

Real-time Image-based Reconstruction of Pipes Using Omnidirectional Cameras

Dipl. Inf. Sandro Esquivel Prof. Dr.-Ing. Reinhard Koch

Multimedia Information Processing Christian-Albrechts-University of Kiel

In cooperation with

IBAK Helmut Hunger GmbH & Co. KG, Kiel

www.mip.informatik.uni-kiel.de

Motivation

Quelle: http://www.kanalinspekteure.de

Quelle: http://www.ibak.de

Sewer inspection systems

- Inspection of sewer shafts and pipes with mobile camera systems
- Manual evaluation of videos by expert

Task: Create 3d reconstruction for visualization and measuring

Contents

- Image Acquisition and Structure from Motion
- Our reconstruction approach
 - Cylinder mapping
 - Global geometric correction
 - Profile fitting and model creation
- Tests and applications
- Conclusion

Image acquisition for sewer pipe inspection

Multimedia Information Processing

P Multimedia Information Processing

Image acquisition for sewer shaft inspection

Spherical camera model

Structure from Motion

Structure from Motion

3d reconstruction - Problems and challenges

- Challenging lighting conditions and depth of view
- Strong image distortions
- Brief feature point visibility, large frame-to-frame translation
- Inaccurate camera calibration
- Demands for real-time processing: min. 7 Hz

Our approach

- Image Acquisition and Structure from Motion
- Our reconstruction approach
 - Cylinder mapping
 - Global geometric correction
 - Profile fitting and model creation
- Tests and applications
- Conclusion

Overview of our approach

MIP Multimedia Information Processing

1. Image preprocessing: Roll rotation compensation

IP Multimedia Information Processing

M

1. Image preprocessing: Cylinder mapping

2. Feature point tracking

- Initialization: Detect KLT feature points
- Find correspondences along image rows
- Create row-dependent horizontal translation function

2. Feature point tracking

- Tracking: Predict new position with translation function
- Use small search window around target position
- Update horizontal translation function

3. Structure from Motion

Output:

- Computed 3d point cloud
- Computed camera poses for each frame (position + rotation)
- Robust estimation using RANSAC

4. Global optimization

\rm Error accumulation

1 Inaccurate camera calibration

Bent and conical 3d reconstruction

- Global optimization needed
- Bundle Adjustment not useful for real-time application

4. Global optimization

- Correct 3d reconstruction using geometric constraints:
 - Average camera path is known (vector of gravity = z-axis)
 - Camera baseline between frames is known (approx. 5 cm)

4. Global optimization

- Fit polynomial **P(t)** to average camera path
- Transform 3d points and camera poses via mapping of P(t) onto corrected path $P^*(t) = 5 \text{ cm} \cdot t \cdot \vec{e_z}$

5. Measuring profile shapes

- Classification of horizontal shaft / vertical pipe profiles
- Robust shape estimation from 3d points within slice

1

5. Creating 3d models for visualization

- Classify profile shapes in 3d points
- Connect subsequent contours of the same shape class
- Brightness alignment of images
- Optional 3d geometry fitting

Output:

- Profile shapes
- Wire-frame model
- Textured model

Output of our approach

Tests and applications

- Image Acquisition and Structure from Motion
- Our reconstruction approach
 - Cylinder mapping
 - Global geometric correction
 - Profile fitting and model creation
- Tests and applications
- Conclusion

IP Multimedia Information Processing

M

Example test sequence for shaft reconstruction

MIP Multimedia Information Processing

Evaluation of profile measurements

Average diameter estimation error for 57 sequences

No. of sequence

Evaluation of global geometric correction

- Variate intrinsic camera parameters (here: max. angle ± 2°)
- Systematic reconstruction error (here: up to 15 cm)
- Compensation by global geometric correction

Runtime evaluation (offline)

- Original application (offline) \diamondsuit 2 3 frames per second
- Computation on CPU
- RANSAC with many iterations needed for robustness

Initialization: ~800 ms / frame

Image prepro-	KLT tracking	Structure from Motion	
cessing			1 s

Tracking: ~380 ms / frame

Runtime evaluation (realtime)

- Realtime application (on site) <a>

 ~7 frames per second
- Image preprocessing and KLT tracking on GPU
- Use *PreemptiveRANSAC* instead of RANSAC

Initialization: ~240 ms / frame

IP	KLT	SfM				
			0.25 s	0.5 s	0.75 s	1 s

Tracking: ~140 ms / frame

Use camera poses for manual measuring

Manual selection of measuring points in camera image
 Automatic correspondence search in subsequent image
 Triangulation of 3d point using known camera poses
 Compute measurements in 3d space (e.g. distance)

Visualization of 3d models

www.mip.informatik.uni-kiel.de

Conclusion

- Image Acquisition and Structure from Motion
- Our reconstruction approach
 - Cylinder mapping
 - Global geometric correction
 - Profile fitting and model creation
- Tests and applications
- Conclusion

Conclusion

- Robust automatic approach for image-based 3d reconstruction of sewer pipes and shafts with IBAK Panoramo / SI
- Simple geometric correction replaces Bundle Adjustment
- Creation of 3d models for visualization
- Manual measuring in camera images using computed camera poses
- Real-time capability to use on-site
- Successful application to practise

Thank you for your attention! Lugar for your attention!

ZUKUNFTSprogramm Wirtschaft

Investition in Ihre Zukunft

financed by the European Union, European Regional Development Fund (ERDF)

