Synchronous Languages—Lecture 18

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group

4 Feb. 2019

Last compiled: January 29, 2019, 12:58 hrs

Lustre
Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes
Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE, a tool used in software development for avionics and automotive industries
- Translatable to FSMs with finitely many control states
- Same advantages as Esterel for hardware and software design
Lustre Modules

General form:

\[
\text{node } f(x_1:\alpha_1, \ldots, x_n:\alpha_n) \text{ returns } (y_1:\beta_1, \ldots, y_m:\beta_m)
\]
\[
\text{var } z_1:\gamma_1, \ldots, z_k:\gamma_k;
\]
\[
\text{let } z_1 = \tau_1; \ldots; z_k = \tau_k;
\]
\[
y_1 = \pi_1; \ldots; y_m = \pi_k;
\]
\[
\text{assert } \varphi_1; \ldots; \text{assert } \varphi_\ell;
\]
\[
\text{tel}
\]

where

- \(f \) is the name of the module
- Inputs \(x_i \), outputs \(y_i \), and local variables \(z_j \)
- Assertions \(\varphi_i \) (boolean expressions)
Lustre Programs

- Lustre programs are a list of modules that are called nodes
- All nodes work synchronously, i.e., at the same speed
- Nodes communicate only via inputs and outputs
- No broadcasting of signals, no side effects
- Equations $z_i = \tau_i$ and $y_i = \pi_i$ are not assignments
- Equations must have solutions in the mathematical sense
As \(z_i = \tau_i \) and \(y_i = \pi_i \) are equations, we have the **Substitution Principle**: The definitions \(z_i = \tau_i \) and \(y_i = \pi_i \) of a Lustre node allow one to replace \(z_i \) by \(\tau_i \) and \(y_i \) by \(\pi_i \).

Behavior of \(z_i \) and \(y_i \) completely given by equations \(z_i = \tau_i \) and \(y_i = \pi_i \)
Assertions

- Assertions `assert \varphi` do not influence the behavior of the system
- `assert \varphi` means that during execution, \(\varphi \) must invariantly hold
- Equation \(X = E \) equivalent to assertion `assert(X = E)`
- Assertions can be used to optimize the code generation
- Assertions can be used for simulation and verification
Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- Example: given \(x = (0, 1, 2, 3, 4, \ldots) \) and \(y = (0, 2, 4, 6, 8, \ldots) \), then \(x + y \) is the stream \((0, 3, 6, 9, 12, \ldots) \)
- However, streams may refer to different clocks
- Each stream has a corresponding clock
Data Types

- **Primitive data types**: bool, int, real
 - Semantics is clear?
- **Imported data types**: type α
 - Similar to Esterel
 - Data type is implemented in host language
- **Tuples of types**: $\alpha_1 \times \ldots \times \alpha_n$ is a type
 - Semantics is Cartesian product
Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - τ_1 and τ_2, τ_1 or τ_2, not τ_1
- Numeric expressions:
 - $\tau_1 + \tau_2$ and $\tau_1 - \tau_2$, $\tau_1 \times \tau_2$ and τ_1 / τ_2, $\tau_1 \text{ div } \tau_2$ and $\tau_1 \text{ mod } \tau_2$
- Relational expressions:
 - $\tau_1 = \tau_2$, $\tau_1 < \tau_2$, $\tau_1 \leq \tau_2$, $\tau_1 > \tau_2$, $\tau_1 \geq \tau_2$
- Conditional expressions:
 - if b then τ_1 else τ_2 for all types
Node Expansion

- Assume implementation of a node f with inputs $x_1 : \alpha_1, \ldots, x_n : \alpha_n$ and outputs $y_1 : \beta_1, \ldots, y_m : \beta_m$
- Then, f can be used to create new stream expressions, e.g., $f(\tau_1, \ldots, \tau_n)$ is an expression
 - Of type $\beta_1 \times \ldots \times \beta_m$
 - If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$
Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```plaintext
node f(x: α) returns (y: β)
var z: γ;
let
  z = τ;
y = π;
  assert ϕ;
tel
```
Clock-Operators

- All expressions are streams
- **Clock-operators** modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
 - `pre \(\tau \)` for every stream \(\tau \)
 - \(\tau_1 \rightarrow \tau_2 \), (pronounced “followed by”) where \(\tau_1 \) and \(\tau_2 \) have the same type
 - \(\tau_1 \text{ when } \tau_2 \) where \(\tau_2 \) has boolean type (**downsampling**)
 - `current \(\tau \)` (**upsampling**)
Clock-Hierarchy

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- A clock is thereby a stream φ of boolean type
Clock-Hierarchy

- clocks(τ) := [] for expressions without clock operators
Clock-Hierarchy

- clocks(τ) := [] for expressions without clock operators
- clocks(pre(τ)) := clocks(τ)
Clock-Hierarchy

- clocks(\(\tau\)) := [] for expressions without clock operators
- clocks(pre(\(\tau\))) := clocks(\(\tau\))
- clocks(\(\tau_1 \rightarrow \tau_2\)) := clocks(\(\tau_1\)), where clocks(\(\tau_1\)) = clocks(\(\tau_2\)) is required
Clock-Hierarchy

- clocks(τ) := [] for expressions without clock operators
- clocks(pre(τ)) := clocks(τ)
- clocks($\tau_1 \rightarrow \tau_2$) := clocks($\tau_1$),
 where clocks(τ_1) = clocks(τ_2) is required
- clocks(τ when φ) := [φ, c_1, \ldots, c_n],
 where clocks(φ) = clocks(τ) = [c_1, \ldots, c_n]
Clock-Hierarchy

- clocks(\(\tau\)) := [] for expressions without clock operators
- clocks(pre(\(\tau\))) := clocks(\(\tau\))
- clocks(\(\tau_1 \rightarrow \tau_2\)) := clocks(\(\tau_1\)),
 where clocks(\(\tau_1\)) = clocks(\(\tau_2\)) is required
- clocks(\(\tau\) when \(\varphi\)) := [\(\varphi\), \(c_1, \ldots, c_n\)],
 where clocks(\(\varphi\)) = clocks(\(\tau\)) = [\(c_1, \ldots, c_n\)]
- clocks(current(\(\tau\))) := [\(c_2, \ldots, c_n\)],
 where clocks(\(\tau\)) = [\(c_1, \ldots, c_n\)]
Semantics of Clock-Operators

\[\text{\textbf{pre}}(\tau) := (\bot, \tau_0, \tau_1, \ldots) \], provided that \[\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots) \]
Semantics of Clock-Operators

- $\llbracket \text{pre}(\tau) \rrbracket := (\perp, \tau_0, \tau_1, \ldots)$, provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
- $\llbracket \tau \rightarrow \pi \rrbracket := (\tau_0, \pi_1, \pi_2, \ldots)$, provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$ and $\llbracket \pi \rrbracket = (\pi_0, \pi_1, \ldots)$
Semantics of Clock-Operators

- \(\lbrack\text{pre}(\tau)\rbrack \) := (\(\bot, \tau_0, \tau_1, \ldots\)), provided that \(\lbrack\tau\rbrack = (\tau_0, \tau_1, \ldots) \)
- \(\lbrack\tau \rightarrow \pi\rbrack \) := (\(\tau_0, \pi_1, \pi_2, \ldots\)), provided that \(\lbrack\tau\rbrack = (\tau_0, \tau_1, \ldots) \) and \(\lbrack\pi\rbrack = (\pi_0, \pi_1, \ldots) \)
- \(\lbrack\tau \text{ when } \varphi\rbrack \) = (\(\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots\)), provided that
 - \(\lbrack\tau\rbrack = (\tau_0, \tau_1, \ldots) \)
 - \{t_0, t_1, \ldots\} is the set of points in time where \(\lbrack\varphi\rbrack \) holds
Semantics of Clock-Operators

- \([\text{pre}(\tau)] \) := \((\bot, \tau_0, \tau_1, \ldots)\), provided that \([\tau] = (\tau_0, \tau_1, \ldots)\)
- \([\tau \rightarrow \pi] \) := \((\tau_0, \pi_1, \pi_2, \ldots)\), provided that \([\tau] = (\tau_0, \tau_1, \ldots)\) and \([\pi] = (\pi_0, \pi_1, \ldots)\)
- \([\tau \text{ when } \varphi] = (\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots)\), provided that
 - \([\tau] = (\tau_0, \tau_1, \ldots)\)
 - \(\{t_0, t_1, \ldots\}\) is the set of points in time where \([\varphi]\) holds
- \([\text{current}(\tau)] \) = \((\bot, \ldots, \bot, \tau_{t_0}, \ldots, \tau_{t_0}, \tau_{t_1}, \ldots, \tau_{t_1}, \tau_{t_2}, \ldots)\), provided that
 - \([\tau] = (\tau_0, \tau_1, \ldots)\)
 - \(\{t_0, t_1, \ldots\}\) is the set of points in time where the highest clock of \(\text{current}(\tau)\) holds
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>(\tau_0)</td>
<td>(\tau_1)</td>
<td>(\tau_2)</td>
<td>(\tau_3)</td>
<td>(\tau_4)</td>
<td>(\tau_5)</td>
<td>(\tau_6)</td>
</tr>
</tbody>
</table>

\[
\text{pre}(\tau)
\]
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
<tr>
<td>$\text{pre}(\tau)$</td>
<td>\perp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $J_{\tau\text{ when }\varphi}= (\tau_1, \tau_3, \tau_6, ...)$, i.e., gaps are not filled! This is done by $\text{current}(\tau\text{ when }\varphi)$.
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
<tr>
<td>$\text{pre}(\tau)$</td>
<td>\bot</td>
<td>τ_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $J_{\tau \text{ when } \varphi} = (\tau_1, \tau_3, \tau_6, ...)$, i.e., gaps are not filled!
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{pre}(\tau)$</th>
<th>\bot</th>
<th>τ_0</th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>τ_4</th>
<th>τ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow \text{pre}(\tau)$</td>
<td>\bot</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
</tr>
</tbody>
</table>

Note: $J_{\tau \text{ when } \varphi} = (\tau_1, \tau_3, \tau_6, ...)$, i.e., gaps are not filled!
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>(\tau_0)</td>
<td>(\tau_1)</td>
<td>(\tau_2)</td>
<td>(\tau_3)</td>
<td>(\tau_4)</td>
<td>(\tau_5)</td>
<td>(\tau_6)</td>
</tr>
</tbody>
</table>

| \(\text{pre}(\tau) \) | \(\tau_0 \) | \(\tau_1 \) | \(\tau_2 \) | \(\tau_3 \) | \(\tau_4 \) | \(\tau_5 \) |
| \(\tau \) \rightarrow \text{pre}(\tau) | \(\tau_0 \) |

Note: \(J_{\tau} \text{when} \varphi \) \(K = (\tau_1, \tau_3, \tau_6, ...) \), i.e., gaps are not filled!
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\mathrm{pre}(\tau)$</th>
<th>\bot</th>
<th>τ_0</th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>τ_4</th>
<th>τ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow \mathrm{pre}(\tau)$</td>
<td>τ_0</td>
<td>τ_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $J_{\tau \text{ when } \varphi} = (\tau_1, \tau_3, \tau_6, ...)$, i.e., gaps are not filled!

This is done by $\tau \rightarrow \mathrm{pre}(\tau)$.

Synchronous Languages Lecture 18 Slide 17
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

| $\tau \to \text{pre}(\tau)$ | \perp | τ_0 | τ_1 | τ_2 | τ_3 | τ_4 | τ_5 |
| τ when φ | τ_0 | τ_0 | τ_1 | τ_2 | τ_3 | τ_4 | τ_5 |
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
<tr>
<td>$\text{pre}(\tau)$</td>
<td>\bot</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
</tr>
<tr>
<td>$\tau \rightarrow \text{pre}(\tau)$</td>
<td>τ_0</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
</tr>
<tr>
<td>$\tau \text{ when } \varphi$</td>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_1</td>
<td>τ_1</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

$\text{pre}(\tau)$	\bot	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
$\tau \rightarrow \text{pre}(\tau)$	τ_0	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
$\tau \text{ when } \varphi$	τ_1	τ_3	τ_6				
$\text{current}(\tau \text{ when } \varphi)$	τ_1	τ_3	τ_6				

Note: $\tau_{\text{when } \varphi} = (\tau_1, \tau_3, \tau_6, ...)$, i.e., gaps are not filled!
Example for Semantics of Clock-Operators

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\varphi & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\tau & \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 & \tau_6 \\
\hline
\text{pre}(\tau) & \bot & \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 \\
\tau \rightarrow \text{pre}(\tau) & \tau_0 & \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 \\
\tau \text{ when } \varphi & \tau_1 & \tau_3 & \tau_6 & \tau_6 \\
\text{current}(\tau \text{ when } \varphi) & \bot & \tau_1 & \tau_3 & \tau_6 \\
\hline
\end{array}
\]
Example for Semantics of Clock-Operators

| φ | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| τ | τ_0 | τ_1 | τ_2 | τ_3 | τ_4 | τ_5 | τ_6 |

pre(τ)	\perp	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
$\tau \rightarrow$ pre(τ)	τ_0	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
τ when φ	τ_1	τ_3	τ_6				
current(τ when φ)	\perp	τ_1					
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>(\tau)</th>
<th>(\tau_0)</th>
<th>(\tau_1)</th>
<th>(\tau_2)</th>
<th>(\tau_3)</th>
<th>(\tau_4)</th>
<th>(\tau_5)</th>
<th>(\tau_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\text{pre}(\tau))</td>
<td>\bot</td>
<td>(\tau_0)</td>
<td>(\tau_1)</td>
<td>(\tau_2)</td>
<td>(\tau_3)</td>
<td>(\tau_4)</td>
<td>(\tau_5)</td>
<td></td>
</tr>
<tr>
<td>(\tau \rightarrow \text{pre}(\tau))</td>
<td>(\tau_0)</td>
<td>(\tau_0)</td>
<td>(\tau_1)</td>
<td>(\tau_2)</td>
<td>(\tau_3)</td>
<td>(\tau_4)</td>
<td>(\tau_5)</td>
<td></td>
</tr>
<tr>
<td>(\tau \text{ when } \varphi)</td>
<td>(\tau_1)</td>
<td>(\tau_3)</td>
<td>(\tau_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{current}(\tau \text{ when } \varphi))</td>
<td>\bot</td>
<td>(\tau_1)</td>
<td>(\tau_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ₀</td>
<td>τ₁</td>
<td>τ₂</td>
<td>τ₃</td>
<td>τ₄</td>
<td>τ₅</td>
<td>τ₆</td>
</tr>
</tbody>
</table>

pre(τ)	⊥	τ₀	τ₁	τ₂	τ₃	τ₄	τ₅
τ -> pre(τ)	τ₀	τ₀	τ₁	τ₂	τ₃	τ₄	τ₅
τ when φ	τ₁	τ₁	τ₃	τ₃	τ₆		
current(τ when φ)	⊥	τ₁	τ₁	τ₃	τ₃	τ₃	τ₆

- ▶ Note: $\left[τ \text{ when } φ \right] = (τ₁, τ₃, τ₆, \ldots)$, i.e., gaps are not filled!
- ▶ This is done by $\text{current}(τ \text{ when } φ)$
Example for Semantics of Clock-Operators
Example for Semantics of Clock-Operators

```
<table>
<thead>
<tr>
<th>0</th>
<th>0 0 0 0 0 0 0 ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
n = (0 -> pre(n)+1)
```

```
e = (1 -> not pre(e))
```

```
n when e
current(n when e)
current (n when e) div 2
```
Example for Semantics of Clock-Operators

\[
\begin{array}{l}
n = (0 \rightarrow \text{pre}(n)+1) \\
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
\end{array}
\end{array}
\]
Example for Semantics of Clock-Operators

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = (0 \rightarrow \text{pre}(n)+1)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$e = (1 \rightarrow \text{not pre}(e))$</td>
<td></td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
n = (0 \rightarrow \text{pre}(n)+1)
\]

\[
e = (1 \rightarrow \text{not pre}(e))
\]

\[
n \text{ when } e
\]
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>n = (0 \rightarrow \text{pre}(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>e = (1 \rightarrow \text{not pre}(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n</th>
<th>e</th>
<th>n when e</th>
<th>current(n when e)</th>
<th>current (n when e) div 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n = (0 \rightarrow \text{pre}(n)+1)</td>
<td>e = (1 \rightarrow \text{not pre}(e))</td>
<td>n when e</td>
<td>current(n when e)</td>
<td>current (n when e) div 2</td>
</tr>
<tr>
<td>0 1 2 3 4 5 ...</td>
<td>1 0 1 0 1 0 ...</td>
<td>0 2 4 ...</td>
<td>0 0 2 2 4 4 ...</td>
<td></td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = (0 -> pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>e = (1 -> not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>current (n when e) div 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

\[
\text{n} = 0 \rightarrow \text{pre(n)}+1
\]
Example for Semantics of Clock-Operators

\[
\begin{array}{c|cccccccccccc}
\text{n} &= 0 & \rightarrow & \text{pre(n)}+1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\text{d2} &= (\text{n div 2})*2 & = & \text{n} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = ((n \div 2)\times2) = n</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
</tbody>
</table>

\[
c_3 = \text{current}(n_2 \text{ when } d_3')
\]
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = (n div 2)*2 = n</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>d3 = (n div 3)*3 = n</td>
<td>0 0 6 6 6</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = (n div 2) * 2 = n</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>d3 = (n div 3) * 3 = n</td>
<td>1 0 0 1 0 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>n3 = n when d3</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = (n div 2)*2 = n</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>d3 = (n div 3)*3 = n</td>
<td>1 0 0 1 0 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>n3 = n when d3</td>
<td>0 3 6 9</td>
</tr>
<tr>
<td>d3' = d3 when d2</td>
<td></td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = (n div 2)*2 = n</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>d3 = (n div 3)*3 = n</td>
<td>1 0 0 1 0 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>n3 = n when d3</td>
<td>0 3 6 9</td>
</tr>
<tr>
<td>d3' = d3 when d2</td>
<td>1 0 0 1 0 0</td>
</tr>
<tr>
<td>n6 = n2 when d3'</td>
<td>1 0 0 1 0 0</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

\[
\begin{array}{l}
n = 0 \rightarrow \text{pre}(n)+1 \\
d2 = (n \text{ div } 2) \times 2 = n \\
n2 = n \text{ when } d2 \\
d3 = (n \text{ div } 3) \times 3 = n \\
n3 = n \text{ when } d3 \\
d3' = d3 \text{ when } d2 \\
n6 = n2 \text{ when } d3' \\
c3 = \text{current}(n2 \text{ when } d3')
\end{array}
\]
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>n = 0 -> pre(n)+1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2 = (n div 2)*2 = n</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n2 = n when d2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d3 = (n div 3)*3 = n</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n3 = n when d3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d3’ = d3 when d2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n6 = n2 when d3’</td>
<td>0</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3 = current(n2 when d3’)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
  n = x0 → if r then x0 else pre(n) + d
tel
```
Example: Counter

```latex
def Counter(x0, d:int; r:bool) returns (n:int)
    let
    n = x0 \rightarrow\text{if } r \text{ then } x0 \text{ else } pre(n) + d
    in n
```

- Initial value of n is x_0
- If no reset r then increment by d
- If reset by r, then initialize with x_0
- $Counter$ can be used in other equations, e.g.
 - $ex1 = Counter(0, 2, 0)$ yields
Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
  n = x0 → if r then x0 else pre(n) + d
tel
```

- Initial value of \(n \) is \(x_0 \)
- If no reset \(r \) then increment by \(d \)
- If reset by \(r \), then initialize with \(x_0 \)
- \(Counter \) can be used in other equations, e.g.
 - \(ex1 = Counter(0, 2, 0) \) yields the even numbers
 - \(ex2 = Counter(0, 1, \text{pre}(ex2) = 4) \) yields
Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 → if r then x0 else pre(n) + d
tel
```

- Initial value of n is x_0
- If no reset r then increment by d
- If reset by r, then initialize with x_0
- *Counter* can be used in other equations, e.g.
 - $ex_1 = Counter(0, 2, 0)$ yields the even numbers
 - $ex_2 = Counter(0, 1, pre(ex_2) = 4)$ yields numbers mod 5
ABRO in Lustre

node EDGE(X:bool) returns (Y:bool);
let
 Y = false → X and not pre(X);
tel

node ABRO (A,B,R:bool) returns (O: bool);
 var seenA, seenB : bool;
let
 O = EDGE(seenA and seenB);
 seenA = false → not R and (A or pre(seenA));
 seenB = false → not R and (B or pre(seenB));
tel
Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions

~ Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs
Causality Problems in Lustre

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\text{pre}(x)$ in τ

Examples:
- $a = a$ and $\text{pre}(a)$ is cyclic
- $a = b$ and $\text{pre}(a)$ is acyclic

Acyclic equations have a unique solution!

Analyze cyclic equations to determine causality?

But: Lustre only allows acyclic equation systems

Sufficient for signal processing
Causality Problems in Lustre

- \(x = \tau \) is acyclic, if \(x \) does not occur in \(\tau \) or does only occur as subterm \(\text{pre}(x) \) in \(\tau \)

- **Examples:**
 - \(a = a \) and \(\text{pre}(a) \) is cyclic
Causality Problems in Lustre

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\text{pre}(x)$ in τ
- **Examples:**
 - $a = a$ and $\text{pre}(a)$ is cyclic
 - $a = b$ and $\text{pre}(a)$ is
Causality Problems in Lustre

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\text{pre}(x)$ in τ

- **Examples:**
 - $a = a$ and $\text{pre}(a)$ is cyclic
 - $a = b$ and $\text{pre}(a)$ is acyclic
Causality Problems in Lustre

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\text{pre}(x)$ in τ

- **Examples:**
 - $a = a$ and $\text{pre}(a)$ is cyclic
 - $a = b$ and $\text{pre}(a)$ is acyclic

- Acyclic equations have a unique solution!

- Analyze cyclic equations to determine causality?

- **But:** Lustre only allows acyclic equation systems

- Sufficient for signal processing
Malik’s Example

- However, some interesting examples are cyclic

  ```
  y = if c then y_f else y_g;
  y_f = f(x_f);
  y_g = g(x_g);
  x_f = if c then y_g else x;
  x_g = if c then x else y_f;
  ```

- Implements if c then $f(g(x))$ else $g(f(x))$ with only one instance of f and g

- **Impossible without cycles**

Sharad Malik.

Analysis of cyclic combinatorial circuits.

Clock Consistency

Consider the following equations:

\[
\begin{align*}
b &= 0 \rightarrow \text{not pre}(b); \\
y &= x + (x \text{ when } b)
\end{align*}
\]

We obtain the following:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
& x & x_0 & x_1 & x_2 & x_3 & x_4 & \ldots \\
\hline
b & x & x_0 & x_1 & x_2 & x_3 & x_4 & \ldots \\
\hline
\end{array}
\]

Problem: not possible with finite memory
Clock Consistency

Consider the following equations:

\[
\begin{align*}
 b &= 0 \rightarrow \text{not pre}(b); \\
 y &= x + (x \text{ when } b)
\end{align*}
\]

We obtain the following:

<table>
<thead>
<tr>
<th>(\text{x when } b)</th>
<th>(\text{x})</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(x \text{ when } b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clock Consistency

Consider the following equations:

\[b = 0 \rightarrow \text{not pre}(b); \]
\[y = x + (x \text{ when } b) \]

We obtain the following:

\[
\begin{array}{c|c|c|c|c|c|c|c}
 & x_0 & x_1 & x_2 & x_3 & x_4 & \ldots \\
\hline
x & 0 & 1 & 0 & 1 & 0 & \ldots \\
b & 1 & 0 & 1 & 0 & 1 & \ldots \\
x \text{ when } b & x_1 & x_3 & \ldots \\
x + (x \text{ when } b) & & & & & & \\
\end{array}
\]

Problem: not possible with finite memory
Clock Consistency

Consider the following equations:

\[b = 0 \rightarrow \text{not pre}(b); \]
\[y = x + (x \text{ when } b) \]

We obtain the following:

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>(x \text{ when } b)</td>
<td>(x_1)</td>
<td>(x_3)</td>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x + (x \text{ when } b))</td>
<td>(x_0 + x_1)</td>
<td>(x_1 + x_3)</td>
<td>(x_2 + x_5)</td>
<td>(x_3 + x_7)</td>
<td>(x_4 + x_9)</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Clock Consistency

Consider the following equations:

\[
\begin{align*}
\text{b} &= 0 \rightarrow \text{not pre(b)}; \\
y &= x + (x \text{ when } b)
\end{align*}
\]

- We obtain the following:

<table>
<thead>
<tr>
<th>x</th>
<th>x₀</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>x when b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x + (x when b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- To compute \(y_i := x_i + x_{2i+1} \), we have to store \(x_i, \ldots, x_{2i+1} \)
- Problem: not possible with finite memory
Clock Consistency

- Expressions like $x + (x \text{ when } b)$ are not allowed
- **Only streams at the same clock can be combined**
- What is the ‘same’ clock?
- Undecidable to prove this semantically
- Check syntactically
Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified.
- Example:

\[
\begin{align*}
x &= a \text{ when } (y > z); \\
y &= b + c; \\
u &= d \text{ when } (b + c > z); \\
v &= e \text{ when } (z < y);
\end{align*}
\]
Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:
 \[x = a \text{ when } (y > z); \]
 \[y = b + c; \]
 \[u = d \text{ when } (b + c > z); \]
 \[v = e \text{ when } (z < y); \]

- \(x \) and \(u \) have the same clock
Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified

- Example:

 \[
 \begin{align*}
 x &= a \text{ when } (y > z); \\
 y &= b + c; \\
 u &= d \text{ when } (b + c > z); \\
 v &= e \text{ when } (z < y);
 \end{align*}
 \]

- \(x\) and \(u\) have the same clock
- \(x\) and \(v\) do not have the same clock
Arrays

- Given type α, α^n defines an array with n entries of type α.
- Example: $x: \text{bool}^n$.
- The bounds of an array must be known at compile time, the compiler simply transforms an array of n values into n different variables.
- The i-th element of an array X is accessed by $X[i]$.
- $X[i..j]$ with $i \leq j$ denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.
Example for Arrays

```par
node DELAY (const d: int; X: bool) returns (Y: bool);
  var A: bool^(d+1);
let
  A[0] = X;
  A[1..d] = (false^(d)) → pre(A[0..d--1]);
  Y = A[d];
```

- \(\text{false}^d\) denotes the boolean array of length \(d\), which entries are all \text{false}
- Observe that \(\text{pre}\) and \(\rightarrow\) can take arrays as parameters
- Since \(d\) must be known at compile time, this node cannot be compiled in isolation
Example for Arrays

```ml
node DELAY (const d: int; X: bool) returns (Y: bool);
  var A: bool^(d+1);
  let
  A[0] = X;
  A[1..d] = (false^(d)) \rightarrow pre(A[0..d-1]);
  Y = A[d];
  tel
```

- `false^d` denotes the boolean array of length `d`, which entries are all false.
- Observe that `pre` and `\rightarrow` can take arrays as parameters.
- Since `d` must be known at compile time, this node cannot be compiled in isolation.
- The node outputs each input delayed by `d` steps.
- So `Y_n = X_{n-d}` with `Y_n = false` for `n < d`
Static Recursion

- Functional languages usually make use of recursively defined functions
- **Problem:** termination of recursion in general undecidable
- Primitive recursive functions guarantee termination
- **Problem:** still with primitive recursive functions, the reaction time depends heavily on the input data
- **Static recursion:** recursion only at compile time
- **Observe:** If the recursion is not bounded, the compilation will not stop.
Example for Static Recursion

- Disjunction of boolean array

```plaintext
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
y = with n=1 then x[0]
   else x[0] or BigOr(n--1,x[1..n--1]);
tel
```

- Constant n must be known at compile time
- Node is unrolled before further compilation
Example for Maximum Computation

Static recursion allows logarithmic circuits:

```c
node Max(const n:int; x:int^n) returns (y:int)
    var y_1,y_2: int;
    let
        y_1 = with n=1 then x[0]
            else Max(n div 2,x[0..(n div 2)--1]);
        y_2 = with n=1 then x[0]
            else Max((n+1) div 2, x[(n div 2)..n--1]);
    y = if y_1 >= y_2 then y_1 else y_2;
    tel
```
Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
  Y = with d=0 then X
  else false → pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:
Delay node with recursion

```plaintext
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
  Y = with d=0 then X
  else false → pre(REC_DELAY(d--1, X));
tel
```

A call `REC_DELAY(3, X)` is compiled into something like:

```plaintext
Y = false → pre(Y2)
Y2 = false → pre(Y1)
Y1 = false → pre(Y0)
Y0 = X;
```
Summary

- Lustre is a synchronous dataflow language.
- The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.
To Go Further
