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Abstract: In this paper we propose a robust approach for automatic 
3d model acquisition of sewer shafts from survey videos. Images are 
captured by a specific camera setup which is composed of a 
downward-looking fisheye-lens camera while lowering it into the 
shaft. Additionally, an inertial sensor measures rotation around the 
viewing axis. Our approach is based on Structure from Motion 
adjusted to the constrained motion and scene geometry, and 
measures the profile of the shaft using robust 2d shape recognition 
techniques. Global bundle adjustment is avoided by applying a 
simple and fast geometric correction of the computed 3d 
reconstruction which is also capable of handling inaccuracies of the 
intrinsic camera calibration parameters. An implementation of our 
method has been evaluated extensively with real data. Furthermore, 
we have proposed modifications of our so far off-line 
implementation to approach real-time reconstruction which can be 
applied during on-site inspection. 

1 Introduction 

Automatic 3d reconstruction from video and sensor data is a very important 
topic of research in photogrammetry and computer vision, and has been 
largely studied. Recent systems are capable of real-time reconstruction by 
executing time-consuming parts in parallel on the GPU. While different 
approaches exist - including systems using active sensors such as laser 
scanners, sonar, or recently time-of-flight cameras - purely visual methods 
are still interesting to enhance existing systems where video is generated as 
a byproduct of manual inspection, and to reduce production costs. 



An interesting application for 3d reconstruction is the support of sewer and 
sewer shaft inspection systems. Remotely controlled inspection devices 
such as mobile robots equipped with cameras and sensors are commonly 
used for this task since the concerning structures are often not directly 
accessible for humans or access is difficult to achieve. Since regular 
inspection of manholes and sewer shafts is required by law, there is a 
demand for commercial systems for this special application. Conventional 
sewer inspection systems are remote-controlled and capture visual data 
which is analyzed by experts. In order to facilitate the surveillance process, 
commercial sewer inspection systems are required to measure the 3d 
geometry of the scene automatically which can also be used for later 
visualization. In this paper we present a robust approach for automatic 3d 
reconstruction of sewer shafts using a specific camera setup which is built 
and delivered by our industry partner IBAK Helmut Hunger GmbH & Co. 
KG, and is in use for sewer shaft inspection at several locations. 

1.1 Previous and Related Work 

3d scene reconstruction from video is commonly solved by Structure from 
Motion (SfM) which simultaneously estimates the camera motion and 
sparse scene structure from corresponding points in subsequent camera 
images [HZ03]. Recently there has been a lot of work on porting computer 
vision algorithms to the GPU, resulting in near real-time SfM 
implementations. Accurate reconstruction demands though for a global 
optimization of the scene geometry and camera parameters as a final step, 
most often by bundle adjustment which is very time-consuming [TMH99]. 

While the literature about SfM in general is abundant, there has also been 
some previous work focusing explicitly on the 3d reconstruction of sewers. 
An early idea for recovering shape and camera pose relative to the pipe axis 
from sewer survey videos was presented in [CPT98]. Kannala et al. 
considered an approach for automatic 3d model acquisition from video 
sequences captured by a calibrated fisheye-lens camera moving through a 
sewer pipe [KBH08]. They recover camera positions and scene structure by 
computing calibrated multi-view tensors for image sub-sequences and 
merging the results hierarchically, which results in a point cloud 
approximating the scene structure as an initial 3d model. This approach 
suffers yet from error accumulation and sensitivity to inaccurate camera 
calibration resulting in bent and conical pipe reconstructions which are 
known to be straight. Our problem formulation is slightly different since we 
aim to measure the shape of a shaft from a hanging camera as described in 
the next section. 



1.2 Problem Specification and Setting 

A sketch of the sewer inspection setup as well as a picture of the 
commercial system provided by our industry partner is shown in fig. 1: A 
fisheye-lens camera is lowered vertically into a sewer shaft which is 
specified to be vertical with arbitrary basic shape, but often rectangular 
shafts or shafts with elliptical profile. Color images of size 1040×1040 pel 
are captured in fixed translation intervals which can be measured accurately 
from the feed of the conducting cable. In the given setting, the camera 
moves up to 35 cm/s and captures images with 7 Hz every 5 cm. A flash 
ensures sharp images within in the shaft (see fig. 2). Additional, an inertial 
sensor is mounted to the camera which measures roll rotation around the 
viewing axis for each image to compensate this rotation later in the images. 
While it is assumed that the camera is looking approximately along the axis 
of the shaft, the exact position of the camera is unknown. The camera might 
also oscillate around the cable axis. The task is to classify and measure the 
cross-sectional shape of the shaft at different depths robustly and obtain an 
approximate 3d model of the shaft by merging profiles from subsequent 
cross-sections appropriately. We approach this problem by designing a 
robust SfM pipeline which is presented shortly in the following. 

Figure 1: IBAK PANORAMO® SI and schematic setup for sewer shaft inspection 
 
 

 



1.3 Our Approach 

The main goal of our approach is to exploit knowledge about scene 
geometry and camera motion to constrain the reconstruction process in 
order to stabilize the algorithm. Computed camera poses and sparse scene 
structure are used to measure shaft profiles at different depths, classify them 
as appropriate 2d shapes, and build a 3d model by connecting shapes from 
subsequent cross-sections which can be visualized (see fig. 3) or used for 
further manual measurements. A crucial contribution is a novel method for 
global optimization of the resulting geometry using a computationally very 
efficient method based on knowledge about the camera trajectory rather 
than using classical bundle adjustment. We further explore possibilities to 
parallelize parts of the algorithm and execute them on the GPU such that 
near real-time 3d reconstruction on site will become feasible. 

Figure 2: Input images captured by a fisheye-lens camera lowered into the shaft 

2 Our Approach to 3D Shaft Reconstruction 

The main pipeline of our approach is composed 
of the following steps which will be discussed 
in detail in the following sections (see fig. 4): 
• Preprocessing: Cylinder-mapping of input 
images, registering images using the input of an 
additional rotation sensor 
• Structure from Motion: Detection and 
tracking image points with adaptive prediction, 
simultaneous reconstruction of sparse scene 
geometry and camera motion 
• Post-processing: Global optimization of the 
scene geometry and camera path 
• 3d model creation: Shape classification of 
cross-sections, creation of 3d model 

 
Figure 3: Resulting 3d 
model of sewer shaft 



Figure 4: Overview of the main processing pipeline of our algorithm. Input images 
and rotation sensor data are preprocessed by an input thread. Computation of 
sparse scene structure and camera motion is done by a concurrent thread. Finally, 
the reconstruction is globally optimized and cross-sectional shapes are identified. 
Potential computational speedup is denoted by GPU and PR (see sec 2.6). 



2.1 Camera Model 

Since we use fisheye-lens cameras with minimal radial distortion, the image 
formation process can be modeled by a simple equiangular spherical 
mapping of image points (u,v) to 3d rays (φ,θ) within the camera coordinate 
frame. The mapping depends only on the principal point (pu,pv) and radius r 
of the 90 degree circle within the camera image. We assume the cameras to 
be calibrated but aim at high tolerance against calibration inaccuracies. 

2.2 Image Preprocessing 

Although existing SfM approaches 
detect and match prominent image 
points in the fisheye images directly, 
we showed in [EKR09] that for the 
specific scene geometry, point 
tracking benefits significantly from 
mapping the ring-shaped region of 
interest in the images to cylinder 
coordinates first, approximating an 
image of the unwrapped local shaft 
surface (see fig. 5). Rotation around 
the viewing axis is compensated 
using the input of the rotation sensor. 

 

 
Figure 5: Fisheye image with region of 

interest and cylinder-mapped image 

2.3 Reconstruction of Camera Poses and 3D Points 

Structure from Motion (SfM) computes the camera positions and sparse 
scene geometry from image point correspondences between subsequent 
images. Once correspondences have been computed, the initial step is to 
exploit the epipolar geometry between the first image pair to compute the 
relative pose up to scale and triangulate 3d points. Afterwards, the pose is 
computed by tracking 2d/3d correspondences and triangulating new 3d 
points from 2d/2d correspondences on the fly. 3d points that are visible in 
multiple images are tracked further, and their positions are updated with the 
most recent camera pose via an Extended Kalman filter [JU97] in order to 
increase accuracy. In case that the SfM procedure fails due to bad visibility 
conditions, abruptly changing scene geometry or computational errors, the 
algorithm is reinitialized from 2d/2d correspondences. Image point tracking 
is done in the rotation-compensated cylinder images using the KLT feature 



tracker [TK91] modified for brightness invariance. Since the distance bet-
ween projections of the same 3d point in subsequent images is rather large 
(up to 50 pel), 2d positions must be predicted appropriately. Figure 6 shows 
the average offset between corresponding 2d points in subsequent images. 
Apparently, optical flow in the cylinder-mapped images is mainly restrained 
to the x-axis. We extend feature tracking by an adaptive row-wise prediction 
which is initialized by a row-scan for the best match for each image point. 

Figure 6: Mean and standard deviation of distance between 2d points in subsequent 
cylinder-mapped images of size 256×512 depending on image row and column 

2.4 Global Optimization of 3D Reconstruction 

While the final step in SfM is most commonly a global optimization of all 
2d/3d correspondences using the computationally very expensive bundle 
adjustment method, we developed a very simple global correction of the 3d 
reconstruction and camera motion based on knowledge about the motion. 
Since the camera is lowered into the shaft hanging on a cable without  
lateral forces, the average camera path is known to approximate the vector 
of gravity. Additionally, the distance between subsequent camera positions 
along the vector of gravity is approximately known from the cable feed (ca. 
5 cm/frame). 

Due to camera calibration inaccuracies and error accumulation during the 
SfM procedure, the resulting average camera trajectory appears to be a 
curve with increasing or decreasing velocity. Hence the reconstructed shaft 
geometry is bent and bulged which is also noted in related work [KBH08]. 
We use both camera motion constraints to compute a non-linear mapping 
from the estimated average camera trajectory to the z-axis with even 
spacing between camera centers along the z-axis. Cameras and 3d points are 
then geometrically corrected by this mapping as shown in fig. 7. For the 
details of the correction algorithm see [EKR09]. 



Figure 7: Camera positions Ci, average camera path P(t), and reconstructed 3d 
points X before (left) and after global geometric optimization (right). P(tX) denotes 
the orthogonal projection of X onto P(t) which is corrected by a local scale λk, and 

repositioned at the z-axis with respect to its previous distance to P(t) (see [EKR09]). 

2.5 Classification of Cross-Sectional Shapes 

After 3d reconstruction and global optimization of 3d points and cameras 
poses, the cross-sectional shapes of the shaft at the camera locations is 
estimated by fitting instances of different 2d shape classes to the ortho-
projection of 3d points within ±2.5cm range with respect to the z-axis 
robustly using a RANSAC approach [FB81]. The score for shape selection 
is computed from the number of RANSAC inliers and a penalizing term for 
the change of the shape class with respect to the previous cross-section. 

2.6 Real-Time 3D Reconstruction 

Since our original approach was intended for offline application, run-time 
was no crucial issue for our implementation. In [EKR10] we performed a 
time-budget analysis, identified time-expensive steps of our algorithm and 
proposed modifications to approach a real-time method which can be used 
online within approximately the same frame rate as image capturing (7 Hz). 
Feature detection and matching appeared to be the major time-consuming 
subroutines of our algorithm. To approach real-time performance, we 
integrated the GPU KLT tracker implementation by Zach et al. [ZGF08] 
which performs on 512×1024 pel images with >50Hz. Robust estimation of 
camera poses and cross-sectional shapes is another bottleneck in our 
pipeline since many iterations must be evaluated when the data has 
significant outlier rates as in our case. The traditional RANSAC scheme 
[FB81] can be replaced by similar robust estimation schemes designed for 
real-time application such as the preemptive RANSAC scheme proposed by 
Nistér in [Ni05] which is expected to provide a speedup of about 50%. 
Nevertheless, global optimization as described in sec. 2.4 cannot be applied 
as a single post-processing step in an online approach but must be repeated 
at certain intervals during reconstruction  (e. g. every 10 frames). 



3. Experiments and Results 

An implementation of our approach in C++ has been tested extensively with 
a set of 44 real video sequences provided by our industrial partner using the 
camera setup shown in fig. 1. The observed shafts show a great variety in 
depth, diameter and shape. To evaluate the results, the cross-sectional 
shapes  of the shafts were manually measured and labeled. In the following, 
we will present the results for shape measuring accuracy, robustness against 
calibration errors, and the runtime of the offline and online approaches. 

3.1 Evaluation with Real Data 

We applied our implementation to 57 subsequences of the test set consisting 
of 28 up to >300 images, and compared the results from shape classification 
and measuring with the manually measured ground truth. The results are 
shown in fig. 8. For each section, the average diameter estimation error and 
the standard deviation is shown. The average relative error is ca. 1-2% 
which corresponds to an absolute error of ca. 2 cm in diameter resp. lateral 
length. Note that the last 3 sequences have in fact pulvinate rectangular 
shape. Our approach failed for a total of 5 reference sequences. 3 sequences 
that are not shown in fig. 8 refer to shafts with pentagonal shape. The other 
sequences showed base rooms with very poor vision and strong reflections 
on the ground. Since the reference data does not pay attention to possible 
local deformations of the shafts, the comparison has to be interpreted rather 
as a verification of our approach than as an exact evaluation of accuracy. 
Note also that geometric correction stabilizes the estimation and contributes 
to the accuracy of the measurement significantly.  

Figure 8: Accuracy of shaft diameter estimation for 57 test sequences  



3.2 Robustness of our Approach 

As described in sec. 2.4, the reconstruction suffers significantly from 
inaccuracies of the intrinsic camera calibration resulting in systematic 
errors. We showed that the proposed global optimization method is capable 
of compensating such effects largely as shown in fig. 9 while having very 
low computational demands (see table 1). 

Figure 9: Results for shaft diameter estimation in sequence no. 8 with varying focal 
length estimates f without (top) and with global geometric correction (bottom). The 
deviance over time is reduced significantly (note the different scales of the graphs). 

3.3 Runtime Comparison of Offline and Real-Time Approach 

We measured the runtimes of our implementation for 49 test sequences 
consisting of 28-390 images each (ca. 4800 images in total) and compared 
them with the expected times of the modified online approach proposed in 
sec. 2.6 . Table 1 lists the average times consumed by different subroutines 
of both approaches. While the offline algorithm shows an average frame 
rate of 2.4 Hz, we approach the required limit of 7 Hz given by the image 
capture rate of the camera setup in the modified algorithm. 

4. Conclusion 

We have proposed a robust practical approach for automatic 3d 
reconstruction of sewer shafts using a fisheye-lens camera supported by a 
rotation sensor. Our approach overcomes the problems determined by 
similar works considering the problem of building 3d models for sewerage, 
such as bent or conical reconstructions and restriction to elliptical profiles 



Time/frame for step Offline approach Online approach 
Image preprocessing 120.4 ± 14.8 ms 47.5 ± 8.0 ms 
KLT tracking (init.) 431.8 ± 181.5 ms 46.1 ± 1.5 ms 
KLT tracking 152.1 ± 43.9 ms 15.1 ± 1.1 ms 
Pose estimation (init.) 196.4 ± 69.1 ms < 100 ms 
Pose estimation 55.9 ± 26.5 ms < 30 ms 
3d triangulation/update 45.4 ± 18.6 ms 45.4 ± 18.6 ms 
Geometric correction 1.3 ± 0.4 ms 6.8 ± 1.6 ms 
Shape estimation 8.0 ± 2.2 ms < 5 ms 
Total runtime 410.1 ± 168.8 ms < 140 ms 

Table 1: Runtime comparison between offline and online approach (note that the 
time-expensive initialization steps are performed only 2-3 times per sequence) 

 

[KBH08]. An implementation of our approach is used successfully in 
practical applications as part of a commercial software for the widely used 
PANORAMO® SI system (see fig. 1) delivered by our industry partner 
IBAK Helmut Hunger GmbH & Co. KG. Our approach has proved useful 
in practical evaluations, for example done by the Göttinger Entsorgungs-
betriebe [BFG09]. Furthermore, we have analyzed the runtime of our imple-
mentation and adopted recent GPU implementations of computer vision 
algorithms and real-time techniques for robust estimation to speed up time-
expensive subroutines in order to approach application on site. 
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