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Abstract. A simple, stable and generic approach for estimation of rel-
ative positions and orientations of multiple rigidly coupled cameras is
presented in this paper. The algorithm does not impose constraints on
the field of view of the cameras and works even in the extreme case when
the sequences from the different cameras are totally disjoint (i.e. when no
part of the scene is captured by more than one camera). The influence of
the rig motion on the existence of a unique solution is investigated and
degenerate rig motions are identified. Each camera captures an individ-
ual sequence which is afterwards processed by a structure and motion
(SAM) algorithm resulting in positions and orientations for each cam-
era. The unknown relative transformations between the rigidly coupled
cameras are estimated utilizing the rigidity constraint of the rig.

1 Introduction

Rigidly coupled cameras with non overlapping views appear in many scenar-
ios: In the automotive industry f.e. rear view cameras and blind spot cameras
gain popularity, sewer inspection systems equipped with two antipodal cam-
eras are commercial available and also in surveillance applications multiple non-
overlapping cameras are used. In many of these situations the relative position
of these cameras is of interest.

General methods estimating these rig parameters assume that the cameras
have overlapping views such that points lying in these views can be used to
register the positions of the cameras with each other [1, 2]. This paper suggests
an approach for rig parameters estimation from non-overlapping views using
sequences of time-synchronous poses of each camera. Such poses can be ob-
tained from SAM algorithms on synchronously captured image sequences. The
presented approach works in three stages:

Internal camera calibration: First, the internal calibration of each camera
on the rig is computed using standard techniques [4]. The internal camera
calibration consists of the focal length, principal point, skew and lens distor-
tion parameters.

Pose estimation: Second, the external pose of each camera in the rig is com-
puted for each frame in arbitrary coordinate systems using SAM techniques
[5, 1]. Note that without further knowledge the geometry can only be recon-
structed up to scale and hence the coordinate systems of the reconstructions
of the cameras are related by a similarity transform.
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Rig calibration: The scale of each coordinate system and the internal posi-
tions and orientations of the rigidly coupled cameras are estimated using
constraints between poses resulting from the previous stage. Nonlinear opti-
mization techniques can be used for refinement.

The paper is organized as follows: After reviewing previous work, the theoretic
foundation of the algorithm is explained. Degenerate cases are identified and
solutions for these cases are suggested. Finally experiments with synthetic and
real data are presented.

2 Previous Work

Sequence reconstruction algorithms profit from rigidly coupled cameras. Frahm
e.a. proposed a method for stabilizing 3D scene reconstruction by utilizing images
of a moving rig [3]. Broader views of the scene could be reconstructed by using
a multi-camera system. In order to perform such a task one has to determine
the relative transformations between the cameras of the rig in addition to the
intrinsic parameters of each camera (i.e. focal length and principal point). There
are many approaches registering the poses of a set of cameras with each other.
Most of these approaches, such as metric calibration of a stereo-rig [2], rely on an
overlapping field of view. An approach to align non-overlapping image sequences
has been made by Caspi and Irani [6] for the case of multi-camera systems
sharing the same projection center, but not for general multi camera system.
The task at hand is closely related to the field of hand-eye-estimation such as
[7] which faces a similar problem: The (fixed) relation between poses measured
in different coordinate frames, e.g. between a sensor mounted onto a robot’s
hand and the hand itself must be estimated. In a similar manner a multi-camera
system with cameras fixed in a rig can be interpreted as a hand-eye system where
a motion sensor is lacking but pose information can be retrieved from multiple
image sequences.

3 Theoretical Background

In the following, superscripts are used to identify a specific time and subscripts
are used to identify a specific camera in the rig. For example Cκ

i denotes the
center of projection of camera i at time κ.

3.1 Rigid Transformations

The change between two Cartesian reference frames is described by a similarity
transformation. Each similarity transformation is of the form

T =
(

λR C
0T 1

)
(1)
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where λ ∈ IR accounts for the different scales of coordinate systems, R ∈ IR3×3

is an orthogonal rotation matrix describing the relative orientation and C ∈ IR3

is the translation between the two reference frames. When the scale λ is equal to
1, T is also called Euclidean transformation. Using projective space, the change
of reference frame of a projective point vector can be achieved by simple matrix
vector multiplication Xtarget = TXsource. The concatenation of two subsequent
changes of reference frames T1 and T2 can be computed by a simple matrix
multiplication

T = T2T1 (2)

3.2 Reference Frames and Transformations

The reconstructions from each individual camera are usually given in separate
reference frames. The different reference frames are defined next.

Camera Reference Frames: We assume that each reconstruction is described
in the coordinate system whose origin and orientation matches the position and
orientation of the first camera and whose scale is given such that the baseline
between the first two cameras equals 1 as our SAM algorithm delivers. The
pose of each camera i at each time κ is described in the reference frame of the
reconstruction by its orientation Rκ

i and position Cκ
i . Obviously the initial pose

of each camera is then given by R0
i = I and Ci

i = (0 0 0)T . These reference
frames are denoted as camera coordinate system. Each physical camera in the
rig has an associated camera reference frame.

Local Reference Frames: Obviously the choice of the first camera for the
definition of the camera reference frame is somewhat arbitrary. Any other time
κ 6= 0 could be chosen for the definition of position and orientation of reference
frame resulting in the local coordinate system. The Euclidean transformation Tκ

i

relating the camera reference frame with the i-th local reference frame is given
by

Tκ
i =

(
Rκ

i Cκ
i

0T 1

)
(3)

A local reference frame can be defined for each frame from each sequence result-
ing in an overall of m = KN reference frames. Here N denotes the number of
cameras and K denotes the number of frames in each sequence.

Global Reference Frame: Working with multiple reference frames easily
becomes confusing and error-prone. Hence without the loss of generality a ded-
icated master camera is chosen and the associated reference frame is chosen as
the global coordinate system. The master camera is identified with the subscript
index i = 0. All other cameras are denoted as slave cameras.
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3.3 Relations Between Reference Frames

Fig. 1. Relations between cameras in
the rig

The transformation between the
global reference frame and each local
reference frame of the slave camera
i at time κ can be computed in two
alternate ways. Either by first trans-
forming to the local reference frame of
the master camera at time κ and af-
terward using the unknown similarity
transforming ∆Ti to get to the local
reference frame of the slave camera i
at time κ

Tκ
0 ∆Ti (4)

or alternatively by first changing into
the camera reference frame ∆Ti and
afterward using the Euclidean trans-
form Tκ

i to get to the destination

∆TiT
κ
i (5)

This relation is illustrated in fig. 1.

4 Estimation of the Rig Parameters From Poses

Eq. 4 and 5 must result in the same transformation and hence

Tκ
0 ∆Ti = ∆TiT

κ
i (6)

must hold for each time κ = 1, . . . ,K and each slave camera i = 1, . . . , N .
Equation 6 can be decomposed into one constraint regarding only orientations

Rκ
0∆Ri = ∆RiR

κ
i (7)

and one constraint linking both orientations and positions

Rκ
0∆Ci + Cκ

0 = ∆λi∆RiC
κ
i + ∆Ci (8)

Note that the scale ∆λi has no influence on eq. 7 because it appears on both
sides. Except from the scale factor, this result equals the well-known relation
between the different coordinate frames in the hand-eye calibration problem [7],
where the master camera defines the sensor frame and the slave camera defines
the hand frame.

4.1 General Motion

When the motion of the rig is general, i.e. when it rotates and translates, a
two step approach is feasible. First the orientation is recovered using eq. 7 and
afterward it is utilized for the recovery of position and scale using equation 8.
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Recovery of Orientation: There has been extensive work on solving orien-
tation equations such as Eq. 7. Early solutions [8] represent rotations by 3× 3-
rotation matrices resp. 9-vectors resulting in straight forward linear formulations.
These approaches tend to be error-prone and suffer from difficulties in enforcing
the orthogonality constraint on the resulting matrix. Seminal contribution such
as [9] represent rotations by unit quaternions and hence reduce the number of
variables from 9 to 4. Further on, the unit length constraint for quaternions is
far simper to enforce than orthogonality [10]. Replacing the rotation matrices
by quaternions q in Eq. 7 results in

qκ
0 ·∆qi = ∆qi · qκ

i or equivalently (Tqκ
0
− T ∗

qκ
i
)∆qi = 0 (9)

where Tq, T ∗
q define left and right multiplication with quaternion q = (w, x, y, z)T

[11]

Tq =


w −x −y −z
x w −z y
y z w −x
z −y x w

 T ∗
q =


w −x −y −z
x w z −y
y −z w x
z y −x w

 (10)

Hence we derive the following linear equation system for the unknowns ∆qi =
(∆wi,∆xi,∆yi,∆zi)T at each time step κ = 1, . . . ,K subject to |∆qi| = 1

wκ
0 − wκ

i −xκ
0 + xκ

i −yκ
0 + yκ

i −zκ
0 + zκ

i

xκ
0 − xκ

i wκ
0 − wκ

i −zκ
0 − zκ

i yκ
0 + yκ

i

yκ
0 − yκ

i zκ
0 + zκ

i wκ
0 − wκ

i −xκ
0 − xκ

i

zκ
0 − zκ

i −yκ
0 − yκ

i xκ
0 + xκ

i wκ
0 − wκ

i


︸ ︷︷ ︸


∆wi

∆xi

∆yi

∆zi

 =


0
0
0
0


Aκ

i

(11)

Apparently one pair of corresponding poses for each camera suffices for the esti-
mation of the internal rotation parameters when the rig motion includes sufficient
orientation change. When the rig is purely translating, eq. 11 degenerates and
can no longer be solved. A detailed investigation of the degenerate case of purely
translating motion is presented in section 4.2. Computation of the rotation ma-
trices from unit quaternions can be found in [11]. The quaternion constraint can
be explicitely modelled by using the Lagrangian multiplier as described in [7].

Recovery of Position and Scale: Once an estimate for the internal rotation
∆Ri of slave camera i has been found, the internal position ∆Ci and scale ∆λi

can be found by solving the linear constraint of eq. 8 resulting in the linear
system (

I −Rκ
0 ∆RiC

κ
i

)︸ ︷︷ ︸
(

∆Ci

∆λi

)
= Cκ

o

Bκ
i

(12)

Equation system 12 consists of 3 equations per pose correspondence and 4 un-
knowns and hence at least 2 corresponding pose pairs for each slave camera are
necessary for a unique solution.
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4.2 Pure Translation

When the rig motion is purely translational, the relative orientations qκ
0 and qκ

i in
eq. 11 are both given by the quaternion representing zero rotation (1, 0, 0, 0)T and
the matrix Aκ

i becomes zero. Even when the rotation of the rig is very small, Aκ
i

is close to zero and the equation system 11 becomes ill-conditioned1. Fortunately
this situation can easily be detected simply by looking at the orientations Rκ

i .
The estimation of the Cκ

i is not possible in this case, however internal orientation
and scale can still be estimated. Assuming that the local rotations Rκ

i are each
equal to I and considering only the directions cκ

i = Cκ
i

‖Cκ
i
‖ , eq. 8 becomes

∆Ric
κ
i = cκ

0 (13)

which can be solved linearly in closed form using the quaternion representation
[10]. Because a rotation does not change the length of a vector, the scale can
be estimated without knowledge about ∆Ri. Mean and variance of the scale are
computed using poses from different times κ.

∆λκ
i =

|Cκ
0 |

|∆RiCκ
i |

=
|Cκ

0 |
|Cκ

i |
∆λi =

N∑
n

∆λn
i

N
, σ2

λi
=

N∑
n

(∆λn
i −∆λi)2

N
(14)

4.3 Nonlinear Refinement

It is obvious that errors in the estimation of the internal rotation will inflict
the estimation of the internal translation and scale. Once an estimate for the
rig parameters has been found via the LLS approach as described in section 4.1,
nonlinear refinement can be used to simultaneously estimate internal orientation,
position and scale. The error functional

f(∆qi,∆Ci,∆λi) =
K∑

κ=1

|Aκ
i ∆qi|2 + |Bκ

i

(
∆Ci

∆λi

)
− Cκ

0 |2 (15)

is minimized using a Levenberg-Marquardt.

4.4 MAP Refinement

Experiments on real image data revealed that the error functional (15) is very
sensitive to noise. However the situation improved when the scale was held fixed
at an approximate value during estimation. To circumvent this problem, the
error functional 15 is augmented by a maximum a posteriori (MAP) term for
the scale resulting in

f(∆qi,∆Ci,∆λi) =
K∑

κ=1

|Aκ
i ∆qi|2 + |Bκ

i

(
∆Ci

∆λi

)
− Cκ

0 |2 +
(∆λi − λi)2

σ2
λi

(16)

with the prior guess of the scale λi and uncertainty σ2
λi

computed using eq. 14.

1 This is also visible in eq. 12 where Bκ
i grows ill-conditioned when the rotation Rκ

0

observed by the master camera is close to I
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5 Experiments

Experiments on synthetic pose data precede experiments on synthetic image
data and finally experiments on real image sequences are presented.

5.1 Synthetic Pose Data

Synthetic pose data corrupted with normal distributed error is used for the
tests. It is generated as follows: First N random rig parameters ∆Ri, ∆Ci, ∆λi

and K random master poses Rκ
0 , Cκ

0 are generated. Afterwards the associated
slave poses are computed by applying the rig parameter to the master pose and
rotating the resulting ground truth slave pose by ε degrees around a randomly
chosen axis to simulate errors resulting from the pose estimation process.

Linear Model Comparison: To compare both linear algorithms (i.e. the
purely translational model and the general motion model) the errors are com-
puted under a variety of different conditions, namely different orientations and
different input error accuracies. Figure 2 compares the errors of both models and
illustrates the equal error boundary for both algorithms.
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Fig. 2. Comparison of the two linear models. (a): Errors of both models on dependency
of rotation and input orientation accuracy. (b): Equal error boundary for general motion
model and rotation only model. In conditions above the equal error boundary, the
general motion model yields more accurate results than the purely translational model.

Sensitivity to Input Pose Errors: To analyze the dependency of the esti-
mation results on noise of the input data, tests on a large number of randomly
generated input poses are performed. Figure 3 shows the average resulting ori-
entation error of the estimated internal orientations and translations dependent
on the input error ε for the linear general motion approach and for the nonlinear
optimization. Four input pose pairs were used for each test. The calibration error
grows approximately linearly with the input pose error ε.
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Fig. 3. Sensivity of the algorithm to errors in the input poses. The resulting rotation
and translation orientation error (a), and scale error (b) are shown vs. input pose
orientation error for linear solution and the nonlinear refinement.

5.2 Synthetic Image Sequences
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Fig. 4. (a) Orientation error of SAM algorithm on synthetic image sequence. See text
for details. (b) Calibration error (orientation and translation) vs. number of randomly
selected input poses on synthetically rendered images. The average error over 1000 tries
is plotted.

A synthetic rig consisting of two cameras moves in a synthetic scene resulting
in two sequences of synthetically generated images consisting of 500 frames each.
The SAM results are transformed in a global coordinate system such that the
rig constraints strictly hold on the first two frames. Note that the pose estimates
from the SAM algorithm have a rotation error of up to 0.4 degree (figure ??(a)).
∆Rκ

i = Rκ
i ∗ (Rκ

0 )T is estimated from the two orientations for each frame and
the error with the respect to ground truth is plotted for each frame in fig. ??(a).

The dependency of the calibration error on the number of input poses (i.e.
frames) is shown in figure ??(b) for the linear estimation methods with general
motion model and for the nonlinear estimation. The input poses again derive
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from the SAM results on the synthetic image sequences. It can be seen that the
estimation results do not improve significantly for K ≥ 10.

5.3 Real Image Sequences

Two physical setups were investigated: One with overlapping views for the com-
parison with a marker based algorithm, and a non-overlapping sequence for
demonstration purposes.

Overlapping Sequence: The physical setup consists of two cameras at a dis-
tance of approximately 30cm with a relative yaw angle of about 60◦. The rig
calibration is computed using (i) the calibration toolbox from [12] resulting in
external poses for each frame. The relative transform is computed robustly as
the average over 24 frames. Additionally the rig calibration is estimated (ii) us-
ing the suggested MAP refinement algorithm. To enhance stability a RANSAC
algorithm is used in combination with our approach. The orientation difference
between the two results (i) and (ii) was 0.62◦, the direction difference of the
two resulting translation vectors was 1.52◦, and the translation length error was
about 1.33 percent (see table 1(a)). The rig calibration result is in the same
order of magnitude as the result from the marker based approach.

Table 1. Rig calibration results for (a) overlapping and (b) non-overlapping sequence.

method orientation position scale

(a) Bouget 56.94◦ ± 0.54◦ (25.2± 0.2,−3.9± 0.3, 11.5± 0.06) 28cm± 0.66cm
(a) our approach 57.56◦ (25.8,−3.2, 11.4) 28.37cm

(b) our approach 158.14◦ (0.9,−7.4,−13.3) 15.29cm

Non-overlapping Sequence For the non-overlapping sequence the cameras
were rotated approx. about 160◦ with respect to each other and set up at with a
distance of about 15cm. Figure 5 shows a photo of the rig and a 3D model with
the reconstructed rig parameters. The rig internal translation is roughly along
the optical axis such that the cameras look in opposite directions. The rig was
rotated around its center and translated slightly parallel to the image planes
such that the sequences do not overlap. The estimated internal rig rotation was
158.14◦ around axis (0.4, 0.74, 0.51)T , and the internal translation direction was
estimated to be (0.06,−0.48,−0.87)T with length 15.29cm (see table 1(b)). The
resulting calibration meets the expectation by qualitative evaluation. Future
work will include tests on non-overlapping sequences with ground truth data
available.

6 Conclusions

A novel approach for the estimation of rig parameters using non-overlapping
sequences was introduced. Two nonlinear refinement algorithms for the rig pa-
rameters have been proposed and tested on synthetic poses and on synthetic and
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Fig. 5. Photo of real rig (a) and 3D model of the rig calibration estimate (b).

real image sequences. It has been shown that the achievable accuracy resides in
the same order of magnitude as marker based approaches achieve. In addition,
the calibration can also be achieved in a non-overlapping setup where no marker
calibration is possible. Of course the accuracy is dependent on the results of the
SAM algorithm.

Future Work: Future work could investigate the benefit of direct integration
of the calibration process into the SAM algorithm. Also other methods circum-
venting the dependency of the calibration on SAM results should be found and
investigated. Because we do not depend on visual image information, poses re-
ceived from sensor data can also be utilized for camera alignment.
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