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Abstract. Structure from Motion can be improved by using multi-
camera systems without overlapping views to provide a large combined
field of view. The extrinsic calibration of such camera systems can be
computed from local reconstructions using hand-eye calibration tech-
niques. Nevertheless these approaches demand that motion constraints
resulting from the rigid coupling of the cameras are satisfied which is in
general not the case for decoupled pose estimation. This paper presents
an extension to Structure from Motion using multiple rigidly coupled
cameras that integrates rigid motion constraints already into the local
pose estimation step, based on dual quaternions for pose representation.
It is shown in experiments with synthetic and real data that the overall
quality of the reconstruction process is improved and pose error accu-
mulation is counteracted, leading to more accurate extrinsic calibration.

1 Introduction

Multi-camera systems play an important role in computer vision and are used in
various tasks such as object tracking, 3d reconstruction, and Augmented Reality.
Combining cameras with minimal or no shared viewing areas is especially helpful
for Structure from Motion (SfM) applications, i.e. 3d reconstruction of a priori
unknown scenes from video sequences, due to their large combined field of view.
Existing approaches [18, 8, 7] need an accurate intrinsic and extrinsic calibration
of the cameras. While extrinsic calibration is solved in general by matching
features between camera images or using calibration objects that are visible in
all cameras [12, 19], calibration without overlapping views is far less treated in
literature, starting with Caspi & Irani for colocated cameras [1].
It is convenient to reduce this problem to hand-eye calibration [4, 5, 11]. These
approaches – dubbed eye-to-eye calibration in the context of this work – compute
the pose transformation between the cameras from the rigidity constraints on
relative motions of the cameras. Typically, relative poses are computed first for
each camera individually from synchronously captured images using monocular
SfM. Afterwards the relative pose of cameras to each other are recovered from the
rigidi motion constraints by solving the equation AX = XB known from robotic
hand-eye calibration, where A, B are relative pose transformations of the “hand”
– a mobile gripper – and the “eye” – a visual sensor mounted on the gripper – at
the same instant of time and X is the Euclidean transformation from the “eye”
to the “hand” coordinate frame. However, due to noise resp. estimation errors,
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the rigidity constraint between A and B is not satisfied in practice, especially
when the poses are computed by SfM. This constraint violation induces errors
in the calibration step. Lébraly et al. [11] propose to use a bundle adjustment
with minimal parametrization for local camera poses – using the local poses of
a designated master camera for each frame and the time-independent relative
poses between the other cameras and the master camera – as a post-processing
step while computing the initial extrinsic calibration from deficient local poses.

Our Approach. In this work we will integrate the enforcement of rigidity con-
straints into the pose estimation step of multi-camera Structure from Motion,
in contrast to existing approaches which ignore it or try to remedy it after ex-
trinsic calibration, e.g. using global optimization techniques. This is done by
parametrizing motions properly to model the constraints explicitely.
First, we will address the motion constraints on rigidly coupled cameras ex-
plicitely and interpret them geometrically. Since the formulation of these con-
straints depends on the parametrization of the camera poses, we will consider
different suitable parametrizations based on screw motions.
In the main part we will present a multi-camera SfM framework that considers
rigid motion constraints already during intialization and local pose estimation
while the eye-to-eye transformation is yet unknown.
We evaluate the initialization and pose estimation steps of rigidly coupled multi-
camera SfM with synthetic data, rendered and real video sequences using an
implementation of our approach, as well as afterward eye-to-eye calibration.

2 Motion Constraints of Rigidly Coupled Cameras

In the following we will consider N rigidly coupled cameras with local coordi-
nate frames Ck, k = 1, . . . , N , captured at M local poses T`

k with respect to
the reference coordinate frames Ck. The transformation ∆Tk between the local
coordinate frames of the k-th camera and the first camera (master camera) –
denoted as eye-to-eye transformation in the context of this work – satisfies the
rigid motion equation illustrated in fig. 1:

T`
1∆Tk = ∆TkT

`
k (1)

Each T describes a Euclidean transformation consisting of rotation R and trans-
lation t. Hence the rigid motion constraint (1) can be decomposed into a rota-
tion constraint R`

1∆Rk = ∆RkR
`
k and a translation constraint R`

1∆tk + t`1 =
∆Rkt

`
k + ∆tk for rigidly coupled motion pairs (T`

1,T
`
k).

Solving (1) for ∆Tk is called eye-to-eye calibration. Approaches differ mainly by
the motion parametrization. Tsai & Lenz [17] showed that at least two general
motions with different rotation axes are needed to solve this problem inambigu-
ously, independent of the chosen pose parametrization.
The rigidity constraints on local motions of rigidly coupled sensors were de-
scribed within the context of hand-eye calibration by Chen [2] as the congruence
theorem. The constraints include a rotation angle constraint and a constraint on
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the rotation axis and the translation parallel to the rotation axis, referred to as
the pitch constraint in this work. They become obvious when motions are con-
sidered as screw motions: A general motion of a camera with translation t can
be decomposed into a rotation by angle α around a rotation axis r, a translation
pr with p = t>r parallel to the rotation axis r, and a translation u = t − pr
orthogonal to the rotation axis r. This can equally be described by a rotation
by α around a line in space with direction r followed by a slide of length p along
the line (Chasles’ theorem), formulated algebraically either as a screw motion
[2] or equivalently by means of dual quaternions [3].

Rotation Angle Constraint. Given N rigidly coupled local rotations Rk with
rotation angles αk ∈ [0, π] around rotation axes rk, all rotation angles αk must
be equal. It can be easily proved from eq. (1) that the following equivalence is
valid:

R1 = ∆RkRk∆R>k ⇔ r1 = ∆Rkrk and α1 = αk for all 2 ≤ k ≤ N (2)

Hence the local rotation estimation problem for N rigidly coupled cameras can
be reduced to the estimation of N rotation axes rk and a single angle α ∈ [0, π].

Pitch Constraint. Given N rigidly coupled local motions (Rk, tk), the amount
of translation parallel to the rotation axes, the so called pitch pk = t>k rk, must
be equal for all motions. This also follows directly from eq. (1):

t>k rk = ∆t>k (R>1 − I)r1︸ ︷︷ ︸
=0

+t>1 r1 for all 2 ≤ k ≤ N (3)

Hence the local translation estimation problem for N rigidly coupled cameras
can be reduced by N − 1 parameters when the local rotation axes are known.
The pitch constraint holds when the local translations of all cameras have the
same scale. Otherwise, it yields the scalar factor between the coordinate frames
of the cameras, given that the motion is not planar. Assume that all translations
are only known up to scale, i.e t̂k with sk t̂k = tk are given. Then the relative
scale λk = sk

s1
from the k-th to the master coordinate frame is given by:

λk =
t̂
>
1 r1

t̂
>
k rk

and sk = s1λk for all 2 ≤ k ≤ N (4)

2.1 Rigidly Coupled Pose Parametrization

To enforce the rotation angle constraint and pitch constraint by using a common
parameter for rotation angle and pitch respectively, a pose parametrization is
needed that is computationally simple, has minimal redundancy, and explicitely
decouples angle and pitch from the remaining pose parameters. Hence, dual
quaternions provide a natural choice for rigidly coupled pose parametrization.
Quaternions of unit length (see e.g. [10]), represented as 3d-vector/scalar pairs
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q = (q, q), are commonly used for rotation estimation in computer vision and
computer graphics since they provide an efficient and only slightly overparameter-
ized representation, do not suffer from singularities, and are still computation-
ally easy to apply. Related to the angle/axis representation, they also explicitely
state the rotation angle. Dual quaternions q̌ = (q,q′) (see e.g. [3]) provide an
equally elegant way to describe rigid motions in 3d space, closely related to the
screw axis, angle, and pitch of screw motions. The dual quaternion describing a
rotation by angle α around axis r and translation by t is given by the pair:

q =
(

sin(
α

2
)r, cos(

α

2
)
)

q′ =
1

2

(
cos(

α

2
)t + sin(

α

2
)(t× r),− sin(

α

2
)t>r

)
(5)

where q is referred to as the real and q′ as the dual part of the dual quaternion.
The rigid motion of a 3d point X is described by R(q)X + t(q,q′) with:

R(q) = I + 2q[q]× + 2[q]2× t(q,q′) = 2(qq′ − q′q + q × q′) (6)

where [q]× is the skew-symmetric matrix describing the cross product with q.
The space of such dual quaternions is constrained by ‖q‖ = 1 and q>q′ = 0, i.e.
‖q̌‖ = 1. Since q and −q describe the same rotation, we will restrict the real
quaternion part to q ≥ 0. Under this limitation, we conclude from eq. (2) and (3)
that all dual quaternions representing rigidly coupled motions have equal scalar
parts (q, q′), since these only depend on the rotation angle and motion pitch.

Minimal parametrization. Using unit dual quaternions to represent rigidly cou-
pled motion, the rigid motion constraint can be simply enforced via parame-
ter reduction, i.e. using a single parameter pair (q, q′) for the scalar quater-
nion part. Nonetheless, the parametrization is not minimal, so we will need
additional constraints, i.e. unit length constraints ‖q‖ = 1 and orthogonality
constraints q>q′ = 0, which is not recommended for nonlinear optimization.
We consider a minimal parametrization for nonlinear optimization instead. As-
suming w.l.o.g. that rz is the largest absolute element of the rotation axis r
with sign σz, we can enforce the unit quaternion constraint by replacing q with

(qx, qy, σz
√

1− q2x − q2y − q2). This yields a valid parametrization as long as the

rotation is not too small. The orthogonality constraint is enforced by replac-

ing q′ with (q′x, q
′
y,−

qxq
′
x+qyq

′
y+qq

′

σz

√
1−q2x−q2y−q2

). A second strategy is to renormalize the

non-minimal parameters prior to pose evaluation. This is equivalent to using√
1− q2 q

‖q‖ and q′ − q>q′+qq′

q>q
q instead of q and q′. For an extensive review of

minimal rotation parametrization for nonlinear optimization see e.g. [14].

3 Rigidly Coupled Multi-Camera Structure from Motion

In the following we will describe how to enforce rigid motion constraints into
the two main stages of SfM for multiple coupled cameras prior to eye-to-eye
calibration. We will show that the resulting reconstruction yields more consistent
results which will improve the global registration of all cameras.
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3.1 Relative Pose Estimation

Relative pose estimation from two views evaluating the epipolar geometry is
commonly used as the first step in SfM applications (see [6]). Given n corre-
sponding normalized image points xi, x

′
i of 3d points Xi in two camera images

I and I ′ with relative pose (R, t), i.e.x ∼X, x′ ∼X ′ = RX + t, the essential
matrix E can be written as E = R>[t]×. E is a non-zero 3× 3 matrix of rank 2
that satisfies the epipolar constraint (a.k.a. Longuet-Higgins equation [6]):

x>i Ex′i = 0 for all i = 1, . . . , n (7)

An illustration for rigidly coupled cameras is shown in fig. 1.

Fig. 1. Local relative pose estimation from 2d-
2d correspondences x ↔ x′ for rigidly coupled
cameras.

Fig. 2. Local pose estimation from
2d-3d correspondences x ↔ X for
rigidly coupled cameras.

Enforcing the rotation angle constraint. As a first step, the essential matrices
E1, . . . ,EN of all cameras are computed individually from their respective image
pairs using traditional algorithms. They are then decomposed into rotations
R1, . . . ,RN resp. unit quaternions q1, . . . ,qN and translation vectors t̂1, . . . , t̂N
up to individual scales (see e.g. [6]). W.l.o.g. we assume that all ‖t̂i‖ = 1.
The next step is to re-estimate the relative rotations subject to the rotation
angle constraint. A straight-forward approach is to average the scalar parts qk
of all unit quaternions qk resulting in the constrained rotation parametrization
(q, q1, . . . , qN ) with q = 1

N

∑N
k=1 |qi| and re-normalized vector parts qk. This

averaging however does not take the epipolar constraints into account. This can
be done by reformulating eq. (7) in terms of unit quaternions and minimizing
the joint epipolar error function for all cameras at the same time.
Parametrizing rotations by unit quaternions qk = (qk, q) and translations by
unit vectors t̂k, we obtain from eq. (7) for each point correspondence (xk,i,x

′
k,i)

one constraint f epik,i (q, qk, t̂k) = 0 which can be formulated as a cubic equation
of the parameter vector:

f epik,i (q, qk, t̂k) = x>k,iR((qk,−q))[̂tk]×x
′
k,i = 0 (8)

Enforcing all (qk, q) and t̂k to have unit length in nonlinear optimization of
(8) can be achieved by using one of the methods described in 2.1, i.e. minimal
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parametrization of unit quaternions and unit translation vectors, or renormal-
izing quaternions and translations. In this work we minimize the joint error
function

∑N
k=1

∑nk

i=1 f
epi
k,i (q, qk, t̂k)2 using the Levenberg-Marquardt algorithm

[13]. The starting point is given by the averaged unit quaternions.

Enforcing the pitch constraint. Given that the motion is non-planar, we can
rescale all estimated translations t̂k with respect to the master coordinate frame
as described by eq. (4), yielding absolute translations tk that satisfy the pitch
constraint, i.e. p = t>1 r1 = · · · = t>1 rN where rk = qk

‖qk‖ is the rotation axis

of the k-th resulting unit quaternion. The final parameters of the initial camera
poses are then given by (q, q′, q1, q

′
1, . . . , qN , q

′
N ) where the dual quaternion parts

are q′ = − 1
2 (
√

1− q2)p and q′k = 1
2 (qt + t× qk) derived from eq. (5).

3.2 Pose Estimation

After initialization, the local reconstruction part of the SfM algorithm starts,
i.e. local 2d-3d correspondences are tracked within subsequent camera images,
the local camera poses are re-estimated from 2d-3d correspondences, and new 3d
points are computed from 2d-2d correspondences using the current pose. While
any approach could be used for local SfM, we recommend to use an approach
based on dual quaternions for motion representation such as [15] in order to
prevent frequent conversions between different parametrizations. Given n 2d-3d
correspondences (xi,Xi) for an image I such that R>(Xi − t) ∼ xi, the local
camera pose (R, t), should minimize the normalized reprojection error :

f (R, t) =

n∑
i=1

‖P(R>(Xi − t))−P(xi)‖2 (9)

where P : R3 → R2,X 7→ (Xx/Xz, Xy/Xz) denotes the perspective projection.
Pose estimation from local 2d-3d correspondences is illustrated in fig. 2.

Enforcing the rigid motion constraint. Given N rigidly coupled cameras and
nk local 2d-3d correspondences (xk,i,Xk,i)i=1,...,nk

for the k-th camera, the
local poses are first computed from individual monocular SfM, and then con-
verted to the dual quaternion representation (qk, q

′
k, qk, q

′
k)k=1,...,N as described

in sec. 2.1. Similar to the relative pose problem, the rigid motion constraint can
be enforced by simply averaging the scalar parts in the constrained parametriza-
tion (q, q′, q1, q

′
1, . . . , qN , q

′
N ). This parametrization is again not optimal with

respect to the reprojection error, but is instead used as an initial solution for
minimization of the joint error function

∑N
k=1

∑nk

i=1 f
reproj
k,i (q, q′, qk, q

′
k) where

f reprojk,i (q, q′, qk, q
′
k) = ‖P(R(qk,−q)[Xk,i−t((qk, q), (q′k, q′))])−P(xk,i)‖2 (10)

Enforcing the unit length constraint for all dual quaternions in nonlinear opti-
mization of (10) using the Levenberg-Marquardt algorithm is again achieved by
the minimal parametrization discussed in 2.1, or renormalizing the parameters.
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3.3 Registration and Global Reconstruction

As soon as we have computed local poses that are suitable for eye-to-eye calibra-
tion – i.e. the angle between the rotation axes of the first and current motion is
above a threshold θ for each camera [17] – the eye-to-eye transformations ∆Tk

between k-th camera and master camera can be estimated. It is convenient to
use a dual quaternion based approach [3] but any approach could be used.
After eye-to-eye calibration the local 3d reconstructions can be merged into a
global reconstruction, and optimized by a multi-camera bundle adjustment as
described in [11]. This approach refines the reprojection error with respect to 3d
points, master camera poses, and eye-to-eye transformations – ensuring that the
resulting camera poses satisfy the rigid motion constraint.
Afterwards, SfM can proceed using an approach with known eye-to-eye transfor-
mations such as [8] to enhance the stability of the pose tracking. The eye-to-eye
transformations can be further refined over time.

4 Tests and Evaluation

4.1 Relative and Absolute Pose Estimation

First we evaluated relative and absolute pose estimation with and without rigid
motion constraint enforcement (RMCE) for a large number of random configu-
rations (1000/test) for N = 2 cameras with 1 cm distance and 30−120◦ rotation
difference. Gaussian noise with σ ≈ 0.2% image size was added to all points. The
Gold Standard methods were used for decoupled pose estimation [6]. Relative
poses were scaled using the pitch constraint while the master translation length
was fixed to 1 m. Fig. 3 shows that the average estimation error improves for ab-
solute rotation estimation, and in general when the number of correspondences
is < 15. We also conducted tests with increasing number of cameras and minimal
parameters vs. renormalization but the results did not change significantly.

Fig. 3. Average relative/absolute pose error per camera and test, w/o RMCE (upper
black line) and with RMCE (lower red line, dashed lines show standard deviation).
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To evaluate the impact on eye-to-eye calibration, we further estimated M =
3, . . . , 8 poses with and w/o RMCE and computed the eye-to-eye transforma-
tion between N = 2 cameras using the method from [3]. The average results for
1000 random datasets per number of poses are improved as shown in fig. 4.

Fig. 4. Average eye-to-eye calibration error from increasing number of random poses
estimated w/o RMCE (upper black line) and with RMCE (lower red line).

4.2 Structure from Motion with Rendered Video

The full SfM approach from 4.1 (i.e. without bundle adjustment) with and with-
out RMCE is tested first with a rendered image sequence of a scene consisting
of textured boxes. The camera system contains N = 2 cameras that are set
25 cm and 15◦ apart. The motion trajectory covers ca. 1.5 m and 60◦ rotation.
Note that we use a very similar setup as the real scenario in sec. 4.3. Feature
points are detected and tracked in subsequent images using a KLT tracker [16].
Relative pose estimation is performed between the 1 and 21st image, followed by
absolute pose estimation every 20 images. The relative poses are scaled as in the
previous test. Fig. 5 shows that the accuracy of pose estimation is improved by
RMCE, especially pose drift over time is counteracted. Eye-to-eye calibration is
performed afterwards using every 20-th image. The calibration error is improved
from 1.21◦ and 1.9 cm w/o RMCE to 0.49◦ and 1.27 cm for this setup.

Fig. 5. Pose error during SfM w/o RMCE (upper black line) and with RMCE (lower
red line) for a rendered video sequence (total motion covers ca. 1.5m, 60◦).



SfM Using Rigidly Coupled Cameras without Overlapping Views 9

4.3 Structure from Motion with Real Video

A real video sequence was captured with a stereo camera setup consisting of
N = 2 cameras mounted onto a rig with ca. 24.5 cm± 0.8 horizontal offset and
17.2 ± 0.62◦ rotation difference, viewing a box scene similar to the virtual test
case in sec. 4.2 (see example image in fig. 7). Note that we use a setup with
partly overlapping views to recover extrinsics for comparison using a default
stereo calibration approach. The proposed SfM procedure was applied for every
10-th image and eye-to-eye calibration was computed afterwards from every 20-
th estimated local pose pair. The difference between stereo calibration and eye-
to-eye calibration is 0.71◦, 4.1 cm w/o RMCE, and 0.54◦, 2.5 cm with RMCE.
Fig. 6 shows how much the rigid motion constraint between master and 2nd
camera is violated during unconstrained SfM, especially over time.

Fig. 6. Rigid motion constraint violation during
SfM w/o RMCE for a real video sequence (total
motion covers ca. 1m, 50◦).

Fig. 7. Example image from real
video sequence.

5 Conclusions

In this work we have revisited rigid motion constraints for local pose estimation
of rigidly coupled cameras, and described how to incorporate these constraints
into existing SfM algorithms. The resulting constrained local poses have been
shown to be more robust against drift and improve extrinsic calibration of the
multi-camera setup using calibration methods that depend on the rigid motion
constraints. Especially SfM resp. extrinsic calibration with few input poses ben-
efits from the constraint enforcement. The results presented here are very useful
for systems consisting of few cameras covering the full 360◦ field of view.

Future Work: The results presented in this work are designed for general motions
of the camera system. Further inspection of common degenerate motion classes
such as planar motion could be done to modify the multi-camera SfM so that
these cases can also be handled by integrating additional knowledge about the
scene and motion. Although we have presented a very basic SfM approach here
for the sake of clarity, we should also be able to integrate our method easily into
more sophisticated and efficient SfM approaches such as e.g. PTAM [9].



10 S. Esquivel, R. Koch

References

1. Caspi, Y., Irani, M.: Alignment of non-overlapping sequences. International Journal
of Computer Vision 48(1), 39–51 (2002)

2. Chen, H.H.: A screw motion approach to uniqueness analysis of head-eye geometry.
In: Computer Vision and Pattern Recognition (CVPR’91). pp. 145–151 (1991)

3. Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal
of Robotics Research 18, 286–298 (1999)

4. Dornaika, F., Chung, C.k.R.: Stereo geometry from 3d ego-motion streams. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(2), 308–
323 (April 2003)

5. Esquivel, S., Woelk, F., Koch, R.: Calibration of a multi-camera rig from
non-overlapping views. In: 29th DAGM Symposium on Pattern Recognition
(DAGM’07). LNCS, vol. 4713, pp. 82–91. Heidelberg, Germany (September 2007)

6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision (Second
Edition). Cambridge University Press, second edn. (2004)

7. Kim, J.H., Li, H., Hartley, R.I.: Motion estimation for nonoverlapping multicamera
rigs: Linear algebraic and l∞ geometric solutions. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(6), 1044–1059 (2010)

8. Kim, J.H., Chung, M.J.: Absolute motion and structure from stereo image se-
quences without stereo correspondence and analysis of degenerate cases. Pattern
Recognition 39(9), 1649–1661 (2006)

9. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
6th IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’07) (2007)

10. Kuipers, J.B.: Quaternions and rotation sequences. In: International Conference
on Geometry, Integrability and Quantization (GEOM’99). pp. 127–143 (1999)
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