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Abstract. In this paper we propose a robust image and sensor based
approach for automatic 3d model acquisition of sewer shafts from survey
videos captured by a downward-looking fisheye-lens camera while lower-
ing it into the shaft. Our approach is based on Structure from Motion
adjusted to the constrained motion and scene, and involves shape recog-
nition in order to obtain the geometry of the scene appropriately. The
approach has been implemented and applied successfully to the practical
stage as part of a commercial software.

1 Introduction

Fig. 1. IBAK PANORAMO R© SI.

Automatic sewer inspection is an impor-
tant application for computer vision and
robotics. Remotely controlled inspection
devices based on mobile robots equipped
with different sensors are commonly used
for this task since the observed structures
are often not directly accessible for humans
or access is difficult to achieve. As regular
inspection of manholes and sewer shafts is
required by law, this special application is
interesting for commercial systems.

While different approaches to this prob-
lem exist – including solutions based on
structured light, multi-frequency sonar, in-
frared sensors, or recently time-of-flight
cameras – we rely on an approach which is
based mainly on video sequences captured
by a fisheye-lens camera provided with a
flash light which is lowered into the manhole. Additional data acquired by a
rotation sensor which is attached to the camera is used to facilitate the task.
For reconstruction, we are able to assume additional constraints since the given
problem of sewer shaft inspection using a hanging camera differs slightly from
general sewer inspection. Figure 1 shows a commercial system using our which
has been built by our industry partner IBAK Helmut Hunger GmbH & Co. KG.
The video sequences used are byproducts of interactive shaft inspection.
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Previous Work: An early idea for recovering shape and camera pose relative
to the pipe axis automatically from sewer survey videos was presented in [1].
Kannala et al. [2, 3] considered an approach for automatic 3d model acquisi-
tion from video sequences captured by a calibrated fisheye-lens camera moving
through a sewer pipe. They recover camera positions and scene structure by
computing calibrated multi-view tensors for image sub-sequences and merging
the results hierarchically, which results in a point cloud approximating the scene
structure as an initial 3d model. This approach suffers from error accumulation
and sensitivity to inaccurate camera calibration resulting in bent and conical
pipe reconstructions which are known to be straight. Our problem formulation
is slightly different since we aim to measure the shape of a shaft from a camera
hanging down rather than from traveling through the sewerage.

Our Approach: The main idea of our approach is to incorporate a priori know-
ledge about the scene geometry and to simplify the resulting 3d model appro-
priately to stabilize the whole reconstruction process. Our approach computes
shaft profiles at different depths by a Structure from Motion approach, classifies
them as appropriate 2d shapes, and builds a 3d model by connecting shapes
from subsequent cross-sections. The reconstruction is geometrically corrected
using knowledge about the camera motion. Since it is designed for practical pur-
poses, the focus of our work is on flexibility, robustness, and automation of the
reconstruction process.

2 Background

2.1 Problem Specification and Setting

Fig. 2. Setup for inspection.

The setting of our work is illustrated in Fig.2:
A fisheye-lens camera designed for sewerage sur-
vey is lowered vertically into a sewer shaft which is
specified to be vertical with arbitrary basic shape,
but often rectangular shafts or shafts with ellip-
tical profile. Images are captured in fixed trans-
lation intervals which can be measured accurately
from the feed of the conducting cable (in our case,
the camera moves up to 35 cm/s, but a flash en-
sures sharp images every 5 cm). Additional, an in-
ertial sensor is mounted to the camera which mea-
sures roll rotation around the viewing axis for each
image to compensate this rotation later in the im-
ages. While it is assumed that the camera is look-
ing approximately along the axis of the shaft, the
exact position of the camera is unknown. The camera might also oscillate around
the cable axis. The task is to classify and measure the cross-sectional shape of
the shaft at different depths robustly and obtain an approximate 3d model of
the shaft by appropriately merging profiles from subsequent cross-sections.
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Figure 3 shows typical input images captured by the fisheye-lens camera
during lowering it into a sewer shaft through the manhole. Apparently, the task
of visual reconstruction is not trivial: Illumination and visibility decrease rapidly
towards the center of the image, the hanging camera is rotating significantly
around its view axis, there are reflections especially on fronto-parallel parts of
the shaft surface and obscuring structures such as stairs and branching pipes,
and vision is very poor in larger rooms where the camera is located off-center.

Fig. 3. Input images captured by a hanging fisheye-lens camera during lowering.

2.2 3D Reconstruction Using Structure from Motion

There are several Structure from Motion (SfM) approaches using spherical cam-
eras such as the ones described in [6], [2, 3] and [7]: Chang and Hebert [6] describe
a SfM approach for general scenes using cameras with wide field of view such as
fisheye-lens cameras and analyze its uncertainty. They show that SfM performs
better in certain situations (e.g. sparse scene structure, motion along the viewing
direction of the camera) which apply to the given setting.

Kannala et al. [2, 3] compute sparse structure of sewer pipes from feature
point correspondences for image triplets by estimating the trifocal tensor, and
merge local reconstructions by hierarchical bundle adjustment.

We use an approach by Bartczak et al. [7]. They describe SfM from a dense
sequence of spherical images of a rigid scene with no a priori knowledge about
camera motion which avoids heuristics by heavily using information about mea-
surement uncertainties and error propagation. The reconstruction process is sep-
arated into a bootstrapping and a tracking stage based on 2d-2d correspondences
between subsequent images. During bootstrapping, an initial sparse scene struc-
ture and camera position is computed from the essential matrix estimated from
2d-2d correspondences between the first image pair. During tracking, subse-
quent camera poses are computed from 2d-3d correspondences while new scene
structure is estimated from 2d-2d correspondences and existing 3d structure is
updated using further 2d measurements. Bundle adjustment is used after boot-
strapping to ensure a good initialization.

All mentioned approaches rely on multi-frame feature point correspondences
(trails) obtained using the well-known KLT feature tracker [8]. Because the in-
put video sequence is rather sparse in our setting, feature prediction between
subsequent images is inevitable, and bundle adjustment as a final step is not
useful since feature trails are in average very short (3–5 images).



4

Note that without knowledge about the distance between the first two camera
positions, 3d structure can only be estimated up to an unknown scale. In our
setting, we can overcome this ambiguity since the translation amount of the
camera between subsequent image captures is known to be approximately 5 cm.

In [3], Kannala et al. derive the course of the pipe from the camera path.
Nevertheless there is no reasonable distinction between error accumulation on
the camera motion and factual curvature of the pipe. This can result in bent
reconstructions of essentially straight pipes. Since the feature point correspon-
dences from which camera motion is estimated can only be obtained for very
few subsequent images, drift of the reconstructed camera path is very likely as
has been observed in our experiments. In contrast to Kannala’s approach, in our
setting the camera path is known to be oscillating around a straight line – given
by the vector of gravity – which will allow us to correct the reconstruction.

3 Our Approach

Our algorithm is composed from the following steps which will be explained in
detail in the following sections:
1. Reconstruction of 3d points on the shaft surface

(a) Cylinder-mapping of input camera images, removing roll rotation using
the input of an additional rotation sensor (pre-processing step).

(b) Structure from Motion as described in [7] using cylinder-mapped images
with problem-specific feature prediction (tracking phase).

(c) Correction of reconstructed geometry and camera motion using a priori
knowledge about motion and scene geometry (post-processing step).

2. Contour shape classification and shape fitting in cross-sections of the shaft,
and construction of a simple 3d geometry by connecting contours from sub-
sequent cross-sections and optional 3d shape fitting.

Prior to application, common calibration techniques for fisheye-lens cameras [5]
are used in order to estimate the intrinsic parameters and radial distortion of the
camera. While the camera used is almost distortion-free, note that we allow the
focal length of the camera calibration to have an error of up to several percent
for sake of robustness.

3.1 Reconstruction of 3D Points

Reconstruction of 3d points relies on the following assumptions which are sup-
posed to hold for the given problem setting:
– The viewing direction of the camera is mainly along the shaft axis with up

to 5–10◦ pan/tilt rotation and almost no roll rotation.
– The average motion vector of the camera coincides with the shaft axis.
– Within shaft sections, the camera-local shaft profile changes only slightly

between subsequent images due to small transversal motion and pan/tilt
rotation of the camera, or continuous profile changes (e.g. conical sections).

– Abrupt changes of the entire camera-local shaft profile indicate geometry
changes of the shaft (e.g. at the junction of shaft and base room).



5

Cylinder-mapping of camera images. Existing approaches for image-based
sewer reconstruction detect and track feature points directly in the spherical
camera images resp. apply local perspective undistortion first [2, 3]. In our work
we determined that “unwinding” the image according to spherical coordinates
as seen in Fig.4 (left) – approximating an image of the unrolled shaft surface –
facilitates the feature tracking process as long as the camera’s viewing direction
is approximately parallel to the shaft axis. We account for a ring-shaped part
of the camera’s field of view corresponding to the viewing range between zenith
angles θmax ≥ θ ≥ θmin (here: θmax := 85◦, θmin := 45◦) which holds the most
usable visual information (compare Fig.3 (left) and Fig.4 (left)).

Rotation φRS around the camera’s z-axis measured by an inertial sensor is
used during mapping to compensate roll rotation of the camera. This is easy
since roll rotation results simply in a vertical shift of the cylinder image.

Tracking points in cylinder-mapped images. For feature detection and
tracking in the cylinder-mapped images we use an implementation of the KLT
feature tracker [8]. Since the displacement of image points in subsequent images
is large, even for multi-resolution tracking, either feature prediction or region
search is necessary. Tracking points in cylinder-mapped images is based on the
fact that feature points move mainly along image rows, and disparity deviation is
distinctive for points in different image columns but only small within the same
row. Figure 4 illustrates the disparity between corresponding cylinder image
points for an exemplary motion along the cylinder axis with off-center position,
small transversal motion and 5◦ pan/tilt rotation. The displacement vectors
of corresponding image points are basically horizontal, average disparity varies
strongly with respect to vertical image position but only little with respect to
horizontal image position. The latter curve depends on the cross-sectional shape
of the cylinder and the excentricity of the camera. The former curve is affected
by roll rotation between images which is minimal since it is compensated during
mapping.

As a consequence, the following feature tracking method is proposed:

Row Scan (Init): Without any knowledge about the shaft’s diameter and pro-
file shape, feature point correspondences are generated by scanning the image
row and computing a similarity measure between feature points detected in
the previous and current images. The vertical tolerance is defined by the
maximal valid distance to the shaft surface (here: 300 cm) and maximal
pan/tilt rotation (here: 10◦). This method is used for initialization and for
re-initialization when tracking fails during SfM (e.g. due to noticeable shaft
geometry change).

Row Track: After initialization, the average row-wise disparity of the last im-
ages is used to predict feature point positions within the current image.
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Fig. 4. Average column/row-wise disparities for corresponding cylinder image points.

3.2 Geometric Correction

As described above, in SfM the camera motion estimation tends to drift which
results in globally erroneous reconstructions as shown in Fig.5 (left):

Fig. 5. 3d points before
(left) and after geometric
correction (right).

The shaft will be bent and its diameter will nar-
row resp. widen over time. The latter effect occurs
prominently as a systematical error when the focal
length of the fisheye-lens camera has not been cal-
ibrated correctly before application. Common solu-
tions to the problem of error accumulation, such as
multi-frame SfM, depend on tracking feature points
through a large number of frames and thus can not
be applied here. On the other hand, the reconstruc-
tion is nevertheless locally correct since inter-frame
errors are small. In the following, a simple approach
is described how to correct the reconstructed cam-
era poses. Once this is done, structure is corrected
locally with respect to the camera by which it was
originally seen, resulting in a globally consistent re-
construction.

In our setting, the camera is hanging into the
shaft by its own weight on a static cable. Image ac-
quisition is triggered at certain equidistant amounts of feed (5 cm). Hence for
camera pose correction we can assume (a) that the average camera path ap-
proximates the vector of gravity, and (b) that the distance between subsequent
camera positions along the vector of gravity is fixed and known.

Geometric correction (GC) is accomplished hence as follows:

1. First, approximate the mean “drifted” camera motion by fitting a polynomial
curve p(t) := (px(t), py(t), t) to all camera positions C0, . . . ,CN .

2. Correct camera positions C0, . . . ,CN by “unbending” the mean camera mo-
tion so that it is mapped to the world z-axis (i.e. the vector of gravity).

3. Correct camera positions further by rescaling camera motion locally so that
inter-camera distance is equalized to 5 cm each.
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4. Correct pan/tilt rotation of each camera such that the local “drifted” gravity
vector ∇p(t) becomes parallel to the world z-axis. The estimation of camera
roll rotation is assumed to be drift-free.

5. Finally, the positions of all 3d points Xj are updated with respect to the
new pose of the first camera Ci they were visible in.

Note that geometric correction transfers all 3d points and camera poses into a
common coordinate frame which is registered to the (ideal) shaft geometry – i.e.
z-axis is parallel to shaft axis and x/y-plane is parallel to cross-sections.

3.3 Shape Classification and Estimation

The goal of the next stage is to estimate the average cross-sectional shape of
the shaft at M evenly distributed depths h0, . . . , hM−1 (here: hi := i · 5 cm
each). First, the 3d points are partitioned into M slices S0, . . . ,SM−1 where
each slice Si consists of the 2d projections (xj , yj) of all 3d points (xj , yj , zj)
with zj ∈ [hi, hi+1[ onto the x/y-plane. Common 2d shape fitting methods –
such as [10] for ellipses, [11] for rectangles or [12] for closed spline curves – are
used to obtain shape estimates for each slice Si. To enable robustness against 3d
points that do not lay on the shaft surface or result from incorrect triangulation,
a RANSAC approach is used in combination with the shape fitting methods.

The classification is done by fitting an instance of each shape class to all 2d
points in slice Si robustly, evaluating a quality score for each shape which is based
on the average geometric distance of all inliers and weighted such that shape class
changes are punished, and selecting the shape with the highest resulting score.

3.4 3D Model Creation from Cross-Sections

In general, the structure of sewer shafts can be modelled as a sequence of
straight segments of extrusion-like geometries (i.e. generalized cylinders) with-
out branches. Hence the 3d surface can be constructed simply by connecting
subsequent contours of the same shape class with significantly small difference
in shape parameters and interpolating linearly between cross-sections. The re-
constructed model can be further simplified by fitting special extrusion surfaces
(e.g. cylinders for elliptical cross-sectional shape, cuboids for rectangular shape)
to 3d points within each segment (see e.g. [9]).

4 Experiments and Results

4.1 Evaluation with Real Labelled Data

To evaluate the performance of our approach with real data, our industry part-
ner has provided us with a number of video sequences that has been captured
from different sewer shafts (44 sequences from 36 different shafts). The observed
shafts show a great variety of depth, diameter and shape. First, we identified the
shape and diameter for 60 subsequences (”reference sections”) manually using
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previous knowledge about the parts the shafts are made up from. We applied our
algorithm to each video sequence and evaluated for each reference section if the
correct shape class was identified and measured the average estimation error for
each correctly classified cross-section by comparing it with the manual reference
data. For elliptical cross-sections the average diameter error is regarded, for rect-
angular cross-sections the average lateral length error. The results are shown in
Fig.6. For each reference section, the average diameter estimation error and the
standard deviation of the errors are shown. In order to evaluate the performance
of the proposed geometric correction, we applied our implementation once with
and again without geometric correction. Note that the last 3 sequences have in
fact pulvinate rectangular shape. Our approach failed for 3 reference sequences
that are not shown in Fig.6 which have pentagonal shape.

Apparently, the average relative error is ca. 1–2% which corresponds to an
absolute error of ca. 2 cm in diameter resp. lateral length. Since the reference
data is idealized and does not pay attention to possible local deformations of
the shafts, the comparison has to be interpreted rather as a verification of our
approach than as an exact evaluation of accuracy. Note also that using geo-
metric correction the estimated cross-sectional diameters vary less than without
geometric correction and the overall accuracy improves significantly. Geometric
correction is also capable of compensating deviating scale errors resulting from
inaccurate focal length calibration of the camera as shown in Fig.7 for one shaft.

Fig. 6. Results of our algorithm with and without geometric correction (GC) for 57
out of 60 shaft segments with fixed and approximately known diameter.

Fig. 7. Estimation results for shaft sequence no. 8 with varying focal length f without
GC (top) and with GC (bottom). Note the different scales of the graphs.
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4.2 Practical Issues: Robustness and Runtime

Contour-based model generation with GC failed only for 3 total sequences and
3 subsequences out of the test set of 44 sequences: 3 examples show a shaft with
non-standard pentagonal geometry which is not supported up to now. The other
reconstructions failed due to very poor vision and strong reflections, both con-
cerned shafts consist mainly of the base room (5–6 images) following a very short
shaft. Nevertheless, SfM and GC succeeded for all sequences but resulted in very
sparse point clouds for the latter 2 shafts. Without GC, model generation failed
for 2 more shafts where the GC approach succeeded. Test applications done by
our industrial partner with more than 160 shafts yielded similar results: Contour-
based reconstruction failed for 4 shafts due to illumination/visibility problems
while point-based reconstruction succeeded always with plausible results.

The total runtime of our implementation is basically linear in the number of
input images. Repeated tests with all provided test sequences yielded an average
factor of 0.45± 0.07 sec per image on a PC with 2.66 GHz CPU and 4 GB RAM.
By further optimization the runtime is expected to be improved significantly, e.g.
by utilizing the GPU for tasks such as computing the cylinder-mapping which
consumes ca. 30% of the total runtime at the moment. Nevertheless, the runtime
is already acceptable for post-processing of image sequences of up to 500 frames
(i.e. 10 m of shaft) in clearly less than 5 min.

4.3 Resulting 3D Models

Fig. 8. Corrected 3d points with
camera path and wire frame model.

Using our algorithm we were able to
build simplified 3d models of the surveyed
shafts. Figure 8 shows the reconstruction
results (i.e. the corrected 3d points result-
ing from the SfM, and the original and
simplified wire frame mesh of the identi-
fied contours) for one of the shafts which
consists of a conical part below the man-
hole, a cylindrical main part, and a cubic
base room.

The example illustrates that our SfM
approach is capable of recovering even fine
structure reliably such as the stairs or the
channel at the ground of the shaft (Fig.8,
left) while the contour classification is ro-
bust enough to regard such structures as
outliers with respect to the basic shape (Fig.8, right). Although we build only
wire frame models from the resulting geometry, standard texture mapping tech-
niques could be used to reconstruct a fully textured 3d model from the video
sequences and the reconstructed geometry which allows to navigate virtually
through the shaft under survey and perform measurements.
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5 Conclusions

We have proposed a robust practical approach for automatic shape measuring
and 3d reconstruction of sewer shafts using a fisheye-lens camera provided with
an inertial sensor unit. Our approach overcomes the problems determined by
similar works considering the problem of building 3d models for sewerage, such
as bent or conical reconstruction and restriction to elliptical pipes [2, 3]. It can
easily be extended to support other shaft shapes than ellipses, rectangles, and
free-form curves on demand, e.g. ovoid or polygonal shapes. An implementation
has been applied successfully to the practical stage in cooperation with our indus-
trial partner IBAK as part of the software for the widely used PANORAMO R©

SI system (see Fig.1). Practical test applications, i.a. done by the Göttinger
Entsorgungsbetriebe [13], have shown that our approach is robust and useful.

Future Work: Up to now our approach is performed as a post-processing step.
We are planning to merge all parts of our approach into an online process. By
building an approximate 3d model during tracking, a more elaborate feature
prediction can be considered by projecting feature points onto the estimated
scene surface – approaching an on-the-fly Analysis by Synthesis technique.
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