Synchronous Languages—Lecture 18

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group

4 Feb. 2019

Last compiled: February 4, 2019, 10:07 hrs

Lustre
Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes
Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE, a tool used in software development for avionics and automotive industries
- Translatable to FSMs with finitely many control states
- Same advantages as Esterel for hardware and software design
Lustre Modules

General form:

```plaintext
node f(x₁:α₁, ..., xₙ:αₙ) returns (y₁:β₁,...,yₘ:βₘ)
var z₁:γ₁,...,zₖ:γₖ;
let
  z₁ = τ₁; ...; zₖ = τₖ;
  y₁ = π₁; ...; yₘ = πₖ;
assert ϕ₁; ...; assert ϕₗ;
tel
```

where

- **f** is the name of the module
- **Inputs** \(x_i\), outputs \(y_i\), and local variables \(z_j\)
- **Assertions** \(φ_i\) (boolean expressions)
Lustre Programs

- Lustre programs are a list of modules that are called **nodes**
- All nodes work synchronously, *i.e.* at the same speed
- Nodes communicate only via inputs and outputs
- No broadcasting of signals, no side effects
- **Equations** $z_i = \tau_i$ and $y_i = \pi_i$ are **not assignments**
- Equations must have solutions in the mathematical sense
Lustre Programs

- As $z_i = \tau_i$ and $y_i = \pi_i$ are equations, we have the Substitution Principle:
 The definitions $z_i = \tau_i$ and $y_i = \pi_i$ of a Lustre node allow one to replace z_i by τ_i and y_i by π_i.

- Behavior of z_i and y_i completely given by equations $z_i = \tau_i$ and $y_i = \pi_i$.
Assertions

- Assertions `assert ϕ` do not influence the behavior of the system.
- `assert ϕ` means that during execution, ϕ must invariantly hold.
- Equation `X = E` equivalent to assertion `assert(X = E)`.
- Assertions can be used to optimize the code generation.
- Assertions can be used for simulation and verification.
Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- Example: given \(x = (0, 1, 2, 3, 4, \ldots) \) and \(y = (0, 2, 4, 6, 8, \ldots) \), then \(x + y \) is the stream \((0, 3, 6, 9, 12, \ldots) \)
- However, *streams may refer to different clocks*

\[\sim\] Each stream has a corresponding clock
Data Types

- Primitive data types: bool, int, real
 - Semantics is clear?
- Imported data types: type α
 - Similar to Esterel
 - Data type is implemented in host language
- Tuples of types: $\alpha_1 \times \ldots \times \alpha_n$ is a type
 - Semantics is Cartesian product
Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - τ_1 and τ_2, τ_1 or τ_2, not τ_1
- Numeric expressions:
 - $\tau_1 + \tau_2$ and $\tau_1 - \tau_2$, $\tau_1 \times \tau_2$ and τ_1 / τ_2, $\tau_1 \text{ div } \tau_2$ and $\tau_1 \text{ mod } \tau_2$
- Relational expressions:
 - $\tau_1 = \tau_2$, $\tau_1 < \tau_2$, $\tau_1 \leq \tau_2$, $\tau_1 > \tau_2$, $\tau_1 \geq \tau_2$
- Conditional expressions:
 - if b then τ_1 else τ_2 for all types
Node Expansion

▶ Assume implementation of a node f with inputs $x_1 : \alpha_1, \ldots, x_n : \alpha_n$ and outputs $y_1 : \beta_1, \ldots, y_m : \beta_m$

▶ Then, f can be used to create new stream expressions, e.g., $f(\tau_1, \ldots, \tau_n)$ is an expression
 ▶ Of type $\beta_1 \times \ldots \times \beta_m$
 ▶ If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$
Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

\[
\text{node } f(x:\alpha) \text{ returns } (y:\beta) \\
\text{var } z:\gamma; \\
\text{let} \\
\quad z = \tau; \\
\quad y = \pi; \\
\quad \text{assert } \phi; \\
\text{tel}
\]
Clock-Operators

- All expressions are streams
- **Clock-operators** modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
 - `pre \(\tau \)` for every stream \(\tau \)
 - \(\tau_1 \rightarrow \tau_2 \), (pronounced “followed by”) where \(\tau_1 \) and \(\tau_2 \) have the same type
 - \(\tau_1 \) **when** \(\tau_2 \) where \(\tau_2 \) has boolean type (**downsampling**)
 - **current** \(\tau \) (**upsampling**)
Clock-Hierarchy

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- A clock is thereby a stream φ of boolean type
Clock-Hierarchy

- $\text{clocks}(\tau) := []$ for expressions without clock operators
- $\text{clocks}(\text{pre}(\tau)) := \text{clocks}(\tau)$
- $\text{clocks}(\tau_1 \rightarrow \tau_2) := \text{clocks}(\tau_1)$, where clocks($\tau_1$) = clocks($\tau_2$) is required
- $\text{clocks}(\tau \text{ when } \varphi) := [\varphi, c_1, \ldots, c_n]$, where clocks($\varphi$) = clocks($\tau$) = [c₁, ..., cₙ]
- $\text{clocks}(\text{current}(\tau)) := [c_2, \ldots, c_n]$, where clocks($\tau$) = [c₁, ..., cₙ]
Semantics of Clock-Operators

- $\llbracket \text{pre}(\tau) \rrbracket := (\bot, \tau_0, \tau_1, \ldots)$, provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$

- $\llbracket \tau \rightarrow \pi \rrbracket := (\tau_0, \pi_1, \pi_2, \ldots)$, provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$ and $\llbracket \pi \rrbracket = (\pi_0, \pi_1, \ldots)$

- $\llbracket \tau \; \text{when} \; \varphi \rrbracket = (\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots)$, provided that
 - $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
 - $\{t_0, t_1, \ldots\}$ is the set of points in time where $\llbracket \varphi \rrbracket$ holds

- $\llbracket \text{current}(\tau) \rrbracket = (\bot, \ldots, \bot, \tau_{t_0}, \ldots, \tau_{t_0}, \tau_{t_1}, \ldots, \tau_{t_1}, \tau_{t_2}, \ldots)$, provided that
 - $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
 - $\{t_0, t_1, \ldots\}$ is the set of points in time where the highest clock of $\text{current}(\tau)$ holds
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

pre(τ)	\bot	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
$\tau \rightarrow$ pre(τ)	τ_0	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
τ when φ	τ_1	τ_3	τ_6				
current(τ when φ)	\bot	τ_1	τ_1	τ_3	τ_3	τ_3	τ_6

- Note: $[\tau \text{ when } \varphi] = (\tau_1, \tau_3, \tau_6, \ldots)$, i.e., gaps are not filled!
- This is done by current(τ when φ)
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>[e = (1 \rightarrow \text{not } \text{pre}(e))]</th>
<th>0 1 0 1 0 1 0 ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>[n = (0 \rightarrow \text{pre}(n)+1)]</td>
<td>0 1 2 3 4 5 ...</td>
</tr>
<tr>
<td>[\text{n when } e]</td>
<td>0 2 4 ...</td>
</tr>
<tr>
<td>[\text{current(n when e)}]</td>
<td>0 0 2 2 4 4 ...</td>
</tr>
<tr>
<td>[\text{current (n when e) div 2}]</td>
<td>0 0 1 1 2 2 ...</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>expression</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0 \rightarrow \text{pre}(n)+1)</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>(d_2 = (n \div 2) \times 2 = n)</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>(n_2 = n \text{ when } d_2)</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>(d_3 = (n \div 3) \times 3 = n)</td>
<td>1 0 0 1 0 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>(n_3 = n \text{ when } d_3)</td>
<td>0 3 6 9</td>
</tr>
<tr>
<td>(d_3' = d_3 \text{ when } d_2)</td>
<td>1 0 0 1 0 0 0</td>
</tr>
<tr>
<td>(n_6 = n_2 \text{ when } d_3')</td>
<td>0 6</td>
</tr>
<tr>
<td>(c_3 = \text{current}(n_2 \text{ when } d_3'))</td>
<td>0 0 0 0 6 6 6 6</td>
</tr>
</tbody>
</table>
Example: Counter

\[
\text{node } \text{Counter}(x_0, d: \text{int}; r: \text{bool}) \text{ returns } (n: \text{int}) \\
\begin{align*}
\text{let} & \quad n = x_0 \rightarrow \text{if } r \text{ then } x_0 \text{ else } \text{pre}(n) + d \\
\text{tel}
\end{align*}
\]

- Initial value of \(n \) is \(x_0 \)
- If no reset \(r \) then increment by \(d \)
- If reset by \(r \), then initialize with \(x_0 \)
- \(\text{Counter} \) can be used in other equations, e.g.
 - \(\text{ex1} = \text{Counter}(0, 2, 0) \) yields the even numbers
 - \(\text{ex2} = \text{Counter}(0, 1, \text{pre(ex2)} = 4) \) yields numbers mod 5
ABRO in Lustre

node EDGE(X:bool) returns (Y:bool);
let
 Y = false → X and not pre(X);
tel

node ABRO (A,B,R:bool) returns (O: bool);
 var seenA, seenB : bool;
let
 O = EDGE(seenA and seenB);
 seenA = false → not R and (A or pre(seenA));
 seenB = false → not R and (B or pre(seenB));
tel
Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions

〜 Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs
Causality Problems in Lustre

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\text{pre}(x)$ in τ

- **Examples:**
 - $a = a$ and $\text{pre}(a)$ is cyclic
 - $a = b$ and $\text{pre}(a)$ is acyclic

- Acyclic equations have a unique solution!

- Analyze cyclic equations to determine causality?

- **But:** Lustre only allows acyclic equation systems

- Sufficient for signal processing
Malik’s Example

- However, some interesting examples are cyclic

  ```plaintext
  y = if c then y_f else y_g;
  y_f = f(x_f);
  y_g = g(x_g);
  x_f = if c then y_g else x;
  x_g = if c then x else y_f;
  ```

- Implements if c then f(g(x)) else g(f(x)) with only one instance of f and g

- **Impossible without cycles**

Sharad Malik.
Analysis of cyclic combinatorial circuits.
Clock Consistency

Consider the following equations:

\[
\begin{align*}
 b &= 0 \rightarrow \text{not pre}(b); \\
 y &= x + (x \text{ when } b)
\end{align*}
\]

- We obtain the following:

<table>
<thead>
<tr>
<th>x</th>
<th>x₀</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>x when b</td>
<td>x₁</td>
<td>x₃</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x + (x when b)</td>
<td>x₀ + x₁</td>
<td>x₁ + x₃</td>
<td>x₂ + x₅</td>
<td>x₃ + x₇</td>
<td>x₄ + x₉</td>
<td>...</td>
</tr>
</tbody>
</table>

- To compute \(y_i := x_i + x_{2i+1} \), we have to store \(x_i, \ldots, x_{2i+1} \)

- Problem: not possible with finite memory
Clock Consistency

- Expressions like $x + (x \text{ when } b)$ are not allowed
- **Only streams at the same clock can be combined**
- What is the ‘same’ clock?
- Undecidable to prove this semantically
- Check syntactically
Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:

 \[x = a \text{ when } (y > z); \]
 \[y = b + c; \]
 \[u = d \text{ when } (b + c > z); \]
 \[v = e \text{ when } (z < y); \]

- \(x \) and \(u \) have the same clock
- \(x \) and \(v \) do not have the same clock
Arrays

- Given type α, α^n defines an array with n entries of type α
- Example: $x: \text{bool}^n$
- The bounds of an array must be known at compile time, the compiler simply transforms an array of n values into n different variables.
- The i-th element of an array X is accessed by $X[i]$.
- $X[i..j]$ with $i \leq j$ denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.
Example for Arrays

```plaintext
node DELAY (const d: int; X: bool) returns (Y: bool);
    var A: bool^(d+1);
    let
        A[0] = X;
        A[1..d] = (false^(d)) → pre(A[0..d--1]);
        Y = A[d];
    tel
```

- \(\text{false}^{(d)}\) denotes the boolean array of length \(d\), which entries are all \text{false}
- Observe that \text{pre} and \(\rightarrow\) can take arrays as parameters
- Since \(d\) must be known at compile time, this node cannot be compiled in isolation
- The node outputs each input delayed by \(d\) steps.
- So \(Y_n = X_{n-d}\) with \(Y_n = \text{false}\) for \(n < d\)
Static Recursion

- Functional languages usually make use of recursively defined functions
- **Problem:** termination of recursion in general undecidable
- Primitive recursive functions guarantee termination
- **Problem:** still with primitive recursive functions, the reaction time depends heavily on the input data
- **Static recursion:** recursion only at compile time
- **Observe:** If the recursion is not bounded, the compilation will not stop.
Example for Static Recursion

- **Disjunction of boolean array**
  ```plaintext
  node BigOr(const n:int; x: bool^n) returns (y:bool)
  let
  y = with n=1 then x[0]
      else x[0] or BigOr(n--1,x[1..n--1]);
  tel
  ```

- Constant n must be known at compile time
- Node is unrolled before further compilation
Example for Maximum Computation

Static recursion allows logarithmic circuits:

```plaintext
node Max(const n:int; x:int^n) returns (y:int)
    var y_1,y_2: int;
    let
        y_1 = with n=1 then x[0]
            else Max(n div 2,x[0..(n div 2)--1]);
        y_2 = with n=1 then x[0]
            else Max((n+1) div 2, x[(n div 2)..n--1]);
    y = if y_1 >= y_2 then y_1 else y_2;
    tel
```
Delay node with recursion

```plaintext
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false → pre(REC_DELAY(d--1, X));
tel
```

A call `REC_DELAY(3, X)` is compiled into something like:

```plaintext
Y = false → pre(Y2)
Y2 = false → pre(Y1)
Y1 = false → pre(Y0)
Y0 = X;
```
Summary

- Lustre is a synchronous dataflow language.
- The core Lustre language are boolean equations and clock operators `pre, ->, when, and current`.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.
To Go Further
