points in the
same row and the identity matrices I correspond to the interactions between adjacent
rows.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.1: Lexicographic enumeration of grid points for N = 4

32

3.2 LR decomposition and BLAS

Goal: Since the discretization of partial differential equations usually leads to large
systems of linear equations

Ax = b, A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , x =

x1
...
xn

 , b =

b1...
bn

 ,

we are interested in finding efficient algorithms for solving these systems (“solvers”).

LR decomposition: Classical direct solver, corresponds to Gaussian elimination. We
use the factorization

A = LR

with triangular matrices

L =


1
`21 1
...

. . .
. . .

`n1 · · · `n,n−1 1

 , R =


r11 r12 · · · r1n

r22
. . .

...
. . . rn−1,n

rnn

 .

The diagonal entries of L are always equal to one, so we can store the entire factorization
in an n× n matrix

B =


r11 r12 · · · r1n

`21 r22
. . .

...
...

. . .
. . . rn−1,n

`n1 · · · `n,n−1 rnn

 .

Not every invertible matrix can be factorized in this way, but if an LR factorization
exists, we can find an algorithm that overwrites A by its representation B.

LR construction: Split A, L, and R into the first rows and columns and a remainder.

A =

(
a11 A1∗
A∗1 A∗∗

)
, L =

(
`11

L∗1 L∗∗

)
, R =

(
r11 R1∗

R∗∗

)
.

The equation A = LR is equivalent to

a11 = `11r11,

A∗1 = L∗1r11, A1∗ = `11R1∗,

A∗∗ = L∗∗R∗∗ + L∗1R1∗.

The first equation yields `11 = 1, r11 = a11. The second and third leads to L∗1 = A∗1/r11

and R1∗ = A1∗. The fourth is equivalent to L∗∗R∗∗ = A∗∗ − L∗1R1∗, so we have to find
an LR factorization of a matrix of dimension n − 1. This last task can be handled by
recursion.

33

BLAS: The construction of an LR factorization requires approximately 2
3n

3 operations,
so it can be very time-consuming for larger systems.

In order to make the computation as fast as possible, the manufacturers of proces-
sors and compilers provide us with optimized functions for basic operations. The most
important standard in this field is BLAS (Basic Linear Algebra Subroutines).

BLAS vectors are represented by a pointer x to the first coefficient, an increment incx,
and the dimension k. We have

xi = x[i*incx] for all i ∈ [0 : k − 1].

Note that k-dimensional vectors use coefficients from 0 to k − 1 instead of 1 to k.

BLAS matrices are represented by a pointer A to the upper left coefficient, the leading
dimension ldA, the number n of rows, and the number m of of columns. We have

aij = a[i+j*ldA] for all i ∈ [0 : n− 1], j ∈ [0 : m− 1].

Setting the parameters correctly, we can access rows, columns, diagonals, and submatri-
ces of A:

• i-th row: x=A+i, incx=ldA, k=m

• j-th column: x=A+j*ldA, incx=1, k=n

• Diagonal: x=A, incx=ldA+1, k=min(n,m)

• Subdiagonal: x=A+1, incx=ldA+1, k=min(n,m)-1

• Submatrix C = A∗∗: C=A+1+ldA, ldC=ldA

BLAS functions are separated into three levels.
Level 1 functions are for actions on vectors like

• scaling x← αx,
void scal(int n, real alpha, real *x, int incx)

• adding y ← y + αx.
void axpy(int n, real alpha, const real *x, int incx,

real *y, int incy)

• or computing the inner product 〈x, y〉2 =
∑n

i=1 xiyi.
real dot(int n, const real *x int incx,

const real *y, int incy)

Level 2 functions are for interactions between vectors and matrices like

34

• the matrix-vector product y ← y + αAx,
void gemv(bool trans, int rows, int cols,

real alpha, const real *A, int ldA,

const real *x, int incx,

real *y, int incy)

• or the rank-one update A← A+ αxyT .
void ger(int rows, int cols, real alpha,

const real *x, int incx,

const real *y, int incy,

real *A, int ldA)

Level 3 functions are for interactions between matrices. We only need the most general
and most important one,

• the matrix-matrix product C ← αAB + βC.
void gemm(bool transA, bool transB,

int rows, int cols, int k,

real alpha, const real *A, int ldA,

const real *B, int ldB,

real beta, real *C, int ldC)

Examples: Programming with BLAS We can realize level-2 functions using only level-
1 functions:

void

gemv(bool trans, int rows, int cols,

real alpha, const real *A, int ldA,

const real *x, int incx,

real *y, int incy)

{

int i;

if(trans) {

for(i=0; i<cols; i++)

y[i*incy] += alpha * dot(rows, A+i*ldA, 1, x, incx);

else

for(i=0; i<cols; i++)

axpy(rows, alpha * x[i*incx], A+i*ldA, 1, y, incy);

}

In order to obtain the best possible performance, it is usually a good idea to ensure that
we run through coefficients in the order in which they are stored in main memory, i.e.,
to try to work with the columns of matrices instead of rows.

35

void

ger(int rows, int cols, real alpha,

const real *x, int incx,

const real *y, int incy,

real *A, int ldA)

{

int i;

for(i=0; i<cols; i++)

axpy(rows, alpha * y[i*incy], x, incx, A+i*ldA, 1);

}

Example: LR factorization with BLAS

void

lrdecomp(int n, real *A, int ldA)

{

int k;

for(k=0; k+1<n; k++) {

scal(n-k-1, 1.0/A[k+k*ldA], A+(k+1)+k*ldA, 1);

ger(n-k-1, n-k-1, -1.0,

A+(k+1)+k*ldA, 1,

A+k+(k+1)*ldA, ldA,

A+(k+1)+(k+1)*ldA, ldA);

}

}

The call to scal scales A∗1 by 1/r11 = 1/a11 to obtain L∗1, the call to ger subtracts
L∗1R1∗ from A∗∗. Instead of performing a “true” recursion, we simply use the variable
k to keep track of the recursion level, i.e., of how many rows and columns have already
been computed.

Solving with the LR factorization: Once we have the factorization A = LR at our
disposal, Ax = b is equivalent to LRx = b, and with y := Rx we find

Ly = b, Rx = y.

Forward substitution: To solve Ly = b, we consider

L =

(
`11

L∗1 L∗∗

)
, y =

(
y1

y∗

)
, b =

(
b1
b∗

)
,

and due to `11 = 1, Ly = b is equivalent to

y1 = `11y1 = b1, L∗∗y∗ + L∗1y1 = b∗.

36

It is customary to overwrite the coefficients of b successively with those of y.

void

lsolve(int n, const real *L, int ldL, real *b, int incb)

{

int i;

for(i=0; i+1<n; i++)

axpy(n-i-1, -b[i*incb], L+(i+1)+i*ldL, 1, b+i+1, incb);

}

We can easily generalize this algorithm to solve LY = B with n×m matrices X and B:

void

lsolve(int n, int m, const real *L, int ldL, real *B, int ldB)

{

int i;

for(i=0; i+1<n; i++)

ger(n-i-1, m, -1.0,

L+(i+1)+i*ldL, 1, B+i, ldB,

B+(i+1), ldB);

}

Backward substitution: To solve Rx = b, we consider

R =

(
R∗∗ R∗n

rnn

)
, x =

(
x∗
xn

)
, y =

(
y∗
yn

)
,

and Rx = y is equivalent to

rnnyn = xn, R∗∗x∗ +R∗nxn = y∗.

Again overwriting y with x leads to

void

rsolve(int n, const real *R, int ldR, real *y, int incy)

{

int i;

for(i=n; i-->0;) {

y[i*incy] /= R[i+i*ldR];

axpy(i, -y[i*incy], R+i*ldR, 1, y, incy);

}

}

For RX = Y with n×m matrices X and Y , we obtain

37

void

rsolve(int n, int m, const real *R, int ldR, real *Y, int ldY)

{

int i;

for(i=n; i-->0;) {

scal(m, 1.0/R[i+i*ldR], Y+i, ldY);

ger(i, m, -1.0,

R+i*ldR, 1, Y+i, ldY,

Y, ldY);

}

}

Caching: Modern processors do not access main memory directly, but via caches, small
and fast memory units that are typically contained directly on the chip.

The caches contain copies of addresses in main memory and allow the processor to
avoid accessing main memory if the required data is already present in the fast cache.

It is generally a good idea to arrange programs in a way that works as frequently
as possible with cached data. Concerning linear algebra, using level 3 BLAS is a good
strategy: operations like matrix multiplication or LR factorization perform O(n3) op-
erations, but require only O(n2) units of storage, so there is a chance to ensure that
multiple operations are carried out on data moved into the cache.

Caches are typically organized in cache lines, frequently of 64 bytes, that are treated as
indivisible. This means that even if just one byte is required, 64 bytes will be transferred,
so it is a good idea to ensure that consecutive memory addresses are used consecutively
in the program.

38

3.3 Method of lines for the heat equation and the wave
equation

Heat equation in the domain Ω = (0, 1)× (0, 1):

∂u

∂t
(t, x) = c∆u(t, x) for all t ∈ R, x ∈ Ω,

u(t, x) = 0 for all t ∈ R, x ∈ ∂Ω.

Looks like an ODE for t 7→ u(t, ·) at first glance, but function-valued instead of vector-
valued.

Method of lines: Discretize in space, i.e., replace Ω by grid Ωh.

∂uh
∂t

(t, x) = c∆huh(t, x) for all t ∈ R, x ∈ Ωh,

uh(t, x) = 0 for all t ∈ R, x ∈ ∂Ωh.

Change of perspective: In order to be able to apply ODE algorithms, consider uh a
mapping from time into the space of grid functions with homogeneous boundary condi-
tions, uh(t, x) ≡ uh(t)(x).

u′h(t) = c∆huh(t) for all t ∈ R.

CFL condition: If we use the explicit Euler method, we have

ũh(tk+1)← ũh(tk) + δc∆hũh(tk) = (I + δc∆h)ũh(tk) for all k ∈ N0.

Given ν, µ ∈ [1 : N], consider the grid function

eνµ(x) := sin(πνx1) sin(πµx2).

Straightforward computation with the identities sin(α+β) = sin(α) cos(β)+cos(α) sin(β)
and cos(α) = 1− 2 sin2(α/2) yield

−∆heνµ = λνµeνµ, λνµ = 4h−2(sin2(πνh/2) + sin2(πµh/2)).

If we start the simulation with uh(t0) = eνµ, we find

uh(tk) = exp(−cλνµtk)eνµ, ũh(tk) = (1− δcλνµ)keνµ,

and in particular the Euler approximation will oscillate rapidly if 1 − δcλνµ < 0, and
even grows exponentially if 1 − δcλνµ < −1, while the continuous solution converges
smoothly and exponentially.

For the explicit Euler method, we can only avoid this problem by choosing the stepsize
δ small enough to fulfill the Courant-Friedrichs-Levy condition

δc8h−2 ≤ 1, δ ≤ h2

8c
,

since λNN ≈ 8h−2, i.e., the number of timesteps has to grow rapidly if the grid is refined.

39

Experiment: Convergence for the heat equation discretized with a mesh parameter of
h = 1/65 in the time interval [0, 1].

Expl. Euler Runge
δ 8cδ/h2 error ratio error ratio

1/16 2.1+3 1.97+39 3.11+87

1/32 1.1+3 4.58+82 4.12+169

1/64 5.3+2 8.03+159 ∞
1/16384 2.1+0 ∞ ∞
1/32768 1.0+0 2.73−8 5.49−12

1/65536 5.2−1 1.36−8 2.0 1.37−12 4.0
1/131072 2.6−1 6.83−9 2.0 3.43−13 4.0
1/262144 1.3−1 3.41−9 2.0 8.57−14 4.0

As long as the time steps are too large, both methods diverge. The expected first- and
second-order convergence sets in once the time steps are small enough.

Implicit methods: All explicit methods need to fulfill a CFL condition in order to avoid
unrealistic oscillations. Implicit methods are better, e.g., the implicit Euler scheme

ũh(tk+1) = ũh(tk) + δc∆hũh(tk+1),

(I − δc∆h)ũh(tk+1) = ũh(tk).

Now we have

uh(tk) = exp(−cλνµtk)eνµ, ũh(tk) =

(
1

1 + δcλνµ

)k
eνµ,

and since 1 + δcλ is always positive, the Euler solution converges exponentially, just like
the continuous solution.

For the Crank-Nicolson method, we obtain a factor of
2−δcλνµ
2+δcλνµ

, i.e., there will be
oscillations if δcλνµ > 2, but the approximation will not “blow up”.

Experiment: Convergence for the heat equation in the time interval [0, 1].

Impl. Euler Crank-Nicolson
δ 8cδ/h2 error ratio error ratio

1/16 2.1+3 4.46−3 4.43−6

1/32 1.1+3 3.56−4 12.5 2.23−6 2.0
1/64 5.3+2 5.33−5 6.7 6.74−7 3.3

1/128 2.6+2 1.37−5 3.9 1.77−7 3.8
1/256 1.3+2 4.88−6 2.8 4.48−8 4.0
1/512 6.6+1 2.06−6 2.4 1.12−8 4.0

1/1024 3.3+1 9.50−7 2.2 2.81−9 4.0
1/2048 1.7+1 4.56−7 2.1 7.02−10 4.0

We can see that both implicit methods converge at the expected rate. Although implicit
methods require the often computationally expensive task of solving linear systems, the
significantly better convergence and stability still makes them very attractive.

40

Wave equation in the domain Ω = (0, 1)× (0, 1):

∂2u

∂t2
(t, x) = c∆u(t, x) for all t ∈ R, x ∈ Ω,

u(t, x) = 0 for all t ∈ R, x ∈ ∂Ω.

Order reduction: So far, we have only considered first-order ordinary differential equa-
tions, now we have a second derivative in time.

Introducing the first time derivative as an auxiliary variable, in this case the velocity,
yields a first-order system

∂u

∂t
(t, x) = v(t, x),

∂v

∂t
(t, x) = c∆u(t, x) for all t ∈ R, x ∈ Ω,

u(t, x) = v(t, x) = 0 for all t ∈ R, x ∈ ∂Ω.

Method of lines: Replace functions by time-dependent grid functions

u′h(t) = vh(t),

v′h(t) = c∆huh(t) for all t ∈ R.

Leapfrog timestepping:

ũh(t0) = uh(t0),

ṽh(t1) = vh(t0) + δc∆hũh(t0),

ũh(t2`+2) = ũh(t2`) + 2δṽh(t2`+1),

ṽh(t2`+3) = ṽh(t2`+1) + 2δc∆hũh(t2`+2) for all ` ∈ N0.

Crank-Nicolson timestepping: The trapezoidal rule leads to

ũh(ti+1) = ũh(ti) + δ
2(ṽh(ti) + ṽh(ti+1)),

ṽh(ti+1) = ṽh(ti) + δ
2c(∆hũh(ti) + ∆hũh(ti+1)).

Substituting the second equation in the first leads to

ũh(ti+1) = ũh(ti) + δ
2

(
ṽh(ti) + ṽh(ti) + δ

2c(∆hũh(ti) + ∆hũh(ti+1))
)

= ũh(ti) + δṽh(ti) + δ2

4 c∆hũh(ti) + δ2

4 c∆hũh(ti+1),(
I − δ2

4 c∆h

)
ũh(ti+1) =

(
I + δ2

4 c∆h

)
ũh(ti) + δṽh(ti),

while substituting the first in the second leads to

ṽh(ti+1) = ṽh(ti) + δ
2c
(
∆hũh(ti) + ∆h

(
ũh(ti) + δ

2(ṽh(ti) + ṽh(ti+1))
))

= ṽh(ti) + δc∆hũh(ti) + δ2

4 c∆hṽh(ti) + δ2

4 c∆hṽh(ti+1),(
I − δ2

4 c∆h

)
ṽh(ti+1) =

(
I + δ2

4 c∆h

)
ṽh(ti) + δc∆hũh(ti).

41

Experiment: Convergence for the wave equation with a mesh parameter h = 1/65 in
the time interval [0, 1] using implicit methods.

Leapfrog Impl. Euler Crank-Nicol.
δ error ratio error ratio error ratio

1/16 3.10+19 1.07+2 4.64+1

1/32 1.63+33 8.60+1 1.2 1.17+1 4.0
1/64 4.19+35 5.50+1 1.6 2.94+0 4.0

1/128 3.68−1 3.11+1 1.8 7.36−1 4.0
1/256 9.20−2 4.0 1.66+1 1.9 1.84−1 4.0
1/512 2.30−2 4.0 8.53+0 1.9 4.60−2 4.0

1/1024 5.75−3 4.0 4.33+0 2.0 1.15−2 4.0
1/2048 1.44−3 4.0 2.18+0 2.0 2.87−3 4.0

The explicit leapfrog method diverges as long as the time steps are too large, while both
implicit methods show the expected convergence for all time steps.

Energy: Using the inner product

〈uh, vh〉Ωh := h2
∑
x∈Ωh

uh(x)vh(x),

the energy of our system is given by

Eh(uh, vh) := 1
2〈vh, vh〉Ωh −

c
2〈uh,∆huh〉Ωh .

Due to

∂

∂t
Eh(uh(t), vh(t)) = 〈v′h(t), vh(t)〉Ωh − c〈u

′
h(t),∆huh(t)〉Ωh

= c〈vh(t),∆huh(t)〉Ωh − 〈c∆huh(t), vh(t)〉Ωh = 0,

the energy of the continuous system is constant.
For the Euler methods, the energy increases with each step of the explicit method and

decreases with each of the implicit one.
For the Crank-Nicolson method, the “arithmetic mean” of both Euler methods, the

energy is constant:

c〈uh(tk+1),∆huh(tk+1)〉Ωh − c〈uh(tk),∆huh(tk)〉Ωh
= c〈uh(tk+1) + uh(tk),∆h(uh(tk+1)− uh(tk))〉Ωh
= c δ2〈uh(tk+1) + uh(tk),∆h(vh(tk+1) + vh(tk))〉Ωh
= δ

2〈c∆h(uh(tk+1) + uh(tk)), vh(tk+1) + vh(tk)〉Ωh
= 〈vh(tk+1)− vh(tk), vh(tk+1) + vh(tk)〉Ωh
= 〈vh(tk+1), vh(tk+1)〉Ωh − 〈vh(tk), vh(tk)〉Ωh .

In the third step, we have used the fact that ∆h is self-adjoint, i.e., that 〈x,∆hy〉Ωh =
〈∆hx, y〉Ωh holds for all grid functions x and y.

42

4 Iterative and semi-iterative solvers

4.1 Iterations

In order to be able to use implicit timestepping methods for nonlinear ODEs, we need
algorithms for solving nonlinear systems of equations.

Frequently it is not possible to compute the exact solution of an equation in a finite
number of steps. In this situation, iterative methods are employed that compute a
sequence of increasingly accurate approximate solutions.

Newton method: Approximates zeros of a function f ∈ C2(R). Let x∗ satisfy f(x∗) =
0. Taylor expansion yields

0 = f(x∗) = f(x) + (x∗ − x)f ′(x) +
(x∗ − x)2

2
f ′′(η),

0 =
f(x)

f ′(x)
+ x∗ − x+

f ′′(η)

2f ′(x)
(x∗ − x)2,

x∗ = x− f(x)

f ′(x)
− f ′′(η)

2f ′(x)
(x∗ − x)2

for an η ∈ R, and neglecting the rightmost term yields

x∗ ≈ x−
f(x)

f ′(x)
.

Iteration: We start with an initial guess x0 and compute a sequence

xm+1 ← xm −
f(xm)

f ′(xm)
for all m ∈ N0.

Quadratic convergence: Assume c := max
{
|f ′′(η)|
2|f ′(x)| : x, η ∈ R

}
is finite. We have

|x∗ − xm+1| =
|f ′′(η)|

2|f ′(xm)|
|x∗ − xm|2 ≤ c|x∗ − xm|2 for all m ∈ N0.

If we assume c|x∗ − x0| ≤ 1/2, we obtain

c|x∗ − x1| ≤ c2|x∗ − x0|2 ≤ 1
4 ,

c|x∗ − x2| ≤ c2|x∗ − x1|2 ≤ 1
16 ,

43

c|x∗ − x3| ≤ c2|x∗ − x2|2 ≤ 1
256 ,

c|x∗ − xm| ≤ 2−2m for all m ∈ N0,

i.e., each step of the iteration will double the number of correct binary digits in the
approximation.

Example: Square root The square root of a ∈ R>0 is usually computed by Newton’s
iteration. If we define it as the positive zero of f(x) = x2− a, we obtain f ′(x) = 2x and

xm+1 ← xm −
f(xm)

f ′(xm)
= xm −

x2
m − a
2xm

=
x2
m + a

2xm
=

1

2

(
xm +

a

xm

)
.

Applied to a = 2 and different initial guesses x0, we obtain the following errors:

m x0 = 2 x0 = 10 x0 = −5

1 8.58−2 3.69+0 1.29+0

2 2.45−3 1.33+0 3.06−1

3 2.12−6 3.23−1 2.72−2

4 1.59−12 3.00−2 2.57−4

5 3.12−4 2.34−8

6 3.44−8 2.22−16

7 2.22−16

Example: Reciprocal square root The reciprocal square root 1/
√
a of a ∈ R>0 is the

positive zero of f(x) = x−2 − a. With f ′(x) = −2x−3, we find

xm+1 ← xm −
f(xm)

f ′(xm)
= xm −

x−2
m − a
−2x−3

m
= xm +

1

2
(xm − ax3

m) =
xm
2

(3− ax2
m).

Subtraction and multiplication are sufficient to compute the approximation, and these
operations are significantly faster than divisions on modern processors.

Applied to a = 2 and different initial values x0, we obtain the following errors:

m x0 = 1 x0 = 1.5 x0 = 2

1 2.07−1 4.18−1 4.29+0

2 8.21−2 4.43−1 1.18+2

3 1.37−2 3.30−1 1.62+6

4 3.98−4 1.95−1 4.27+18

5 3.36−7 7.32−2 7.77+55

6 2.40−13 1.10−2 4.70+167

7 1.11−16 2.55−4 ∞
8 0 1.38−7

We can see that an usuitable initial guess may lead to divergence. In practice, precom-
puted lookup tables or the “Carmack trick” can be used to obtain initial guesses that
ensure convergence.

44

Multidimensional Newton: For multidimensional functions f ∈ C2(Rn,Rn), we can
use the Jacobi matrix

Df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)


to define the multidimensional Newton iteration

xm+1 ← xm −Df(xm)−1f(xm),

xm+1 ← xm + pm, Df(xm)pm = −f(xm).

Every step of the algorithm requires us to solve a linear system with the Jacobi matrix,
and the Jacobi matrix can be expected to change between steps.

Example: Lagrange points Consider n planets with masses m1, . . . ,mn ∈ R>0 at
coordinates y1, . . . , yn ∈ R2 in a rotating coordinate system with angular velocity α ∈ R.
The sum of gravitational forces and centrifugal force is given by

f(x) = α2x+ γ
n∑
j=1

mj
yj − x
‖yj − x‖3

.

Lagrange points are characterized by f(x) = 0 and can be found with the Newton
iteration using the Jacobi matrix

Df(x) = α2I + γ
n∑
j=1

3mj
(yj − x)(yj − x)T

‖yj − x‖5
− mj

‖yj − x‖3
I.

Based on the chosen initial guess, the Newton iteration finds different Lagrange points.

45

Eigenvalue problems: Given A ∈ Rn×n, we are looking for x ∈ Rn \ {0} and λ ∈ R
with Ax = λx.

Searching for eigenvalues is equivalent to finding zeros of polynomials, so in principle
the Newton iteration could be applied. In practice, there are better algorithms.

Power iteration: Assume that A is diagonalizable, i.e., that there is an invertible matrix
T with

T−1AT =

λ1

. . .

λn

 , |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

Given x0 ∈ Rn \ {0}, consider the sequence

xm+1 ← Axm for all m ∈ N0.

If we define

x̂m := T−1xm for all m ∈ N0,

we find

x̂m+1 = T−1Axm = T−1ATx̂m =

λ1

. . .

λn

 x̂m for all m ∈ N0.

This leads us to

x̂m =


λm1 x̂0,1

λm2 x̂0,2
...

λmn x̂0,n

 for all m ∈ N0,

i.e., if |λ1| > |λ2| and x̂0,1 6= 0, the first component of x̂m will dominate for m→∞.
For sufficiently large m, we conclude

Axm = TT−1ATx̂m = T


λ1

λ2

. . .

λn



x̂m,1
x̂m,2

...
x̂m,n



≈ T


λ1

λ2

. . .

λn



x̂m,1

0
...
0

 = λ1T


x̂m,1

0
...
0

 ≈ λ1T x̂m = λ1xm,

so xm is close to an eigenvector for the eigenvalue λ1.

46

Practical power iteration: In order to avoid an overflow, we work with unit vectors:

ym+1 ← Axm, xm+1 ←
ym+1

‖ym+1‖
for all m ∈ N0.

Rayleigh quotient: The power iteration approximates an eigenvector, but we usually
also require the corresponding eigenvalue. We can recover it using the Rayleigh quotient

ΛA(x) :=
〈x,Ax〉
〈x, x〉

.

If x is an eigenvector for the eigenvalue λ, we have

ΛA(x) =
〈x,Ax〉
〈x, x〉

=
〈x, λx〉
〈x, x〉

= λ
〈x, x〉
〈x, x〉

= λ.

We can check the convergence of the power iteration by comparing Ax and ΛA(x)x. A
good stopping criterion is

‖Ax− ΛA(x)x‖ ≤ ε|ΛA(x)| ‖x‖

for a given relative accuracy ε ∈ R>0.

Inverse iteration: Frequently we are not interested in the largest eigenvalue, but in the
smallest one, or the eigenvalue closest to a given µ ∈ R. If x is an eigenvector for the
eigenvalue λ and if µ is not an eigenvalue, we have

Ax = λx ⇐⇒ Ax− µx = (λ− µ)x ⇐⇒ (A− µI)x = (λ− µ)x

⇐⇒ x = (λ− µ)(A− µI)−1x ⇐⇒ 1

λ− µ
x = (A− µI)−1x.

The eigenvalue that is closes to µ is therefore the eigenvalue of maximal absolute value
of (A− µI)−1, and we can apply the power iteration to the latter matrix to obtain

ym+1 ← (A− µI)−1xm, xm+1 ←
ym+1

‖ym+1‖
for all m ∈ N0.

This is called the inverse iteration with the shift µ, and we can expect it to converge to
an eigenvector for the eigenvalue closest to µ.

Rayleigh iteration: The inverse iteration converges quickly if the shift parameter µ is
close to an eigenvalue. Given a suitable initial guess, we can use the Rayleigh quotient
to provide us with approximations of an eigenvalue that can be used as shifts:

ym+1 ← (A− µmI)−1xm, xm+1 ←
ym+1

‖ym+1‖
, µm+1 ← ΛA(xm+1) for all m ∈ N0.

47

Example: Discrete Laplace operator In order to compute eigenvalues of the discrete
Laplace operator −∆h on a grid with the mesh parameter h = 1/101, we can use the
inverse iteration with a random initial guess.

m sinαm tanαm ratio

0 1.00+0 6.97+1

1 3.87−1 4.19−1 166.3
2 1.20−1 1.20−1 3.5
3 4.46−2 4.46−2 2.7
4 1.73−2 1.73−2 2.6
5 6.86−3 6.86−3 2.5
6 2.73−3 2.73−3 2.5
7 1.09−3 1.09−3 2.5
8 4.36−4 4.36−4 2.5

 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Example: Rayleigh iteration If we use the inverse iteration starting with a shift µ0 =
310, we obtain significantly faster convergence:

m µ sinαm tanαm ratio

0 3.10+2 1.00+0 5.43+1

1 3.20+2 2.03−1 2.07−1 261.9
2 3.15+2 4.10−2 4.10−2 5.1
3 3.15+2 3.85−5 3.84−5 1067.6
4 3.15+2 3.06−13 3.06−13 1.25+8

 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

48

4.2 Krylov methods for linear systems of equations

Goal: Efficient solver for linear systems Ax = b where the matrix A is sparse, i.e., most
of its coefficients are equal to zero.

For these matrices, the matrix-vector multiplication y 7→ Ay can be performed very
efficiently, so it makes sense to look for algorithms based on this operation.

Minimization: Assume that A ∈ RI×I is symmetric and positive definite, i.e.,

〈x,Ay〉2 = 〈Ax, y〉2 for all x, y ∈ RI , (4.1a)

〈x,Ax〉2 > 0 for all x ∈ RI \ {0}. (4.1b)

We define the function

J : RI → R, x 7→ 1
2〈x,Ax〉2 − 〈b, x〉2,

and use (4.1a) to obtain

J(x+ θp) = 1
2〈x+ θp,A(x+ θp)〉2 − 〈b, x+ θp〉2

= 1
2〈x,Ax〉2 + θ

2〈p,Ax〉2 + θ
2〈x,Ap〉2 + θ2

2 〈p,Ap〉2 − 〈b, x〉2 − θ〈b, p〉2
= J(x) + θ

2〈p,Ax〉2 + θ
2〈Ax, p〉2 + θ2

2 〈p,Ap〉2 − θ〈b, p〉2
= J(x) + θ〈p,Ax− b〉2 + θ2

2 〈p,Ap〉2 (4.2)

for all p ∈ RI and θ ∈ R.
We assume p 6= 0. If we cannot reduce the value of J by “moving” from x along the

direction p, i.e., if

J(x) ≤ J(x+ θp) for all θ ∈ R, (4.3a)

holds, we can use

θ := −〈p,Ax− b〉2
〈p,Ap〉2

to find

J(x) ≤ J(x+ θp) = J(x)− 〈p,Ax− b〉
2
2

2〈p,Ap〉2
≤ J(x)

and use (4.1b) to conclude
〈p,Ax− b〉2 = 0. (4.3b)

If (4.3b) holds, on the other hand, we can use (4.1b) to find that (4.3a) holds.
This means that the minimality condition (4.3a) and the orthogonality condition (4.3b)

are equivalent. This is also true for p = 0, and therefore for all directions p ∈ RI .
If J takes its global minimum in x, we can choose the direction p = Ax− b and obtain

0 = 〈p,Ax − b〉2 = ‖Ax − b‖22, i.e., Ax = b. This means that looking for a minimum of
J is equivalent with looking for the solution of the linear system.

49

Iteration: Given an approximation xm ∈ RI of the solution, choose a direction pm ∈ RI
and a stepsize θm ∈ R and define xm+1 ← xm + θmpm.

Residual: For small values of θ, we have

J(x+ θp) = J(x) + θ〈p,Ax− b〉2 + θ2

2 〈p,Ap〉2 ≈ J(x) + θ〈p,Ax− b〉2,

and the Cauchy-Schwarz inequality indicates that the residual p = b − Ax is the best
choice for the direction, at least for small stepsizes θ.

Optimal stepsize: Given an approximation xm ∈ RI and a direction pm ∈ RI , we look
for the stepsize θm ∈ R minimizing

θ 7→ J(xm+1) = J(xm + θpm).

Due to (4.3), xm+1 is optimal with respect to the direction pm if

0 = 〈pm, Axm+1 − b〉2 = 〈pm, A(xm + θmpm)− b〉2 = 〈pm, Axm − b〉2 + θm〈pm, Apm〉2

holds, i.e.,

θm = −〈pm, Axm − b〉2
〈pm, Apm〉2

=
〈pm, b−Axm〉2
〈pm, Apm〉2

.

Gradient method: We denote the residuals by rm := b− Axm. If we choose pm = rm
and the optimal stepsizes, we arrive at the gradient method.

In order to avoid recomputing the residual in each step, we use the auxiliary vector
am := Apm and

rm+1 = b−Axm+1 = b−A(xm + θmpm) = rm − θmApm = rm − θmam

to arrive at

p0 ← b−Ax0,

am ← Apm,

θm ← 〈pm,pm〉2
〈pm,am〉2 ,

xm+1 ← xm + θmpm,

pm+1 ← pm − θmam for all m ∈ N0.

Observations:

• We only have to be able to multiply vectors by the matrix A, we do not need the
matrix itself. This means that we can represent A, e.g., by a callback function in
C or a virtual member function in C++ or Java.

• We only need one matrix-vector multiplication per step.

• We only need to store the vectors b, xm, pm, and am in each step.

50

Experiment: Convergence for a finite difference discretization of Poisson’s equation
with n = 32 mesh points per direction and stepwidth h = 1

33 :

m ‖b−Axm‖ f(xm)

0 2.33+3 0.00+0

1 1.21+3 −1.27+3

2 8.92+2 −1.61+3

3 7.31+2 −1.80+3

4 6.34+2 −1.92+3

10 4.20+2 −2.25+3

100 1.89+2 −3.02+3

1000 3.04+0 −3.45+3

2000 3.14−2 −3.45+3

We can see that the gradient method converges very slowly.

Preservation of optimality: After the first step, x1 is optimal with respect to the
direction p0, i.e., it cannot be improved by adding a multiple of p0. Unfortunately this
property is usually lost: x2 is optimal with respect to p1, but not longer with respect to
the direction p0.

We can preserve optimality by choosing the directions a little differently. Assume that
xm is optimal with respect to a direction p`, ` < m. If we want xm+1 to still be optimal,
we have to ensure

0 = 〈p`, Axm+1 − b〉2 = 〈p`, A(xm + θmpm)− b〉2 = 〈p`, Axm − b〉2 + θm〈p`, Apm〉2,

i.e., we can either choose θm = 0, which is counterproductive, or ensure 〈p`, Apm〉2 = 0,
i.e., that the vectors p` and pm are conjugates.

Gram-Schmidt orthogonalization: Starting with rm, we construct a direction pm that
is conjugate with respect to all p` with ` < m:

pm ← rm −
m−1∑
`=0

〈p`, Arm〉2
〈p`, Ap`〉2

p`. (4.4)

Assuming that the directions p0, . . . , pm−1 are already conjugate with respect to each
other, we have

〈pk, Apm〉2 = 〈pk, Arm〉2 −
m−1∑
`=0

〈p`, Arm〉2
〈p`, Ap`〉2

〈pk, Ap`〉2

= 〈pk, Arm〉2 −
〈pk, Arm〉2
〈pk, Apk〉2

〈pk, Apk〉2 = 0

for all k ∈ [0 : m − 1], i.e., the new direction pm will also be conjugate with respect to
all previous directions.

51

Krylov spaces In the gradient method, new directions pm+1 are obtained by linear
combinations between pm and am = Apm, and a simple induction yields that pm must
be a linear combination of p0, Ap0, . . . , A

mp0.
This leads us to define the Krylov spaces

Km := span{p0, Ap0, . . . , A
mp0} for all m ∈ N0.

Even if the directions are constructed by Gram-Schmidt orthogonalization (4.4), we have

span{p0, . . . , pm} = span{r0, . . . , rm} = Km

as long as pm 6= 0.
The first inclusion span{p0, . . . , pm} ⊆ span{r0, . . . , rm} follows directly from (4.4)

by induction. The second inclusion span{r0, . . . , rm} ⊆ Km follows from the first with
rm+1 = rm − θmApm, again by induction. As long as all directions are non-zero, they
have to be linear independent, since they are pairwise conjugate, so all spaces are (m+1)-
dimensional and therefore identical.

If we assume that xm is optimal with respect to all previous directions p0, . . . , pm−1,
it is also optimal with respect to all vectors in Km−1.

For ` ∈ [0 : m− 2], we have p` ∈ Km−2 and therefore Ap` ∈ Km−1, and the optimality
together with the symmetry (4.1a) of A yields

〈p`, Arm〉2 = 〈Ap`, rm〉2 = 0.

This equation allows us to eliminate almost all terms in (4.4) and obtain

pm ← rm −
〈pm−1, Arm〉2
〈pm−1, Apm−1〉2

pm−1 = rm −
〈Apm−1, rm〉2
〈pm−1, Apm−1〉2

pm−1.

This makes the Gram-Schmidt orthogonalization far more efficient.

Conjugate gradient method: Adapting the gradient method for conjugate directions
leads to

r0 ← b−Ax0, p0 ← r0,

am ← Apm,

θm ← 〈pm,rm〉2
〈pm,am〉2 ,

xm+1 ← xm + θmpm,

rm+1 ← rm − θmam,

µm ← 〈am,rm+1〉2
〈pm,am〉2 ,

pm+1 ← rm+1 − µmpm for all m ∈ N0.

52

Observations:

• We still need only one matrix-vector multiplication per step.

• We need an additional vector to store rm, one additional inner product, and one
additional vector addition.

• In practice, the conjugate gradient method (“cg method”) often performs signifi-
cantly better than the simple gradient method.

Experiment: Convergence for a finite difference discretization of Poisson’s equation
with n = 32 mesh points per direction and stepwidth h = 1

33 :

m ‖b−Axm‖ f(xm)

0 2.33+3 0.00+0

1 1.21+3 −1.27+3

2 8.64+2 −1.74+3

3 7.08+2 −2.02+3

10 5.44+2 −2.85+3

20 4.46+2 −3.35+3

30 4.95+0 −3.45+3

40 2.05−1 −3.45+3

50 4.95−4 −3.45+3

100 6.11−15 −3.45+3

We can see that the conjugate gradient method converges significantly faster than the
“simple” gradient method.

GMRES: If A is just invertible, but neither symmetric nor positive definite, we can still
look for approximations xm ∈ x0 +Km that minimize the residual norm ‖b−Axm‖2 =
‖rm‖2, i.e.,

‖b−Axm‖2 ≤ ‖b−Ay‖2 for all y = x0 + z, z ∈ Km.

If we write xm = x0 + zm with z ∈ Km, we arrive at

‖r0 −Azm‖2 ≤ ‖r0 −Az‖2 for all z ∈ Km.

This is a least-square optimization problem that can be handled by constructing an
orthonormal basis of the Krylov space called the Arnoldi basis.

The resulting algorithm is called GMRES, general minimized residual.

53

5 Algorithms for large systems

5.1 Multigrid methods

Relaxation methods are based on the idea of choosing a subset of equations and a
subset of unknown variables and solving the corresponding restricted system.

The simplest version consists of choosing one index i ∈ I and determining the i-th
component of the solution such that the i-th equation is satisfied, i.e., we look for x̃i
such that

aiix̃i +
∑
j∈I
j 6=i

aijxj = bi

holds. Assuming aii 6= 0, this is equivalent with

x̃i =
1

aii

(
bi −

∑
j∈I
j 6=i

aijxj

)
.

Jacobi iteration If we apply the relaxation step to all indices i ∈ I, we arrive at the
Jacobi iteration for linear systems of equations.

It is frequently applied with a dampening parameter θ ∈ [0, 1] that can be used to
ensure convergence even if the diagonal entries are fairly small:

x̃i = (1− θ)xi +
θ

aii

(
bi −

∑
j∈I
j 6=i

aijxj

)
.

If the matrix A is symmetric and positive definite (cf. (4.1)), the Jacobi method con-
verges as long as θ is small enough.

Gauß-Seidel method If we apply the relaxation steps one after the other, we can
replace the original values xi on the right-hand side of the equation by the already
updated values x̃i of previous steps.

We write j < i if the index j is treated before i and j > i if it is treated later. The
Gauß-Seidel iteration is given by

x̃i =
1

aii

(
bi −

∑
j∈I
j<i

aij x̃j −
∑
j∈I
j>i

aijxj

)
.

If the matrix A is symmetric and positive definite (cf. again (4.1)), the Gauß-Seidel
method converges.

54

Smoothing Unfortunately, both the Jacobi and the Gauß-Seidel iteration converge
quite slowly when applied to linear systems resulting from partial differential equations.

If we look at the errors left by these iterations after a few steps, we see that they are
getting more and more “smooth”.

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

-1

-0.5

 0

 0.5

 1

In model problems, it is possible to prove this behaviour: high-frequency errors are
reduced rapidly, low-frequency errors far more slowly.

If the error is smooth, there is a good chance that it can be approximated on a coarser
grid, and computations on a coarser grid involve a lower number of grid points and
therefore a lower amount of work. If we have a good approximation of the error x−xm,
adding this approximation to xm will significantly improve the accuracy.

Grid transfer In order to make use of a coarser grid ΩH to approximate the error on a
finer grid Ωh, we have to be able to transfer data between both grids. We introduce the
prolongation p ∈ RΩh×ΩH mapping coarse grid functions to fine grid functions and the
restriction r ∈ RΩH×Ωh for the opposite direction.

In the simple case H = 2h, we can define a suitable prolongation by simple linear in-
terpolation: fine-grid points between coarse-grid points are assigned interpolated values.

pxy =



1 if x = y,

1/2 if x− y = (h, 0) or y − x = (h, 0),

1/2 if x− y = (0, h) or y − x = (0, h),

1/2 if x− y = (h, h) or y − x = (h, h),

0 otherwise

for all x ∈ Ωh, y ∈ ΩH .

For the restriction, a good choice is the scaled transposed matrix of the prolongaton,
i.e., r = 1

4p
T .

55

Coarse-grid correction Assuming that the error x− xm is sufficiently smooth, we can
approximate it by a coarse-grid function c defined via

x− xm ≈ pc,
−∆h(x− xm) ≈ −∆h(pc),

fh + ∆hxm ≈ −∆hpc,

r(fh + ∆h xm) = −r∆hpc = −∆Hc,

where we use the Galerkin product identity ∆H = r∆hp in the last step.

Two-grid method Combining a smoothing iteration and a coarse grid correction leads
to the two-grid iteration:

procedure twogrid(xh, fh, dh);
for i=1 to ν do

Smoother(xh, fh, dh);
dh ← fh + ∆hxh;
fH ← rdh;
Solve −∆HxH = fH ;
xh ← xh + pxH

Multigrid method In practice, the coarse grid ΩH may still contain too many grid
points to be solved efficiently.

In this case, we can replace the solution step on the coarse grid recursively by smooth-
ing and a coarse-grid correction on an even coarser grid. This leads to the multigrid
method : we assume that a grid hierarchy Ω0 ⊆ Ω1 ⊆ . . .ΩL = Ωh is given with finite
difference operators ∆0, . . . ,∆L and prolongation and restriction matrices p` ∈ RΩ`×Ω`−1

and r` ∈ RΩ`−1×Ω` . A simple multigrid method takes the following form:

procedure multigrid(`, x`, f`, d`);
if ` = 0 then

Solve −∆`x` = f`
else begin

for i = 1 to ν do

Smoother(x`, f`, d`);
d` ← f` + ∆`x`;
f`−1 ← r`d`; x`−1 ← 0;
for i = 1 to γ do

multigrid(`− 1, x`−1, f`−1, d`−1);
x` ← x` + p`x`−1;
for i = 1 to ν do

Smoother(x`, f`, d`)
end

56

Here we use ν ∈ N steps of the smoothing iteration before and after the coarse-grid
correction and γ ∈ N steps of the multigrid methods to approximate the coarse-grid
correction.

Multigrid convergence An important property of multigrid methods is that their con-
vergence rate is fairly independent of the grid. For our model problem, it is possible
to prove that the rate can be bounded by a constant that does not depend on the grid
parameter h.

h = 1/16 h = 1/32 h = 1/64 h = 1/8192
m error ratio error ratio error ratio error ratio

0 1.50+1 3.10+1 6.30+1 8.19+3

1 2.52+0 5.94 5.39+0 5.75 1.11+1 5.68 1.46+3 5.62
2 4.49−1 5.62 9.68−1 5.57 1.99+0 5.56 2.62+2 5.57
3 8.09−2 5.55 1.76−1 5.51 3.62−1 5.51 4.64+1 5.52
4 1.47−2 5.52 3.21−2 5.47 6.62−2 5.47 8.65+0 5.48
5 2.67−3 5.49 5.89−3 5.45 1.22−2 5.44 1.59+0 5.45

10 5.46−7 5.46 1.27−6 5.40 2.64−6 5.39 3.44−4 5.38
20 2.35−14 5.45 6.17−14 5.38 1.32−13 5.37 1.73−11 5.36

Multigrid runtimes In theory, the number of operations of the multigrid method is
proportional to the number of gridpoints n. In practice, we observe a slightly faster
growth of the computing time as the grid is refined, possibly due to the data transfer
between the four eight-core processors used in the parallel implementation used for this
experiment.

h dofs conv time ratio

2−12 16 769 025 5.36 1.9
2−13 67 092 481 5.36 5.4 2.84
2−14 268 402 689 5.36 15.6 2.89
2−15 1 073 676 289 5.36 77.9 4.99
2−16 4 294 836 225 5.36 361.5 4.64
2−17 17 179 607 041 5.36 1 727.1 4.78

57

5.2 Non-local force fields

Example: Gravitation in many-body systems Given n planets at positions y1, . . . , yn ∈
R3 with masses m1, . . . ,mn ∈ R, we want to evaluate the gravitational potential

f(x) = γ
n∑
j=1

mj
1

‖yj − x‖2
,

possibly for many different positions x ∈ R3.

Challenge: Evaluating f(x) requires at least n operations, since every mass influences
the entire gravitational field.

Degenerate approximation: We introduce the kernel function

g(x, y) :=
γ

‖y − x‖2
,

and write

f(x) =
n∑
j=1

g(x, yj)mj .

If we can find a degenerate approximation

g(x, y) ≈
k∑
ν=0

aν(x)bν(y),

we obtain

f(x) =

n∑
j=1

g(x, yj)mj ≈
n∑
j=1

k∑
ν=0

aν(x)bν(yj)mj =

k∑
ν=0

aν(x)

n∑
j=1

bν(yj)mj︸ ︷︷ ︸
=:zν

,

so once we have prepared

zν =

n∑
j=1

bν(yj)mj for all ν ∈ [0 : k],

we can approximate f(x) by

f(x) ≈
k∑
ν=0

aν(x)zν .

If k � n, this latter step can be far more efficient than the original computation.

58

Three-dimensional interpolation Assume that the positions of all planets are contained
in an axis-parallel bounding box

B = [a1, b1]× [a2, b2]× [a3, b3].

If we have interpolations points

ξ1,0, . . . , ξ1,m ∈ [a1, b1],

ξ2,0, . . . , ξ2,m ∈ [a2, b2],

ξ3,0, . . . , ξ3,m ∈ [a3, b3]

for the three intervals at our disposal, we can approximate the kernel function by inter-
polation to obtain

g(x, y) ≈
m∑

ν1=0

m∑
ν2=0

m∑
ν3=0

g

x,
ξ1,ν1

ξ2,ν2

ξ3,ν3

 `1,ν1(y1)`2,ν2(y2)`3,ν3(y3).

Introducing the abbreviations

ξB,ν :=

ξ1,ν1

ξ2,ν2

ξ3,ν3

 , `B,ν(y) := `1,ν1(y1)`2,ν2(y2)`3,ν3(y3) for all ν ∈M := [0 : m]3,

we arrive at

g(x, y) ≈
∑
ν∈M

g(x, ξB,ν)`B,ν(y),

and this is a degenerate approximation for k = #M = (m+ 1)3.

Admissibility The kernel function g has a singularity at x = y that cannot be handled
by a degenerate approximation.

We can only apply our technique to boxes satisfying the admissibility condition

diam(B) ≤ dist(x,B).

This condition is sufficient to prove exponential convergence of the interpolation, i.e.,
the error behaves like e−αm with a parameter α > 0.

Recursion If the box B does not satisfy the admissibility condition, we split it into
smaller boxes and check these boxes again. We can repeat this procedure recursively
until the boxes are small enough to contain only a small number of planets that can be
handled directly.

59

Cluster tree We construct a tree T consisting of axix-parallel boxes such that

• the root box contains all points y1, . . . , yn,

• the sons s′ of a box s describe a partition of their father, and

• the leaf boxes contain only a small number of points.

We call this a cluster tree, its nodes are called clusters.

Setup We compute the cluster tree T , the index sets

ŝ := {j ∈ [1 : n] : yj ∈ s} for all s ∈ T ,

and the coefficients

zs,ν :=
∑
j∈ŝ

`s,ν(yj)mj for all s ∈ T , ν ∈M

of our degenerate approximation.
The sons of s = [a1, b1] × [a2, b2] × [a3, b3] can be constructed using the midpoints

c1 := (b1 + a1)/2, c2 := (b2 + a2)/2, c3 := (b3 + a3)/2 as

s1 ← [a1, c1]× [a2, c2]× [a3, c3], ŝ1 ← {j ∈ ŝ : yj,1 < c1, yj,2 < c2, yj,3 < c3},
s2 ← [a1, c1]× [a2, c2]× [c3, b3], ŝ2 ← {j ∈ ŝ : yj,1 < c1, yj,2 < c2, yj,3 ≥ c3},
s3 ← [a1, c1]× [c2, b2]× [a3, c3], ŝ3 ← {j ∈ ŝ : yj,1 < c1, yj,2 ≥ c2, yj,3 < c3},
s4 ← [a1, c1]× [c2, b2]× [c3, b3], ŝ4 ← {j ∈ ŝ : yj,1 < c1, yj,2 ≥ c2, yj,3 ≥ c3},
s5 ← [c1, b1]× [a2, c2]× [a3, c3], ŝ5 ← {j ∈ ŝ : yj,1 ≥ c1, yj,2 < c2, yj,3 < c3},
s6 ← [c1, b1]× [a2, c2]× [c3, b3], ŝ6 ← {j ∈ ŝ : yj,1 ≥ c1, yj,2 < c2, yj,3 ≥ c3},
s7 ← [c1, b1]× [c2, b2]× [a3, c3], ŝ7 ← {j ∈ ŝ : yj,1 ≥ c1, yj,2 ≥ c2, yj,3 < c3},
s8 ← [c1, b1]× [c2, b2]× [c3, b3], ŝ8 ← {j ∈ ŝ : yj,1 ≥ c1, yj,2 ≥ c2, yj,3 ≥ c3}.

Evaluation We start with the root of the cluster tree and v = 0.

• If s satisfies the admissibility condition, update the approximation

v ← v +
∑
ν∈M

g(x, ξs,ν)zs,ν ≈ v +
∑
j∈ŝ

g(x, yj)mj .

• Otherwise, if s has sons, consider the sons’ contributions.

• Otherwise, s has to be a leaf, i.e., ŝ contains only a few indices, so we can afford
to update the approximation directly via

v ← v +
∑
j∈ŝ

g(x, yj)mj .

It can be proven that only a small number of clusters contribute on every level of the
tree, and the total computational work is ∼ k log(n).

60

6 Shared-memory parallelization

6.1 Multithreading and OpenMP

Multicore processors Modern processors contain multiple cores, each equipped with
its own arithmetic and logical units, flow control logic, and caches. Each of these cores
is able to execute programs independently of the others, only the interface to off-chip
components like memory, graphics cards, and other peripherals is shared.

If we can share the work of a computation between multiple cores, we can significantly
reduce the necessary runtime.

OpenMP A very popular standard for writing programs that can run on multiple cores
is OpenMP, the open multi-processing standard. OpenMP is an extension of the C/C++
programming language.

• Programs are executed in threads, each thread has its own instruction pointer,
registers, and stack (containing local variables and data for subroutine calls).

• The program starts with the master thread that executes the main function of a
C program.

• Threads can new threads, organized in teams. The programmer can state how
many threads a team should contain, but the decision is ultimately up to the
implementation.

• All threads share the same address space, e.g., global variables and objects allo-
cated on the heap.

• Most of OpenMP’s functionality is accessed by #pragma directives, some by library
functions defined in the omp.h header file.

Parallel sections If a thread encounters a parallel section, a team of threads is created:

int

main()

{

int i=0, j=0;

#pragma omp parallel firstprivate(j)

{

int k=0;

61

https://www.openmp.org

i++; j++; k++;

}

return 0;

}

In this example, the variable i is shared, i.e., all threads can modify it. The variable j

is private to each thread, since the firstprivate clause creates copies and initializes
them with the current value of the original. The variable k is also private, since it is
created in each thread.

Since all threads share the same address space, a thread may still be able to access
private variables of other threads by misusing pointers.

Work-sharing via functions In order to make each thread work on a part of a problem,
we can use the functions omp_get_num_threads to get the number of threads in the
current team, and omp_get_thread_num to get the number of the current thread within
the team, starting with zero:

#pragma omp parallel

{

int start = n * omp_get_thread_num() / omp_get_num_threads();

int end = n * (omp_get_thread_num()+1) / omp_get_num_threads();

int i;

for(i=start; i<end; i++)

work(i);

}

While this approach offers us great freedom to assign work to threads, it works only if
a compiler supports OpenMP and if the header file omp.h is included.

Work-sharing via directives For simple loops, we can use #pragma directives to share
iterations among the threads of a team:

#pragma omp parallel

{

int i;

#pragma omp for

for(i=0; i<n; i++)

work(i);

}

If we want to parallelize only one loop, both pragmas can be combined:

62

#pragma omp parallel for

for(i=0; i<n; i++)

work(i);

Creating a team of threads is a relatively lengthy procedure, so this latter approach
should only be used if only one loop has to be parallelized or if this loop takes very long
to complete.

Example: matrix-vector multiplication

#pragma omp parallel for collapse(2)

for(j=1; j<=n; j++)

for(i=1; i<=n; i++)

y[i+j*ld] += alpha * (4.0 * x[i+j*ld]

- x[(i-1)+j*ld] - x[(i+1)+j*ld]

- x[i+(j-1)*ld] - x[i+(j+1)*ld]);

The collapse clause causes the two nested loops to be treated as one larger loop.

Example: trapezoidal rule

double sum = 0.0;

double h = (b-a) / n;

#pragma omp parallel for reduction(+:sum)

for(i=1; i<n; i++)

sum += f(a+h*i);

sum = h * (0.5 * f(a) + sum + 0.5 * f(b));

The reduction clause makes each thread create its own private copy of the sum vari-
able, initialized with zero. After the loop has been completed, all private copies are
accumulated in the original variable.

Interference If multiple threads work with the same shared variable, the results may
be non-deterministic:

int i = 0;

#pragma omp parallel

i++;

If we execute this fragment with 16 threads, the shared variable i can take any value
between 1 and 16 after the parallel section is complete: i++ is split into reading, adding,
and writing, and if multiple threads read the value of i before others have updated it,
these updates will be lost.

One solution is to make the accesses to i atomic by the #pragma omp atomic directive.
This works only for certain operations.

63

Critical sections Another solution is to define a critical section. Only one thread can
execute the critical section at any time, so if a variable is only accessed in a critical
section, it is safe from interference.

#pragma critical safe_print

{

printf("Hello\n");

printf("World\n");

}

Other threads trying to execute the critical section wait until the previous thread has
left the section.

Critical sections can be given a name (safe_print in the example), and all critical
sections with the same name are treated as if they were one section, i.e., once a thread
enters one of them, no further thread can enter any of the sections with the same name.

Locks Critical sections have to be defined at compile time, so they cannot grow and
shrink with dynamic data structures.

Locks, on the other hand, can be created at run time.

int *counter;

omp_lock_t *lock;

counter = (int *) malloc(sizeof(int) * n);

lock = (omp_lock_t *) malloc(sizeof(omp_lock_t) * n);

for(i=0; i<n; i++) {

counter[i] = 0;

omp_init_lock(lock+i);

}

#pragma omp parallel for

for(j=0; j<m; j++) {

i = data[j];

omp_set_lock(lock+i);

counter[i]++;

omp_unset_lock(lock+i);

}

This fragment counts how often numbers between 0 and n-1 appear in the array data.
In order to avoid multiple threads accessing the same entry of the counter array, each
entry is protected by a lock: if the lock is unset, omp_set_lock will set it and proceed.
If the lock is set, omp_set_lock will wait until it becomes unset, then set it and proceed.

Forgetting a call to omp_unset_lock can lead to a deadlock where no thread can
proceed and the program never finishes.

64

False sharing Even if two threads access different variables, they may feel the influence
of each other.

int a[2];

#pragma omp parallel sections private(i)

{

#pragma omp section

for(i=0; i<n; i++)

a[0]++;

#pragma omp section

for(i=0; i<n; i++)

a[1]++;

}

If the variables a[0] and a[1] share the same cache line, the cores executing both loops
have to exchange the cache lines after every update and cannot properly take advantage
of their local caches.

NUMA architectures Multi-processor systems frequently use non-uniform memory ac-
cess, i.e., each processor has its own memory and accessing the memory belonging to
another processor requires time-consuming communication.

In order to obtain good performance, we should try to ensure that processors work in
their own memory most of the time.

Memory is organized in pages, e.g., of 4 096 bytes. If we allocate memory by malloc,
only logical memory is allocated, no physical memory is assigned.

Physical memory is assigned when an address within the page is first accessed. In a
NUMA system with the common first touch allocation strategy, the page is placed in
the memory of the first processor accessing it.

This means, e.g., that it is not a good idea to have one processor initialize a large
array, because it would lead to operation system to try to store the entire array in this
processor’s memory.

65

6.2 Tasks

Simple work-sharing constructs are too limited to handle computations with non-trivial
data dependencies.

Task: A thread can define a task.

• A task is a segment of code that operates with its own instruction pointer, local
variables, and stack.

• If a thread in the current team is idle, the runtime system can assign it a task to
execute.

• Tasks can depend on the results of other tasks, and they can produce results that
other tasks depend on.

Creating a task takes time, but not as much time as creating a team of threads.

Example: Parallel tree traversal

static void

work(tree *t)

{

int i;

if(t->sons > 0) {

for(i=0; i<t->sons; i++)

#pragma omp task firstprivate(t,i)

work(t->son[i]);

#pragma omp taskwait

}

/* ... do something ... */

}

void

work_tree(tree *t)

{

#pragma omp parallel

#pragma omp single

work(t);

}

The task directive creates a task for each node in the tree, and the firstprivate clause
ensures that the tasks have their own copies of t and i.

66

The taskwait directive waits for all task created by the current task to finish, so the
father node could work with data provided by its sons.

The single directive ensures that only one thread executes for the root of the tree.

Data dependencies Tasks can depend on variables.

int a, b;

#pragma omp task depend(out: a)

a = 5;

#pragma omp task depend(out: b)

b = 7;

#pragma omp task depend(inout: a), depend(in: b)

a += b;

The first task has a as its output, the second b, while the third requires a and b as input
and has a as its output.

The first two tasks can be executed in parallel, but the third task has to wait for both
to complete.

Example: LR factorization Our goal is to parallelize the LR factorization. In order to
ensure that tasks have sufficient work, we use a block algorithm: the matrices A, L, and
R are split into m×m submatrices

A =

A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 , L =

L11
...

. . .

Lm1 · · · Lmm

 , R =

R11 · · · R1m

. . .
...

Rmm

 ,

and we obtain the equations

A11 = L11R11, A1j = L11R1j , Ai1 = Li1R11 for all i, j ∈ [2 : m].

Due to the first equation, we can obtain L11 and R11 by a standard LR factorization.
Once L11 is available, we can compute R1j from A1j by forward substitution. Solving

Ai1 = Li1R11 is equivalent to ATi1 = RT11L
T
i1, so we can again use forward substitution to

obtain Li1.

void

rtsolve(int n, int m, const real *R, int ldR, real *B, int ldB)

{

int i;

for(i=0; i+1<n; i++) {

67

scal(m, 1.0/R[i+i*ldR], B+i*ldB, 1);

ger(m, n-i-1, -1.0,

B+i*ldB, 1, R+i+(i+1)*ldR, ldR,

B+(i+1)*ldB, ldB);

}

}

Once Li1 and R1j are available for all i, j ∈ [2 : m], we can useL22
...

. . .

Lm2 · · · Lmm


R22 · · · R2m

. . .
...

Rmm

 =

 A22 − L21R12 · · · A2m − L21R1m
...

. . .
...

Am2 − Lm1R12 · · · Amm − Lm1R1m


to reduce the problem size: now we only have to compute the LR factorization with
(m− 1)× (m− 1) submatrices.

for(k=0; k<m; k++) {

ok = n * k / m; /* Offset block k */

dk = n * (k+1) / m - ok; /* Dimension block k */

#pragma omp task firstprivate(dk, ok),\

depend(inout: A[ok+ok*ldC]

lrdecomp(dk, A+ok+ok*ldA, ldA);

for(j=k+1; j<m; j++) {

oj = n * j / m; /* Offset block j */

dj = n * (j+1) / m - oj; /* Dimension block j */

#pragma omp task firstprivate(dj, oj, dk, ok),\

depend(in: A[ok+ok*ldA]), depend(inout: A[ok+oj*ldA])

lsolve(dk, dj, A+ok+ok*ldA, ldA, A+ok+oj*ldA, ldA);

#pragma omp task firstprivate(dj, oj, dk, ok),\

depend(in: A[ok+ok*ldA]), depend(inout: A[oj+ok*ldA])

rtsolve(dk, dj, A+ok+ok*ldA, ldA, A+oj+ok*ldA, ldA);

}

for(j=k+1; j<m; j++) {

oj = n * j / m; /* Offset block j */

dj = n * (j+1) / m - oj; /* Dimension block j */

for(i=k+1; i<m; i++) {

oi = n * i / m; /* Offset block i */

di = n * (i+1) / m - oi; /* Dimension block i */

68

#pragma omp task firstprivate(di, oi, dj, oj, dk, ok), \

depend(in: A[oi+ok*ldA], A[ok+oj*ldA]), \

depend(inout: A[oi+oj*ldA])

gemm(false, false, di, dj, dk,

-1.0, A+oi+ok*ldA, ldA, A+ok+oj*ldA, ldA,

1.0, A+oi+oj*ldA, ldA);

}

}

}

#pragma omp taskwait

69

7 Vectorization

7.1 Vectorization

Instead of adding more full processor cores to a chip, it is also possible to just add more
arithmetic-logic units.

SIMD: Single instruction, multiple data.
The processor’s instruction set is extended to allow one instruction to act on multiple

sets of input data simultaneously.
The registers used by the processor are extended to vector registers that can hold

multiple values simultaneously, and arithmetic and logical instructions are extended to
work with these vector registers.

A simple example is the vector add operation
x1

x2

x3

x4

←

x1 + y1

x2 + y2

x3 + y3

x4 + y4


that performs four additions and — on most processors — takes as long as just one
addition.

Example: axpy operation The function axpy of BLAS level 1 can profit from SIMD
units, since it has to perform one multiplication and one addition for each element of
the array and these operations are all independent.

Using Intel R© AVX intrinsics, a possible realization (for the special case incx=1 and
incy=1) would be

__m256 v_alpha = _mm256_set1_ps(alpha);

int i;

for(i=0; i+7<n; i+=8)

_mm256_storeu_ps(y+i, _mm256_add_ps(

_mm256_mul_ps(v_alpha, _mm256_loadu(x+i)),

_mm256_loadu(y+i)));

for(; i<n; i++)

y[i] += alpha * x[i];

70

Since AVX allows us to keep 8 single-precision floating point numbers in a 256-bit variable
of type __m256, the first loop progresses in steps of 8, loads 8 coefficients from the arrays
x and y, multiplies them by the scaling factor alpha (duplicated 8 times in v_alpha),
and stores them in y.

In order to be able to handle dimensions that are not multiples of 8, we have to add
a short loop that deals with the remainder.

Bandwidth In theory, we would expect an SIMD code with vectors of length 8 to run
8 times as fast as a standard code.

In practice, frequently the memory bandwidth is a limiting factor: with AVX, an axpy

implementation take two clock cycles to treat 32 bytes of the arrays x and y, i.e., we
could process 32 bytes per cycle. At a clock speed of 4 GHz, this means that we could
theoretically process 128 GBytes per second. Unfortunately, even modern quad-channel
memory only reaches 50 GBytes per second, so we will not see the expected speedup.

It is therefore very important to perform a large number of operations on each byte
that has been read from memory, e.g., by rewriting algorithms using BLAS level 3.

Automatic vectorization Modern compilers are able to turn certain parts of programs
written in standard C or FORTRAN into SIMD code.

Even for fairly simple situations, this involves a closer analysis of the program and is
therefore usually only enabled for higher optimization levels.

Example: axpy If we use the GNU C compiler on an x86 processor, we can enable
vectorization with the command-line parameter -ftree-loop-vectorize and use -mavx
to choose the AVX command set.

for(i=0; i<n; i++)

x[i] += y[i];

For this very simple vector addition, the compiler will detect that all components are
independent and use SIMD instructions.

Aliasing If the addition loop seen above takes place in a function that receives the
pointers x and y as parameters, aliasing may occur, i.e., x and y could point to the
same array, and straightforward vectorization could change the result, e.g., x=y+1 would
introduce dependencies between different iterations. The compiler is not allowed to
change the outcome of an algorithm by vectorization, so it may not vectorize the loop
under these circumstances. In our simple example, the compiler can find out whether
aliasing is possible by comparing the addresses of x and y: if they are further apart than
32, it is safe to use AVX instructions.

In general situations, we can help the compiler by using the restrict keyword: using
this keyword in the declaration of pointer parameters, we assert that they will never
point to the same arrays:

71

void

simple_axpy(int n, const float * restrict y, float * restrict x)

{

int i;

for(i=0; i<n; i++)

x[i] += y[i];

}

Example: Rounding errors In some typical situations, rounding errors depend on the
order in which floating-point operations are carried out:

float sum;

int i, n;

sum = 0.0f;

for(i=1; i<=n; i++)

sum += i;

In this example, the computer has to convert i to a float value and perform a floating-
point addition. Due to rounding, these additions are not associative, i.e., the sequence
of their execution matters. Unfortunately, this means that SIMD instructions cannot be
used without changing the result of the computation.

Some compilers offer us the possibility to state that reordering floating-point instruc-
tions is acceptable even if it changes the result (within the interval of rounding errors),
e.g., by using the -ffast-math command-line parameter for the GNU C compiler. If
this parameter is used in combination with ftree-loop-vectorize, the summation will
be performed with SIMD instructions, and consequently run significantly faster.

SIMD with OpenMP OpenMP 4.0 introduces directives to help the compiler identify
portions of the code that can be parallelized using SIMD instructions:

#pragma omp simd

for(i=0; i<n; i++)

y[i] += alpha * x[i]

By using the simd directive, we state that the operations in the for loop are independent
and can therefore be treated by SIMD instructions.

For our summation example, using OpenMP directives implies that we allow the com-
piler to reorder floating-point operations, even if it leads to different rounding errors:

#pragma omp simd reduction(+:sum)

for(i=1; i<=n; i++)

sum += i;

72

If we want to call functions from within the vectorized loop, we should declare them
using the declare simd directive, so the compiler can create vectorized versions of the
functions:

#pragma omp declare simd

float

my_sinf(float x)

{

float x2 = x*x;

return x*(c0 + x2 * (c1 + x2 * (c2 + x2 * (c3 + x2 *

(c4 + x2 * c5)))));

}

Using the simd directive does not guarantee that the compiler will vectorize the loop,
e.g., because it considers it too short, because it is unable to determine its iteration
count in advance, or because the loop body calls functions that have not been vectorized
(unfortunately, this appears to currently include many functions in the standard math
library).

Structure of arrays For sequential codes, it makes sense to arrange data that belongs
to the same object in close proximity im memory, since this improves the utilization of
caches and makes for a program that is easier to read.

An example could be the simulation of a gravitational field: each planet is represented
by a struct, and all the planets as an arrays of these structs:

typedef struct {

float x, y, z;

float mass;

} planet;

planet pl[N];

In a vectorized code, this representation is unattractive, since we cannot load the x
coordinates for several masses at once into a vector register.

If we plan to use a vectorized code, it is frequently advisable to use a structure of
arrays, i.e., to define a struct that holds arrays for each variable:

typedef struct {

float x[N], y[N], z[N];

float mass[N]

} planets;

With this approach, it is straightforward to obtain the parameters for multiple planets
in a form that can be directly used in an SIMD code.

73

7.2 Explicit vectorization

Example: Reciprocal square root We have already seen that the Newton iteration
takes the particularly friendly form Φ(x) = x(3

2−
1
2ax

2) if we approximate the reciprocal
square root 1/

√
a by looking for a zero of f(x) = x−2 − a.

With AVX, we can obtain the following SIMD implementation:

__m256

avx_rsqrt(__m256 x)

{

__m256 c15 = _mm256_set1_ps(1.5f);

__m256 c05 = _mm256_set1_ps(0.5f);

__m256 y;

y = _mm256_rsqrt_ps(x);

y = _mm256_mul_ps(y, _mm256_sub_ps(c15,

_mm256_mul_ps(_mm256_mul_ps(c05, x),

_mm256_mul_ps(y, y))));

return y;

}

Compared to the simple C version 1.0f / sqrtf(x), we observe a speedup of more
than 30, not only due to the SIMD approach, but also due to the fact that we can avoid
computing the square root and the reciprocal separately.

Example: Sine function We consider approximating the sine function by its Taylor
series

sin(x) ≈ x
(

1− x2

3!
+
x4

5!
− x6

7!
+
x8

9!
− x10

11!

)
.

If we can ensure x ∈ [−π/2, π/2], we can expect the error to be bounded by

(π/2)13

13!
≈ 5.7× 10−8,

which should be sufficient for single-precision computations. We can evaluate the trun-
cated Taylor expansion by Horner’s method

sin(x) ≈ x
(

1− x2

2 · 3

(
1− x2

4 · 5

(
1− x2

6 · 7

(
1− x2

8 · 9

(
1− x2

10 · 11

)))))
using the following AVX code:

const float c[] = { 1.0/6.0, 1.0/20.0, 1.0/42.0,

1.0/72.0, 1.0/110.0 };

74

__m256 x2 = _mm256_mul_ps(x, x);

__m256 one = _mm256_set1_ps(1.0f);

__m256 px;

int m = sizeof(c) / sizeof(float);

int i;

px = one;

while(m > 0)

px = _mm256_sub_ps(one, _mm256_mul_ps(x2,

_mm256_mul_ps(_mm256_set1_ps(c[--m]), px)));

px = _mm256_mul_ps(px, x);

Branching A major difficulty of SIMD programming is dealing with data-dependent
branches, i.e., situations in which different instructions have to be executed depending
on the data in the vectors.

Since SIMD units can only perform the same operation for all components of a vector,
techniques like masking have to be used: either the operation can be disabled for certain
components of the vector based on suitable binary flags, or the operation is always
performed for all components and bitwise logical operations are applied to merge the
appropriate results depending on the data.

Example: Avoiding branches The challenging part of the computation of the sine —
with respect to vectorization — is not the Taylor series, but moving x to the interval
[−π/2, π/2] where it converges rapidly. In a first step we compute z = x

2π , round to
the closest k ∈ Z, and subtract k to get ẑ = z − k ∈ [−1/2, 1/2]. Now we have
x̂ := 2πẑ = x− 2πk ∈ [−π, π], and since the sine is 2π-periodic, we have sin(x) = sin(x̂).

If x̂ > π/2, i.e., ẑ > 1/4, we can replace x̂ with π − x̂ (or ẑ with 1/2− ẑ), since

sin(π − x̂) = sin(−x̂) cos(π) + cos(−x̂) sin(π) = − sin(−x̂) = sin(x̂).

Similarly, if x̂ < −π/2, i.e., ẑ < −1/4, we can replace x̂ with −π−x̂ (or ẑ with −1/2− ẑ).
With AVX instructions, these operations can be realized as follows:

z = _mm256_mul_ps(x, r2pi);

z = _mm256_sub_ps(z, _mm256_round_ps(z, _MM_FROUND_TO_NEAREST_INT));

sgn = _mm256_and_ps(z, _mm256_castsi256_ps(

_mm256_set1_epi32(0x80000000)));

mask = _mm256_cmp_ps(_mm256_xor_ps(z, sgn), quar, _CMP_GT_OS);

y = _mm256_sub_ps(_mm256_xor_ps(half, sgn), z);

75

z = _mm256_or_ps(_mm256_and_ps(mask, y),

_mm256_andnot_ps(mask, z));

Here r2pi, quad, and half are the constants 1
2π , 1/4, and 1/2, respectively.

The variable sgn stores the sign of z, and since this is just the highest bit in a 32-bit
floating point number, we can use bitwise xor operations to flip the signs of z and 1/2
to find out if |z| > 1/2 and to compute y = sgn(z)/2− z.

The variable mask is of particular importance: the function _mm256_cmp_ps compares
the components of a vector and sets all bits of the corresponding components of the
result to one if the comparison yields true and to zero otherwise. In our case all bits will
be one if and only if |z| > 1/2.

Once y has been computed, we can use bitwise and operations to clear the components
with |z| ≤ 1/2 and use a bitwise or operation to merge with the original values of z.

Latency and throughput Modern processors typically use an instruction pipeline, i.e.,
the execution of an instruction is split into several steps (e.g., decoding the instruction,
computing addresses, obtaining data, computing, or storing the result), and each of these
steps is performed by a separate stage of the processor.

This means that the processor can start decoding the next instruction before the pre-
vious instruction has finished, as long as the processor knows what the next instruction
will be.

Every instruction has a latency and a throughput : the latency is the number of clock
cycles required to complete processing the instruction, while the throughput is the num-
ber of clock cycles that need to pass before the next instruction can be moved into the
pipeline.

On an Intel R© Skylake processor, the floating-point addition has a throughput of 0.5,
i.e., every cycle the processor can start working on two additions, but a latency of 4,
i.e., we have to wait four cycles before we can use the result of the addition.

Some operations take significantly longer, e.g., Intel reports an upper bound of 18 for
the latency of the double-precision square root and a throughput of less than 12, while
older architectures could have a latency of up to 35 cycles and a throughput of up to 27.

Modern processors deal with latencies by executing instructions out of order, i.e.,
rearranging the order of the instructions without changing the result. An example could
be the computation of Euclidean norms:

for(i=0; i+7<n; i+=8) {

vx = _mm256_loadu_ps(x+i);

vy = _mm256_loadu_ps(y+i);

vz = _mm256_loadu_ps(z+i);

sq = _mm256_add_ps(_mm256_mul_ps(vx, vx),

_mm256_add_ps(_mm256_mul_ps(vy, vy),

_mm256_mul_ps(vz, vz)));

76

_mm256_storeu_ps(nr+i, _mm256_sqrt_ps(sq));

}

While the square root is computed in the last step, a processor with out-of-order capa-
bilities could already perform additions and multiplications for the next iteration of the
loop and even already load the data for even later iterations.

Prefetching Since memory accesses have a very large latency, up to more than 100
cycles, relying on the processor to start fetching required data from memory in time can
be unattractive.

This is particularly critical if predicting the addresses of future load instructions is
not straightforward.

In these situations, prefetching might be of interest: using the function _mm_prefetch,
we can indicate that we expect to use a certain cacheline soon, so that the processor can
start fetching it into its cache while it is still busy executing other instructions.

for(i=0; i+7<n; i+=8) {

_mm_prefetch(x+i+64);

vx = _mm256_loadu_ps(x+i);

_mm256_stream_ps(y+i, _mm256_mul_ps(vx, vx));

}

Using the _mm256_stream_ps function to write the result to memory indicates to the
processor that we do not expect to use the data any time soon, so it does not have to
be stored in the cache, leaving more cache space for important data.

77

8 Computing with graphics cards

8.1 Computing with graphics cards using CUDA

Since modern graphics algorithms require relatively complicated computations, i.e., to
compute realistic shadows and lighting effects, modern graphics cards are far more flex-
ible than their predecessors. This property makes them interesting for more general
applications.

CUDA NVIDIA R© was the first major manufacturer of graphics cards that offered a
user-friendly way of programming their devices to handle general tasks, called CUDA,
for compute unified device architecture.

CUDA programs are usually written in CUDA C, an extension of C++ that includes
keywords and constructs for creating code for graphics cards, running this code, and
transferring data between the computer (called the “host”) and the graphics card (called
the “device”).

Cross-compilation CUDA C programs contain two kinds of functions: most functions
are probably standard C/C++ functions that are compiled for the current host sys-
tem, e.g., a Linux PC. Some functions are marked with the __global__ or __device__
keywords, these are compiled for NVIDIA’s graphics cards and cannot be called directly.

SIMT: Single instruction, multiple threads.
Since modern graphics processors have hundreds or thousands of “processing elements”

that can execute code, parallelization takes the form of often hundreds of thousands of
threads that are scheduled to run on these elements.

CUDA threads are significantly simpler than OpenMP threads:

• each thread has an instruction counter,

• the variables used by a thread are assigned statically to registers,

• there is no stack, so recursive function calls are impossible,

• only threads belonging to the same block can synchronize.

78

https://developer.nvidia.com/cuda-zone

Execution is managed by streaming multiprocessors. Typically a graphics card contains
several of these multiprocessors.

Every multiprocessor contains a number of processing elements that can carry out
instructions, a number of registers that can be used for thread-local variables, and a
small amount of local memory that can be used for inter-thread communication.

• Threads are organized in blocks. Only threads within the same block can commu-
nicate.

• Blocks are split into warps, consisting each of a fixed number of threads.

Each block is assigned to a multiprocessor, and the multiprocessor is responsible for
executing the threads in this block. In every clock cycle, the multiprocessor chooses one
of the block’s warps, checks which instructions the threads in the warp have to execute
next, and executes one of these instructions. If multiple threads need to execute the
chosen instruction, all of them do.

In this regard, SIMT programming is much like SIMD: under optimal conditions, the
same instruction is performed for all threads in the current warp.

Since every thread has its own instruction counter, SIMT programming can be signif-
icantly more user-friendly than SIMD programming.

Limits Since one multiprocessor is responsible for executing the threads in a block, and
since every thread requires a certain number of registers, the blocks should not be too
large.

Another limiting factor is that since one block is executed by one multiprocessor, we
should at least have as many blocks as multiprocessors to ensure that all processors can
work.

Since the multiprocessor can execute one instruction in one warp per clock cycle, we
should make sure that at least one instruction is ready for execution, e.g., that the
necessary data has been fetched from memory, therefore the blocks should also not be
too small.

Another limiting factor is that since a multiprocessor has as many processing elements
as the warp size (frequently 32), the blocks should not be smaller than the warp size in
order to avoid idle processing elements.

Kernels Code that will be executed on the graphics card is frequently called a kernel.
For the simple axpy operations, it could look like this:

__global__ void

axpy(int n, float alpha, const float *x, float *y)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i < n)

y[i] += alpha * x[i];

}

79

The keyword __global__ tells the compiler that we intend to run the following function
on the graphics card. Kernels cannot return results, so their return type always has
to be void. Since graphics cards can handle a large number of threads with very low
overhead, we can use kernels for each component of the vector.

The current thread is identified by the built-in read-only variables blockIdx and
threadIdx that give us the index of the block and the index of the thread within the
block. blockDim gives us the number of threads per block, so the first line of our function
computes a global number for the current thread.

Since CUDA is able to handle up to three-dimensional index sets, we have to use
blockIdx.x, blockDim.x, and threadIdx.x to denote the first component of the indices.

If the number of coefficients in the vectors x and y is not divisible by the block size,
the thread number i could be larger than n. In this case, the thread simple returns.
Otherwise, it updates the coefficient y[i].

Kernels cannot be called like standard C functions, since they will be executed on the
graphics card. In our case, we can use

axpy<<<(n+255)/256, 256>>>(n, alpha, dx, dy);

to create 256 · dn/256e ≥ n threads with a block size of 256. Given that usually 32
threads are collected in a warp, this means that the multiprocessor can choose between
eight warps in each cycle, which should be sufficient to hide latencies.

These threads are executed asynchronously, i.e., the host’s main processor will execute
the instructions following the call to axpy even if this call has not yet been completed.
This is not a bug, but a feature: it allows the processor to do useful work while the
graphics card is busy.

Device memory Kernels typically do not have access to the main memory managed by
the host’s processor, only to memory on the graphics card. This means that we have to
allocate memory and transfer the relevant data:

cudaMalloc(&dx, sizeof(float) * n);

cudaMalloc(&dy, sizeof(float) * n);

cudaMemcpy(dx, x, sizeof(float) * n, cudaMemcpyHostToDevice);

cudaMemcpy(dy, y, sizeof(float) * n, cudaMemcpyHostToDevice);

In order to copy the kernel’s results back to main memory, we can use

cudaMemcpy(y, dy, sizeof(float) * n, cudaMemcpyDeviceToHost);

Calls to cudaMemcpy are blocking, i.e., they only return after they have completed their
work. They also wait for the completion of the kernel before they start. In particular, if
we use

cudaMemcpy(dx, x, sizeof(float) * n, cudaMemcpyHostToDevice);

cudaMemcpy(dy, y, sizeof(float) * n, cudaMemcpyHostToDevice);

80

axpy<<<(n+255)/256, 256>>>(n, alpha, dx, dy);

cudaMemcpy(y, dy, sizeof(float) * n, cudaMemcpyDeviceToHost);

the kernel will not get started before the vectors x and y have been copied, and the
result will not be copied back before the kernel has completed.

Managed memory Recent versions of CUDA offer an alternative to explicitly copy-
ing data between main and device memory: if we use cudaMallocManaged instead of
cudaMalloc, the system automatically moves it where it is needed:

cudaMallocManaged(&x, sizeof(float) * n);

cudaMallocManaged(&y, sizeof(float) * n);

for(i=0; i<n; i++) {

x[i] = i; y[i] = n-i;

}

axpy<<<(n+255)/256, 256>>>(n, 1.0f, x, y);

cudaDeviceSynchronize();

for(sum=0.0f, i=0; i<n; i++)

sum += y[i];

In this setting, we have to call cudaDeviceSynchronize to ensure that the kernel com-
pletes its work before we start the final for loop on the main processor.

81

8.2 Streams, blocks, and shared memory

Transfer latency Although managed memory allows us to hide transfers from and to
graphics memory in our program, these transfers still have to take place, and they may
take a very long time: a NVIDIA GeForce R© GTX 1080 Ti graphics card offers a memory
bandwidth of 484 GB per second, but is connected to the host via a PCIe 3.0 bus with
a maximum of 16 GB per second.

In order to avoid the relatively low speed of the PCIe bus hampering the performance
of our code, we have to manage transfers between main and graphics memory carefully.

Hiding latencies If our code carries out a sufficient number of operations with each
item of data transferred from main memory, most modern graphics cards allow us to hide
memory transfers behind computations: the memory interface and the multiprocessors
can work simultaneously, we only have to arrange our program in a way that allows it
to take advantage of this property.

Streams CUDA allows us to create streams, sequences of operations that are scheduled
by the system in order to try to minimize the overall runtime. The system guarantees
that all operations within one stream are carried out in sequence, but operations in
different streams can be interleaved.

If we use two streams containing read-compute-write sequences, one stream can per-
form transfers while the other performs computations.

Streams can be created using the function cudaStreamCreate, and some operations,
particularly kernel executions and memory transfers, allow us to assign them to a stream
for execution.

Pinned memory In order to utilize the hardware’s ability to transfer data between main
and graphics memory, the main memory area has to be pinned : typically programs work
with logical addresses, and the operating system is free to move the corresponding data
around.

In order for the graphics card to access the memory, it has to correspond to a fixed
area of physical memory.

We can use the function cudaMallocHost to allocate pinned memory.

Example: Trapezoidal rule We assume that we have to compute integrals

vi =

∫ ai+1

ai

f(x) dx for all i ∈ [1 : n]

by the composite trapezoidal rule with m subintervals, but we do not have enough
graphics memory to store all n values of vi and ai simultaneously.

We only have enough storage for nb of these integrals on the graphics card, so we use
streaming to move the required data to and from graphics memory:

82

__global__ void

trapezoidal(int n, int m, const float *a, float *v)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j;

float sum, h = 1.0f / m;

sum = 0.5f * (func(a[i]) + func(a[i]+1.0f));

for(j=1; j<m; j++)

sum += func(a[i] + h * j);

v[i] = h * sum;

}

cudaMallocHost(&a, sizeof(float) * n);

cudaMallocHost(&v, sizeof(float) * n);

cudaMalloc(da, sizeof(float) * nb);

cudaMalloc(da+1, sizeof(float) * nb);

cudaMalloc(dv, sizeof(float) * nb);

cudaMalloc(dv+1, sizeof(float) * nb);

cudaMemcpyAsync(da[0], a, sizeof(float) * nb,

cudaMemcpyHostToDevice, stream[0]);

trapezoidal<<<nb, 256, 0, stream[0]>>>(n, m, da[0], dv[0]);

cudaMemcpyAsync(v, dv[0], sizeof(float) * nb,

cudaMemcpyDeviceToHost, stream[0]);

current = 0;

for(i=0; i+nb<n; i+=nb) {

next = 1-current;

cudaMemcpyAsync(da[next], a+i+nb, sizeof(float) * nb,

cudaMemcpyHostToDevice, stream[next]);

trapezoidal<<<nb, 256, 0, stream[next]>>>(nb, m,

da[next], dv[next]);

cudaMemcpyAsync(v+i+nb, dv[next], sizeof(float) * nb,

cudaMemcpyDeviceToHost, stream[next]);

cudaStreamSynchronize(stream[current]);

current = next;

}

cudaStreamSynchronize(stream[current]);

83

Blockwise collaboration If we are only computing a moderate number of outputs, it
might be a good idea to spread the computation of one output among multiple threads,
e.g., to let each thread sum up part of a composite quadrature rule.

Once the partial results are available, we have to combine them to obtain the final
result. This is called a reduction, and instead of just summing up all results sequentially,
we can employ multiple threads cooperating within a block.

In order to exchange partial results between the blocks, we use shared memory that
is kept in the multiprocessor handling the block and is significantly faster (and smaller)
than standard graphics memory.

__global__ void

midpoint(int n, int m, const float *a, float *v)

{

__shared__ float p[256]; /* blockDim.x = 256 */

int i = blockIdx.x;

int it = threadIdx.x;

int start = m * it / blockDim.x;

int end = m * (it+1) / blockDim.x;

float sum, h = 1.0f / m;

int j, k;

sum = 0.0f;

for(j=start; j<end; j++)

sum += func(a[i] + h * (j + 0.5f));

p[it] = h * sum;

k = blockDim.x;

while(k > 1) {

__syncthreads();

k /= 2;

if(it < k)

p[it] += p[it+k];

}

if(it == 0)

v[i] = p[0];

}

Each thread in a block computes part of the sum with the entries from start to end-1

and stores the result in p[it], i.e., in shared memory that is visible for all threads in
the block.

Then follows the reduction: in the first step, the first 128 threads in the block read
the partial results of the other 128 threads and add them together. Now the total sum

84

is the sum of the contributions of the first 128 threads.
In the second step, the first 64 threads read the results of the other 64 and add them.

Now the total sum is the sum of the contributions of the first 64 threads.
We repeat this procedure until the first thread has the entire sum and stores it in

v[i].
In order to make sure that all threads are aware of the updated array s before each

step, the function __syncthreads() is used to synchronize all threads in the block.
Since now each block corresponds to an entry of the result, we have to call the new

kernel as

midpoint<<<n,256>>>(n, m, a, v);

so that n blocks are used.

85

9 Distributed computing

9.1 Message passing and MPI

Distributed computing Use several independent computers that can communicate only
via a suitable network.

u Every computer can use its full memory bandwidth.

u If a computer breaks down, it can be easily replaced.

d Communication via network is slow.

d Exchange of data has to be performed explicitly.

MPI The message-passing interface is a well-established standard for distributing work
among distributed computers.

Programs have to be compiled using a special compiler, usually named mpicc, and
they have to be run using mpirun on simple systems or via a batch processing system
on more sophisticated installations.

Example: Hello world We want two computers to produce a greeting. The first com-
puter creates the zero-terminated string “Hello” and sends it to the second, the second
receives it an prints it followed by the string “World”.

#include <stdio.h>

#include <mpi.h>

int

main(int argc, char **argv)

{

char buf[6];

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if(rank == 0)

86

https://www.mpi-forum.org

MPI_Send("Hello", 6, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

if(rank == 1) {

MPI_Recv(buf, 6, MPI_CHAR, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

printf("%s World\n", buf);

}

MPI_Finalize();

return 0;

}

This simple program already uses a number of important MPI functions:

• MPI_Init initializes the MPI system.

• MPI_Finalize exits the MPI system.

• MPI_Comm_rank returns this process’s number.

• MPI_Comm_size returns the number of processes.

• MPI_Send sends a message to a process.

• MPI_Recv receives a message from a process.

Communicators MPI processes are organized in communicators providing context for
communication operations: they ensure that messages are received in the order in which
they were sent, they provide unique “addresses” for all parties, and they have several
other useful properties.

After the initialization, two communicators MPI_COMM_WORLD and MPI_COMM_SELF are
available, containing all processes managed by the system and only the current pro-
cess, respectively. More communicators containing arbitrary subsets of processes can be
defined at runtime.

The number of processes, the size of the communicator, can be requested using
MPI_Comm_size. Each process in the communicator has a unique number ranging from
0 to size-1.

Since a process can belong to multiple communicators, we have to state the commu-
nicator that we want to use for each MPI operation.

Messages MPI messages contain an array of data of a certain type, a communicator,
the rank of the sender and the receiver within the context of the communicator, and a
tag that may be used to distinguish different kinds of messages passed between the same
processes.

Within a communicator, messages are received in the order they were sent in.

87

Blocking and non-blocking functions The function MPI_Recv used for receiving mes-
sages is blocking, i.e., it will return control to the caller only after the message has been
received and the corresponding receive buffer is filled.

The function MPI_Send, on the other hand, may or may not be blocking, depending
on the implementation. We only have to guarantee that it returns control after it has
made sure that the contents of the send buffer can be overwritten without changing the
message, e.g., because its contents have been copied to an internal buffer or because its
contents have already reached their destination.

int x, y;

if(rank == 0) {

x = func1();

MPI_Send(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

MPI_Recv(&y, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

else if(rank == 1) {

y = func2();

MPI_Send(&y, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(&x, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

This code fragment will work, i.e., exchange the values of x and y between the processes
0 and 1, if MPI_Send does not block in the current implementation, and it will wait
forever if MPI_Send blocks, since neither of the two processes ever gets to call MPI_Recv,
allowing the other the complete the send operation.

Asynchronous functions Most problems with colliding function calls can be resolved
by using non-blocking versions of send and received operations:

int x, y;

MPI_Request in, out;

if(rank == 0) {

x = func1();

MPI_Isend(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &out);

MPI_Irecv(&y, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &in);

}

else {

y = func2();

MPI_Isend(&y, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &out);

MPI_Irecv(&x, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &in);

}

MPI_Wait(&out, MPI_STATUS_IGNORE);

MPI_Wait(&in, MPI_STATUS_IGNORE);

88

These immediate versions of the send and receive operations return MPI_Request objects
that can be used to wait for completion. Except for the separation between requesting
the operation and waiting for its completion, the semantics are similar: for a send
operation, we wait until the send buffer is no longer required, for a receive operation, we
wait until the receive buffer has been filled.

Hiding communication Apart from avoiding deadlock situations, non-blocking opera-
tions also allow us to hide communication latencies: before processing a set of data, we
can issue non-blocking requests for the next set. If the computation takes sufficiently
long, the data may have arrived once the current data has been handled.

Example: Gravitation For the sake of simplicity, we assume that all planets have unit
mass. Our task is to compute

pi =
n∑
j=1
j 6=i

1

‖xj − xi‖2
for all i ∈ [1 : n].

The computation itself is straightforward:

void

compute(int n, const double *x, const double *y,

const double *m, double *p)

{

double norm;

int i, j;

for(i=0; i<n; i++)

for(j=0; j<n; j++) {

norm = sqrt((x[3*i]-y[3*i]) * (x[3*i]-y[3*i]) +

(x[3*i+1]-y[3*i+1]) * (x[3*i+1]-y[3*i+1]) +

(x[3*i+2]-y[3*i+2]) * (x[3*i+2]-y[3*i+2]));

if(norm > 0.0)

p[i] += 1.0 / norm;

}

}

In order to parallelize the computation with m processes, we assume n = npm and store
only np masses in each process. The computation is split into np phases, and in the k-th
phase, process α computes interactions between its masses and the masses of process
(α + k) modm. We can concurrently pass these masses on the process (α + 1) modm,
so they arrive in time for the next phase:

x = (double *) malloc(sizeof(double) * 3 * np);

y[0] = (double *) malloc(sizeof(double) * 3 * np);

89

y[1] = (double *) malloc(sizeof(double) * 3 * np);

p = (double *) malloc(sizeof(double) * np);

MPI_Isend(x, 3*np, MPI_DOUBLE, (rank+1)%size,

0, MPI_COMM_WORLD, &out);

MPI_Irecv(y[0], 3*np, MPI_DOUBLE, (rank+size-1)%size,

0, MPI_COMM_WORLD, &in);

compute(n, x, x, p);

current = 0;

for(i=1; i<size; i++) {

MPI_Wait(&out, MPI_STATUS_IGNORE);

MPI_Wait(&in, MPI_STATUS_IGNORE);

MPI_Isend(y[current], 3*np, MPI_DOUBLE, (rank+1)%size,

i, MPI_COMM_WORLD, &out);

MPI_Irecv(y[1-current], 3*np, MPI_DOUBLE, (rank+size-1)%size,

i, MPI_COMM_WORLD, &in);

compute(n, x, y[current], p);

current = 1-current;

}

MPI_Wait(&out, MPI_STATUS_IGNORE);

MPI_Wait(&in, MPI_STATUS_IGNORE);

Since the computation has a complexity of ∼ n2
p, while only data for np planets has to

be transferred per phase, there is a good chance that the communication time can be
hidden behind the computation.

90

9.2 Collective communication

The communication operations we have seen so far transfer one message from one source
to one target process, these are called point-to-point operations in the MPI standard.

In some situations, it may be beneficial for all processes to participate in an operation.
In this case, it makes sense to use what is called a collective operation in the standard.

Broadcast A typical example is the broadcast operation, i.e., the transfer of data from
one process, called the root, to all other processes belonging to a communicator.

We could perform this operation by having the root process send the data via MPI_Send

to all other processes, but there is a better approach: once the root has sent its data to
one other process, a total of two processes has it, so both can send it to one other process
simultaneously, bringing the total to four. If each process performs p send operations,
we can reach 2p processes, so for m processes, only dlog2me operations are required.

In some systems, communication between some processes is faster than between others,
and taking the properties of the infrastructure into account may significantly improve
performance. Since the user should not have to worry too much about the properties of
the hardware, it is best to have an optimized implementation of MPI handle tasks like
this. That’s why the standard provides functions like MPI_Bcast:

int n, rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank == 0) {

printf("Number of intervals?\n");

scanf("%d", &n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Process zero requests data from the user and then shares it with all other processes.

Reduction Another important collective operation is the reduction: if we want to add
numbers stored in all processes, or take the maximum of them, or perform any other
associative operation, we can follow a similar pattern to the broadcast, only in reverse:
in a first step, one half of the processes obtain data from the other half and applies the
associative operations. Since the contributions of the second half has now been taken into
account, we can repeat the procedure with the first half, leaving us with only a quarter
of the processes. We again find that dlog2me operations are sufficient to combine data
from m processes.

Typical applications are the computation of inner products

for(i=start; i<end; i++)

sum_local += x[i] * y[i];

91

MPI_Reduce(&sum_local, &sum, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);

or of maximal runtimes

time_local = MPI_Wtime();

/* ... do something ... */

time_local = MPI_Wtime() - time_local;

MPI_Reduce(&time_local, &time, 1, MPI_DOUBLE,

MPI_MAX, 0, MPI_COMM_WORLD);

If we consider Krylov methods like the conjugate gradient iteration, it would be useful
to have the result of the reduction operation available in all processes instead of just the
root:

for(i=start; i<end; i++)

sum_local += x[i] * y[i];

MPI_Allreduce(&sum_local, &sum, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);

Example: Clustering The tree algorithm for evaluating non-local potentials and forces
relies on a decomposition of space into boxes. If we want to parallelize this algorithm,
we can assign one box to each process, since this will reduce the interactions between
processes and therefore the necessary amount of communication.

We can approach this task by first locally sorting the points into boxes, exchanging
information about the size of these boxes, and finally gathering the points for each box in
the responsible process. For the sake of simplicity, we consider only the one-dimensional
case in this example, i.e., point coordinates are just one double variable.

We assume that each process has a certain number of points, not necessarily corre-
sponding to “its” box. In a first step, we sort these points into the available boxes and
obtain three arrays: ny contains the number of points in each box, y contains the points,
ordered by box, and yoff contains the offset for each box in y.

We use a collective all-to-all operation to let each process know how many points in
“its” box the other processes have:

nx = (int *) malloc(sizeof(int) * size);

MPI_Alltoall(ny, 1, MPI_INT,

nx, 1, MPI_INT, MPI_COMM_WORLD);

92

This operation ensures that in process i, the value ny[i] of process j can be found in
nx[j]. In our case, nx[j] is the number of points presently in process j that belong in
the current process’s box.

Now we can compute the total number of points in “our” box and offsets to the final
array:

xoff = (int *) malloc(sizeof(int) * size);

xoff[0] = 0;

for(j=1; j<size; j++)

xoff[j] = xoff[j-1] + nx[j-1];

m = xoff[size-1] + nx[size-1];

We allocate the required storage and use the variable-length all-to-all operation to gather
the points from the other processes:

x = (double *) malloc(sizeof(double) * m);

MPI_Alltoallv(y, ny, yoff, MPI_DOUBLE,

x, nx, xoff, MPI_DOUBLE, MPI_COMM_WORLD);

Now x contains all points in “our” box, first the ones from process 0, followed by those
from process 1, and so on.

One-sided communication So far, communication via MPI required the sending and
the receiving process to cooperate. In some situations, this poses a major difficulty, since
the sender has to predict which data the receiver will need.

As an example, consider the evaluation of the potential in the tree algorithm: if we
want to evaluate at a point x for a cluster s that is stored in another process, we have to
obtain information on this cluster, check the admissibility condition, and decide whether
we want to evaluate directly or switch to the sons. It can be hard for the process owning
s to predict what “our” process will do.

This problem is solve by the one-sided communication operations introduce in version
2 of the MPI standard: all processes in one communicator collectively define windows
into their own address spaces: a double array of size n could be made available using

MPI_Win_create(a, n*sizeof(double), sizeof(double), MPI_INFO_NULL,

MPI_COMM_WORLD, &window);

The third argument is the stride of the array, and using sizeof(double) allows us to
use array indices as in C.

Since the creation of an MPI_Win object is a collective operation, the variable window

is now available in all processes.
In order to read the entries a[5], a[6] and a[7] of process i into an array b, we use

MPI_Get(b, 3, MPI_DOUBLE, i, 5, 3, MPI_DOUBLE, window);

We can also write four entries of c into a[10] to a[13] by using

93

MPI_Put(c, 4, MPI_DOUBLE, i, 10, 4, MPI_DOUBLE, window);

Before these operations, we have to synchronize the windows in the different processes
by calling MPI_Win_fence:

MPI_Win_create(a, n*sizeof(double), sizeof(double), MPI_INFO_NULL,

MPI_COMM_WORLD, &window);

MPI_Win_fence(0, window);

MPI_Get(b, 3, MPI_DOUBLE, i, 5, 3, MPI_DOUBLE, window);

MPI_Put(c, 4, MPI_DOUBLE, i, 10, 4, MPI_DOUBLE, window);

MPI_Win_fence(0, window);

94

	Simulations based on ordinary differential equations
	Timestepping for ordinary differential equations
	Timestepping methods for special applications

	Higher-order methods
	Higher-order methods
	Runge-Kutta methods and multi-step methods

	Partial differential equations
	Finite difference methods for partial differential equations
	LR decomposition and BLAS
	Method of lines for the heat equation and the wave equation

	Iterative and semi-iterative solvers
	Iterations
	Krylov methods for linear systems of equations

	Algorithms for large systems
	Multigrid methods
	Non-local force fields

	Shared-memory parallelization
	Multithreading and OpenMP
	Tasks

	Vectorization
	Vectorization
	Explicit vectorization

	Computing with graphics cards
	Computing with graphics cards using CUDA
	Streams, blocks, and shared memory

	Distributed computing
	Message passing and MPI
	Collective communication

