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Abstract. Imaging systems consisting of multiple conventional cameras
are of increasing interest for computer vision applications such as Struc-
ture from Motion (SfM) due to their large combined field of view and
high composite image resolution. In this work we present a SfM frame-
work for multi-camera systems w/o overlapping camera views that in-
tegrates on-line extrinsic camera calibration, local scene reconstruction,
and global optimization based on combining hand-eye calibration meth-
ods with standard SfM. For this purpose, we propose a novel method for
extrinsic calibration based on rigid motion constraints that uses visual
measurements directly instead of motion correspondences. Only a single
calibration pattern visible within the view of one camera is needed to
provide an accurate reconstruction with absolute scale.

1 Introduction

During the recent years, camera systems with large visual field coverage have
proved useful to solve a variety of practical computer vision problems such as
surveillance tasks, pose tracking, scene reconstruction, and Augmented Reality.
Omnidirectional cameras with a 360◦ field of view in the horizontal plane are
commonly used in robotics for visual odometry and simultaneous localization
and mapping, e. g., for advanced driver assistant systems, autonomous vehicle
navigation, and urban scenes modeling, while wide-angle fisheye lens cameras
are often used for panorama imaging, edificial inspection, and site measuring.

While omnidirectional cameras made up from specific lenses or cameras imag-
ing mirror surfaces are still very common for these tasks, rigs composed of mul-
tiple off-the-shelf cameras have gained popularity during the recent years. Ma-
jor advantages of such devices are often lower costs, flexible configuration, less
complex mathematical models and intrinsic calibration, and considerably higher
resolution of the virtual composite field of view. In order to maximize the visual
field it is beneficial to assemble the individual cameras so that their fields of view
have minimal overlap. However, extrinsic camera calibration (i. e., determining
the locations and orientations of all cameras within a common reference coordi-
nate frame) is complicated by this setup since conventional calibration methods
such as [26] rely on jointly observed patterns or objects with known geometry.

Previous Work. Common approaches for extrinsic multi-camera calibration with-
out overlapping views require very specific calibration objects such as large pat-
terns [15] or planar mirrors [13, 11, 21] to supply global image correspondences.
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Finding correspondences between cameras over time during motion of the rig [9]
poses difficult matching problems. Also, all these methods can be impractical due
to occlusions or large camera offsets. Attempts based on per-camera image or
pose correspondences only were first proposed in [3] for cameras with coinciding
projection centers and in [5] for general setups. In [7], a flexible method for extrin-
sic camera calibration from rigid motion constraints was described that utilizes
simultaneous Structure from Motion (SfM) to estimate camera motion corre-
spondences. This approach – denoted as eye-to-eye calibration here – is based
on the classical hand-eye calibration problem from the robotics community [25],
in particular on extended methods using SfM for camera localization [1]. Since
publication, it has been developed further, most notably towards vehicle-based
camera systems [20], and improved by global optimization using joint bundle
adjustment [14] or including partial rigid motion constraints in the SfM step [6].

Our Contribution. In this paper we will propose a multi-camera SfM pipeline
integrating the aforementioned approaches to provide a reconstruction with ab-
solute scale from rigidly coupled cameras without overlapping views with known
intrinsics but a priori unknown extrinsic parameters. Only a single calibration
pattern visible for the first camera is needed. The eye-to-eye calibration prob-
lem is solved with a novel method minimizing image errors instead of motion
differences and is further refined via the bundle adjustment approach from [14].

2 Rigidly Coupled Motion Constraints

Each pose transformation T ∈ SE(3) is described by a rotation matrix R ∈
SO(3) and translation vector t ∈ R3. Rotations with angle α around axis r ∈ S2

are parametrized by unit quaternions q ∈ S3 in the following (see [24], Sec. 2.4):

q = (q, q) = (sin(α2 )r, cos(α2 )) and Rq = (q2 + 1)I + 2q[q]× + 2[q]2× (1)

Given n+ 1 rigidly coupled cameras at m+ 1 different positions as illustrated in
Fig. 1, the relative coordinate transformations Ri

k, t
i
k for the i-th camera at the

k-th position with respect to the reference pose at k = 0 (“local” measurements)
are given by some pose measuring process. Denoting the reference camera by
i = 0, the eye-to-eye transformations ∆Ti,∆λi describe the coordinate transfer
from the i-th camera to the reference camera for each i = 0, . . . , n. Due to the
rigid coupling, for each k = 0, . . . ,m holds:

R0
k∆Ri = ∆RiR

i
k and R0

k∆ti + t0
k = ∆λi∆Rit

i
k + ∆ti (2)

Each scalar ∆λi > 0 describes an isometric scaling between the local coordinate
frames of the i-th and the reference camera while ∆Ri,∆ti describe the pose of
camera i within its reference coordinate frame. Note that Ri

0 = I, ti0 = 0 for all
i = 0, . . . , n and ∆R0 = I,∆t0 = 0,∆λ0 = 1 are fixed in (2).

If poses of the reference camera are measured within the world coordinate
frame instead, a similar equation is derived:

R̃0
k∆Ri = ∆R̃iR

i
k and R̃0

k∆ti + t̃0
k = ∆λi∆R̃it

i
k + ∆t̃i (3)
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Fig. 1. Overview of coordinate frames and transformations for two rigidly coupled
cameras at reference location and k-th location as used in eye-to-eye SfM.

where ∆T̃i = T̃0
0∆Ti describes the eye-to-world transformation (in accordance

to the hand/eye and world/base calibration problem from robotics). To distin-
guish local poses and 3d points from measurements within the world coordinate
frame (“global” measurements), we will use a tilde for the latter.

Partial Rigid Motion Constraints. Following from (2), all rigidly coupled motions
Ri
k, t

i
k with non-zero rotation have the same absolute rotation angle αik and

amount of translation along the rotation axis pik = ri Tk tik (see [4], Sec. 4.1). Using
the latter constraint, the scaling ∆λi can be derived for non-planar motion as
∆λi = p0

k / p
i
k for any pose with R 6= I and pik 6= 0. Both constraints can be used

to robustify simultaneous SfM for rigidly coupled cameras as described in [6].

Geometric Eye-to-Eye Calibration. Similar to hand-eye calibration where the
reference camera is replaced by a robotic gripper providing absolute poses, (2)
can be solved for the eye-to-eye transformation parameters from m ≥ 2 motion
correspondences with sufficient rotation and translation and distinct rotation
axes. A standard approach is to solve the first part of (2) for ∆Ri first, e. g.,
using the unit quaternion parametrization [7] (solved via SVD):

min
∆qi

m∑
k=0

‖q0
k ·∆qi −∆qi · qik‖2 s. t. ‖∆qi‖ = 1 (4)

Then solve the linear equation system resulting from the second part of (2) for
∆ti,∆λi and refine all parameters jointly via nonlinear optimization [23] (using
the reduced unit quaternion parametrization from [24] to avoid constraints):

min
∆θi

m∑
k=0

drot(R
0
k∆Ri,∆RiR

i
k)2 + dpos(R

0
k∆ti + t0

k,∆λi∆Rit
i
k + ∆ti)

2 (5)
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where ∆θi are the eye-to-eye transformation parameters describing ∆Ri,∆ti,∆λi
for the i-th camera, and drot, dpos are appropriately weighted error measures be-
tween rotations (e. g., quaternion distance or residual angle measure d∠) and
translations (e. g., Euclidean distance). This approach is denoted as geomet-
ric eye-to-eye calibration (E2E-geom) in the following since the error function
(5) describes differences between pose transformations. As pointed out in [23],
weighting of the rotational and translational error terms has a crucial impact
on the estimation results. The authors advise to use statistical weights derived
from the input pose accuracy, accessed for instance via covariance propagation
from the prior pose estimation process.

3 Integrating Eye-to-Eye Calibration into SfM

In the following we describe how to integrate eye-to-eye calibration into the
classical SfM pipeline and provide an algorithm for incremental eye-to-eye cali-
bration of multi-camera systems based on errors in the image domain, relieving
the problem of weighting geometric error terms.

Pose Transfer. Given an estimate for the k-th pose of the reference camera
R0
k, t

0
k relative to the reference pose, the corresponding pose for the i-th camera

within its reference frame is inferred from (2) as:

Ri
k = ∆RT

i R0
k∆Ri and tik = ∆λ−1

i ∆RT
i

(
(R0

k − I)∆ti + t0
k

)
(6)

where R0
0 = I, t0

0 = 0 are fixed. The corresponding global pose given the initial
global pose R̃0

0, t̃
0
0 of the reference camera is inferred by:

R̃i
k = R̃0

0R
0
k∆Ri and t̃ik = R̃0

0(R0
k∆ti + t0

k) + t̃0
0 (7)

Visual Eye-to-Eye Calibration. Given Ni 3d points for the i-th camera within its
local coordinate frame and corresponding projections xik,` of the `-th 3d point

Xi
` into the k-th image with known camera functions Ki, the i-th eye-to-eye

transformation is obtained by minimizing the reprojection error using the pose
transfer function (6):

min
∆θi

m∑
k=0

Ni∑
`=1

V ik,` di(x
i
k,`,R

i T
k (Xi

` − tik))2 (8)

where V ik,` ∈ {0, 1} describes the visibility of 3d point Xi
` in the k-th image. The

reprojection error is described by a generic function di : R2×R3 → R for the i-th
camera which is commonly chosen as di(x,X) = ‖x−Ki(X)‖ assuming that the
camera function Ki is known (e. g., from previous intrinsic calibration). For 2d
point observations x with non-isometric errors described by covariance matrices
Σx, the Mahalanobis distance ‖x− Ki(X)‖Σx can be used instead. This novel
approach will be denoted as visual eye-to-eye calibration (E2E-vis). Note that
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the scaling parameter ∆λi can be encoded implicitely in (8) by parametrizing
the scaled rotation matrix ∆λ−1

i ∆Ri used in the prediction function (6) with
a non-unit quaternion ∆qi, i. e. ∆λ−1

i ∆Ri = R∆qi with ∆λ−1
i = ‖∆qi‖2 as

defined in (1), leading to an unconstrained optimization problem.

Eye-to-Eye Bundle Adjustment. Including 3d points and reference camera poses
within the world coordinate frame according to (7) as parameters provides the
eye-to-eye bundle adjustment (E2E-BA) problem similar to [14]:

min
∆θi,θ̃0,...,θ̃m
χ̃i
1,...,χ̃

i
Ni

m∑
k=0

∑
j∈{0,i}

Nj∑
`=1

V jk,` dj(x
j
k,`, R̃

j T
k (X̃j

` − t̃jk))2 (9)

where θ̃k are the k-th global pose parameters for the reference camera and χ̃i`
are the parameters of the `-th 3d point X̃i

` for the i-th camera transformed into

the world coordinate frame, initialized by X̃i
` = R̃0

0(∆λi∆RiX
i
` + ∆ti) + t̃0

0.
The scaling parameter ∆λi is dropped from ∆θi since it is encoded by the
3d points. Note that 3d points for the reference camera are already expressed
within the world coordinate frame associated with some calibration object here.
Gauge freedoms are avoided since the 3d points of the reference camera are
fixed. Depending on the given application, the E2E-BA error function can be
modified in order to fix either all 3d points (calibration objects used for both
cameras) or none (SfM used for both cameras). The first case is equivalent to
adding the reference camera poses as parameters to E2E-vis, in the latter case
gauge freedoms must be taken care of (in general by fixing T0

0 = I and ‖t0
1‖ = 1).

Pairwise E2E-BA as defined in (9) can be extended to cover several cou-
pled cameras at the same time in a straightforward way, leading to large-scale
sparse optimization problems. Common sparse bundle adjustment implementa-
tions such as sba cannot be applied to solve (9) since the Jacobian matrix of
the error function has not the distinct block structure needed to compute the
Schur complement [17], due to the fact that ∆θi appears in all residuals for
the i-th camera. We use sparseLM instead, a sparse implementation of the
Levenberg-Marquardt algorithm [16].

Eye-to-Eye Structure from Motion. The proposed algorithm for interactive on-
line eye-to-eye calibration via SfM (E2E-SfM) is outlined as follows. First, cam-
era functions K1, . . . ,Kn are obtained by individual intrinsic camera calibration
(e.g., following [26]). A calibration object (e. g., a checkerboard pattern) is placed
within viewing range of the reference camera. Images of the calibration pattern
are captured with the reference camera during motion of the camera rig, and
images for the i-th camera are captured simultaneously (start with i := 1):

• Add initial keyframe with poses T0
0 = I and Ti

0 = I.
• Compute global reference pose T̃0

0 for reference camera from 2d/3d matches.
• Detect feature points in reference image of the i-th coupled camera.
• For each subsequently captured image:
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• Set k := number of keyframes for each camera.
• Compute current global pose T̃0

k for reference camera from 2d/3d matches.
• Find feature matches from reference to current image of i-th camera.
• If k = 1 (→ SfM initialization stage):
• If ‖t0

1‖ = ‖(R̃0
0)T (t̃0

1 − t̃0
0)‖ > tmin:

• Estimate essential matrix Ei from 2d/2d correspondences and
initialize SfM for i-th camera (see [10], Part II).

• Refine and scale relative pose Ti
1 derived from essential matrix

Ei using partial rigid motion constraints as described in [6].
• Add keyframe with poses T0

1 = (T̃0
0)−1T̃0

1 and Ti
1.

• Else (→ SfM tracking stage):
• Estimate current pose Ti

k for i-th camera from 2d/3d matches.
• Refine pose Ti

k using partial rigid motion constraints [6].
• Triangulate new 3d points for i-th camera from 2d/2d matches.
• If d∠(R̃0

k−1, R̃
0
k) > αmin and ∠(r̃0

k−1, r̃
0
k) > βmin:

• Add keyframe with poses T0
k = (T̃0

0)−1T̃0
k and Ti

k.
• Compute initial eye-to-eye transformation ∆Ti from correspond-

ing motions in keyframes via E2E-geom.
• Refine eye-to-eye transformation ∆Ti from 2d/3d matches in

keyframes via E2E-vis.
• Compute E2E-BA with fixed 3d points for the reference camera.

• If k = kmax (or other termination criterion holds):
• Clear keyframes and start over with i := i+ 1 unless i = n holds.

The main pipeline is illustrated in Fig. 2. SfM requires some minimal initial
translation defined by the threshold tmin (here: tmin = 25 cm). Keyframes for
eye-to-eye calibration are added according to the criteria suggested in [1] for
on-line hand-eye calibration, i. e., sufficiently large rotation angle and rotation
axis difference w. r. t. the previous keyframe pose using thresholds αmin, βmin

(here: αmin = 10◦, βmin = 15◦). The termination criterion can be based on the
covariance matrix Σ∆θi of the estimated eye-to-eye transformation parameters
∆θi resulting from E2E-BA given some accuracy requirement for the solution, or
maximal keyframe number kmax. Further details on the basic SfM algorithms can
be found in [10]. E2E-BA can be computed in a separate thread for efficiency.

pattern-based pose estimationimages

Structure from Motionimages

postpro-
cessing

eye-to-eye
calibration

eye-to-eye
calibration

global poses + 3d points

local poses + 3d points

eye-to-eye
calibration

eye-to-eye
bundle

adjustment

reference
camera

i-th camera

Fig. 2. Overview of eye-to-eye Structure from Motion pipeline.
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Post-processing. After all eye-to-eye transformations have been estimated, multi-
camera SfM using all cameras jointly as described in [9] or [12] can be applied.
The resulting reconstruction and extrinsic parameters can be optionally refined
via E2E-BA using all coupled cameras at the same time.

4 Tests and Evaluation

4.1 Evaluation of Visual Eye-to-Eye Calibration

First, geometric and visual eye-to-eye calibration as described above were im-
plemented in C/C++ (using MINPACK [18] and sparseLM [16]) in order to
compare both methods with synthetic data. For each test case, Ni random 3d
points with uniform distribution were created in front of 2 virtual cameras with
random spatial arrangement set apart by ∆α1 = 60◦ and ‖∆t1‖ = 25 cm, image
size 800 × 600 px and 60◦ × 46.8◦ field of view (FOV). m random poses of the
reference camera with max. rotation angle αmax = 30◦ and distance dmax = 1 m
w. r. t. the original location were created, providing up to Ni 2d projections into
the virtual image of the i-th camera per keyframe. Zero-mean Gaussian noise
with standard deviation σx was added to all 2d points prior to pose estimation.

In the first test, all 3d points are supposed to be known, resembling the case
of using a calibration object for each camera. In the second test, only 3d points
for the reference camera are known, corresponding to the proposed scenario. In
the third test, all 3d points are assumed unknown (∆t1 can only be recovered
up to scale here). Camera poses are computed from 2d/3d matches for known 3d
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Fig. 3. Evaluation of pose estimation and eye-to-eye calibration accuracy with respect
to number of keyframes m (left column: known 3d points for both cameras [test 1],
middle column: known 3d points for reference camera [test 2], right: known 3d points
for none [test 3]; upper row: rotation errors, lower row: position errors).
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Fig. 4. Evaluation of pose estimation and eye-to-eye calibration accuracy with respect
to 2d point error σx (see Fig. 3 for description).

points (use Ni = 100), otherwise via SfM initialized with the first two keyframes
and extended via triangulation for each subsequent keyframe (use Ni = 1000).

Methods E2E-geom, E2E-vis, and E2E-BA were evaluated for 1000 ran-
dom samples with respect to the number of keyframes m for fixed σx = 1 px resp.
2d point error σx with fixed m = 8. The resulting average pose estimation errors
for both cameras and eye-to-eye calibration errors for all methods are shown in
Fig. 3 and Fig. 4. In all cases, E2E-vis is capable of improving the results from
E2E-geom. This becomes most significant when SfM and absolute pose esti-
mation from known 3d points are combined (2nd test). In general, calibration
accuracy increases with rising number of keyframes and 2d point accuracy.

4.2 Eye-to-Eye Structure from Motion Application

The complete eye-to-eye SfM pipeline including image preprocessing, feature
detection and matching (using methods from the OpenCV library [2]) was eval-
uated with rendered and real image sequences. In order to achieve robustness
against erroneous feature point matches, RANSAC is used in the SfM initializa-
tion and tracking stages, and triangulated 3d points are pruned by evaluating
their reprojection errors using the X84 outlier rejection rule [8].

In the first test, a sequence consisting of 87 images (800× 600 px) viewed by
a virtual rig composed of 4 cameras was rendered (see Fig. 5). The scene size is
8 × 8 × 3 m. Cameras C1 and C2 are yawed 81◦ left and right w. r. t. reference
camera C0, camera C3 is tilted 30◦ upwards. The distance to C0 is 57.4 cm for
C1/2 and 70.1 cm for C3. C0 has 60◦ × 46.8◦ FOV, the other cameras are limited
to 53.1◦ × 41.1◦. SfM initialization succeeded after 8 images. For each camera,
10 keyframes were used for eye-to-eye calibration. The pose estimation errors for
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Fig. 5. Scene and example images of 4 cameras from virtual test dataset.

each camera during eye-to-eye SfM are shown in Fig. 6. While the pattern-based
pose estimation for C0 has constant error, pose estimation errors of C1−3 via
SfM vary depending on the visible scene and motion. However, the plots show
that intermediate rigid motion constraint enforcement is capable of preventing
drift and reducing the average pose estimation error over time. The calibration
error is < 0.3◦ in rotation and 1.1%− 1.7% in translation (Table 1), improving
comparable test results from [21] (∆αerr ≈ 0.8◦, ∆terr ≈ 1.8% for 10 views).
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Fig. 6. Pose estimation errors for virtual test dataset (left: rotation, right: position).

Table 1. Eye-to-eye parameters and calibration results for virtual test dataset Indoor
(rotation angles in XYZ order, symbols with ∗ indicate ground truth values).

∆α∗
x ∆α∗

y ∆α∗
z ∆t∗x ∆t∗y ∆t∗z ∆αx ∆αy ∆αz ∆tx ∆ty ∆tz ∆αerr ∆terr

C1 60◦ 60◦ −5◦ 50 20 −20 60.1◦ 60.0◦ −4.99◦ 49.9 20.8 −20.5 0.07◦ 1.0 cm
C2 60◦ −60◦ 5◦ −50 20 −20 59.8◦ −60.1◦ 4.65◦ −49.5 19.3 −20.4 0.21◦ 0.98 cm
C3 30◦ 0◦ 0◦ 0 −50 −50 30.0◦ −0.01◦ 0.01◦ 0.03 −49.2 −49.9 0.03◦ 0.8 cm

In the second test, a video sequence was captured with a real setup consist-
ing of two Point Grey Grasshopperr (GRAS-20S4C-C) cameras equipped with
Schneider-Kreuznach Cinegon 1.8/4.8 lenses with 70◦ × 56◦ FOV. Camera C1
is mounted approx. 25 cm to the right of C0 and is rotated towards the upper
left direction (Fig. 7). Note that the cameras have partially overlapping fields
of view. However, this is used only for validation of the calibration results. An
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image sequence of 320 images (800× 600 px) captured during handheld motion
was used for the eye-to-eye SfM pipeline, providing 24 keyframes in total.

Fig. 7. Camera setup and example images from real test dataset.

The calibration results are shown in Table 2. For comparison, the results
from classical stereo calibration according to [26] were used instead of ground
truth data. The translational part of ∆T1 differs by 1.4% which is slightly better
than comparable results from [21] (∆αerr ≈ 0.7◦, ∆terr ≈ 1.6% for > 12 views).

Table 2. Eye-to-eye parameters and calibration results for real test dataset Boxes
(rotation angles in XYZ order, symbols with ∗ indicate stereo calibration results).

∆α∗
x ∆α∗

y ∆α∗
z ∆t∗x ∆t∗y ∆t∗z ∆αx ∆αy ∆αz ∆tx ∆ty ∆tz ∆αerr ∆terr

C1 38.5◦ −36.2◦ 22.1◦ 24.8 −8.5 −7.4 38.4◦ −35.9◦ 22.3◦ 24.6 −8.7 −7.2 0.42◦ 0.37 cm

5 Conclusion

In this paper we proposed a Structure from Motion framework with integrated
eye-to-eye calibration that is capable of estimating the extrinsics of a multi-
camera system with non-overlapping views stepwise for each camera with respect
to a designated reference camera capturing images of a default calibration pat-
tern. We proposed a novel method for eye-to-eye calibration (E2E-vis) based on
reprojection errors instead of pose-based error functions as used in existing meth-
ods (E2E-geom) adopted from hand-eye calibration. It was demonstrated that
E2E-vis improves the results from E2E-geom and can be used a preprocessing
step for advanced optimization methods such as eye-to-eye bundle adjustment
(E2E-BA). Accurate calibration results could be obtained in experiments with
both synthetic data and real image sequences.

Future work. A remaining disadvantage of E2E-BA as final optimization step
is the large problem size for systems consisting of several cameras. This prob-
lem could be solved by either pruning the resulting 3d point clouds prior to
joint bundle adjustment or by removing explicit 3d point parameters from the
error function entirely as proposed in [22] for monocular bundle adjustment.
Furthermore, real-time processing of the proposed algorithm should be achieved
by further parallelization and usage of GPU accelerated algorithms as present
in more recent real-time SfM applications such as DTAM [19].
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