Synchronous Languages—Lecture 18

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

4 Feb. 2019

Last compiled: February 4, 2019, 10:07 hrs

Lustre

Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE, a tool used in software development for avionics and automotive industries
- \rightsquigarrow Translatable to FSMs with finitely many control states
- Same advantages as Esterel for hardware and software design

Lustre Modules

General form:

```
node f(x_1; \alpha_1, ..., x_n; \alpha_n) returns (y_1; \beta_1, ..., y_m; \beta_m)

var z_1; \gamma_1, ..., z_k; \gamma_k;

let

z_1 = \tau_1; ...; z_k = \tau_k;

y_1 = \pi_1; ...; y_m = \pi_k;

assert \varphi_1; ...; assert \varphi_\ell;

tel
```

where

- f is the name of the module
- Inputs x_i, outputs y_i, and local variables z_j
- Assertions φ_i (boolean expressions)

Lustre Programs

- Lustre programs are a list of modules that are called nodes
- All nodes work synchronously, i. e. at the same speed
- Nodes communicate only via inputs and outputs
- No broadcasting of signals, no side effects
- Equations $z_i = \tau_i$ and $y_i = \pi_i$ are not assignments
- Equations must have solutions in the mathematical sense

Lustre Programs

As $z_i = \tau_i$ and $y_i = \pi_i$ are equations, we have the Substitution Principle:

The definitions $z_i = \tau_i$ and $y_i = \pi_i$ of a Lustre node allow one to replace z_i by τ_i and y_i by π_i .

Behavior of z_i and y_i completely given by equations z_i = τ_i and y_i = π_i

Assertions

- \blacktriangleright Assertions assert φ do not influence the behavior of the system
- \blacktriangleright assert φ means that during execution, φ must invariantly hold
- Equation X = E equivalent to assertion assert(X = E)
- Assertions can be used to optimize the code generation
- Assertions can be used for simulation and verification

Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- Example: given x = (0, 1, 2, 3, 4, ...) and y = (0, 2, 4, 6, 8, ...), then x + y is the stream (0, 3, 6, 9, 12, ...)
- However, streams may refer to different clocks
- → Each stream has a corresponding clock

Data Types

Primitive data types: bool, int, real

- Semantics is clear?
- Imported data types: type α
 - Similar to Esterel
 - Data type is implemented in host language
- Tuples of types: $\alpha_1 \times \ldots \times \alpha_n$ is a type
 - Semantics is Cartesian product

Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - τ_1 and τ_2 , τ_1 or τ_2 , not τ_1
- Numeric expressions:

• $\tau_1 + \tau_2$ and $\tau_1 - \tau_2$, $\tau_1 * \tau_2$ and τ_1/τ_2 , τ_1 div τ_2 and $\tau_1 \mod \tau_2$ • Relational expressions:

• $\tau_1 = \tau_2, \ \tau_1 < \tau_2, \ \tau_1 \le \tau_2, \ \tau_1 > \tau_2, \ \tau_1 \ge \tau_2$

- Conditional expressions:
 - if b then τ_1 else τ_2 for all types

Node Expansion

- Assume implementation of a node f with inputs $x_1 : \alpha_1, \ldots, x_n : \alpha_n$ and outputs $y_1 : \beta_1, \ldots, y_m : \beta_m$
- Then, f can be used to create new stream expressions, e.g., $f(\tau_1, \ldots, \tau_n)$ is an expression

• Of type
$$\beta_1 \times \ldots \times \beta_m$$

• If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```
node f(x:\alpha) returns (y:\beta)
var z:\gamma;
let
z = \tau;
y = \pi;
assert \varphi;
tel
```

Clock-Operators

- All expressions are streams
- Clock-operators modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
 - **pre** τ for every stream τ
 - τ₁ -> τ₂, (pronounced "followed by") where τ₁ and τ₂ have the same type
 - τ_1 when τ_2 where τ_2 has boolean type (downsampling)
 - current τ (upsampling)

Clock-Hierarchy

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- A clock is thereby a stream φ of boolean type

Clock-Hierarchy

▶ clocks(τ) := [] for expressions without clock operators

•
$$clocks(pre(\tau)) := clocks(\tau)$$

- clocks(\(\tau_1 \cop \tau_2\)) := clocks(\(\tau_1\)), where clocks(\(\tau_1\)) = clocks(\(\tau_2\)) is required
- ► clocks(τ when φ) := [φ , c_1 ,..., c_n], where clocks(φ) = clocks(τ) = [c_1 ,..., c_n]
- clocks(current(τ)) := $[c_2, \ldots, c_n]$, where clocks(τ) = $[c_1, \ldots, c_n]$

Semantics of Clock-Operators

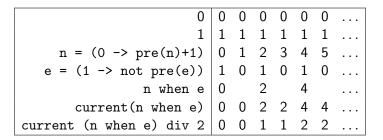
- $[[pre(\tau)]] := (\bot, \tau_0, \tau_1, ...),$ provided that $[[\tau]] = (\tau_0, \tau_1, ...)$ • $[[\tau \rightarrow \pi]] := (\tau_0, \pi_1, \pi_2, ...),$ provided that $[[\tau]] = (\tau_0, \tau_1, ...)$ and $[[\pi]] = (\pi_0, \pi_1, ...)$ • $[[\tau \text{ when } \varphi]] = (\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, ...),$ provided that • $[[\tau]] = (\tau_0, \tau_1, ...)$ • $\{t_0, t_1, ...\}$ is the set of points in time where $[[\varphi]]$ holds • $[[current(\tau)]] = (\bot, ..., \bot, \tau_{t_0}, ..., \tau_{t_0}, \tau_{t_1}, ..., \tau_{t_1}, \tau_{t_2}, ...),$ provided that • $[[\tau]] = (\tau_0, \tau_1, ...)$
 - $\{t_0, t_1, \ldots\}$ is the set of points in time where the highest clock of current (τ) holds

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
au	τ_0	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_{6}$
pre(au)		$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$
au -> pre($ au$)	τ_0	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	τ_5
au when $arphi$		$ au_1$		$ au_3$			τ_6
$ ext{current}(au ext{ when } arphi)$		$ au_1$	$ au_1$	$ au_3$	$ au_3$	$ au_3$	τ_6

- Note: $\llbracket \tau \text{ when } \varphi \rrbracket = (\tau_1, \tau_3, \tau_6, \ldots), i. e., \text{ gaps are not filled!}$
- This is done by current(τ when φ)

Example for Semantics of Clock-Operators



Example for Semantics of Clock-Operators

$n = 0 \rightarrow pre(n)+1$	0	1	2	3	4	5	6	7	8	9	10	11
d2 = (n div 2)*2 = n	1	0	1	0	1	0	1	0	1	0	1	0
n2 = n when $d2$	0		2		4		6		8		10	
d3 = (n div 3)*3 = n	1	0	0	1	0	0	1	0	0	1	0	0
n3 = n when $d3$				3			6			9		
d3' = d3 when $d2$	1		0		0		1		0		0	
n6 = n2 when $d3'$							6					
c3 = current(n2 when d3')			0		0		6		6		6	

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int) let

n = x0 \rightarrow \text{if } r \text{ then } x0 \text{ else } pre(n) + d

tel
```

- Initial value of n is x0
- If no reset r then increment by d
- lf reset by r, then initialize with x_0
- Counter can be used in other equations, e.g.
 - ex1 = Counter(0, 2, 0) yields the even numbers
 - ex2 = Counter(0,1,pre(ex2) = 4) yields numbers mod 5

ABRO in Lustre

```
node EDGE(X:bool) returns (Y:bool);
let
  Y = false → X and not pre(X);
tel
node ABRO (A,B,R:bool) returns (O: bool);
var seenA, seenB : bool;
let
  0 = EDGE(seenA and seenB);
  seenA = false → not R and (A or pre(seenA));
  seenB = false → not R and (B or pre(seenB));
tel
```

Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions
- \sim Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs

Causality Problems in Lustre

- x = τ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - a = a and pre(a) is cyclic
 - a = b and pre(a) is acyclic
- Acyclic equations have a unique solution!
- Analyze cyclic equations to determine causality?
- But: Lustre only allows acyclic equation systems
- Sufficient for signal processing

Malik's Example

However, some interesting examples are cyclic

```
y = if c then y_f else y_g;
y_f = f(x_f);
y_g = g(x_g);
x_f = if c then y_g else x;
x_g = if c then x else y_f;
```

- Implements if c then f(g(x)) else g(f(x)) with only one instance of f and g
- Impossible without cycles

Sharad Malik. Analysis of cyclic combinatorial circuits.

in IEEE Transactions on Computer-Aided Design, 1994

Clock Consistency

Consider the following equations:

 $b = 0 \rightarrow not pre(b);$ y = x + (x when b)

▶ We obtain the following:

x	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	
Ь	0	1	0	1	0	
x when b		x_1		<i>X</i> 3		
x + (x when b)	$x_0 + x_1$	$x_1 + x_3$	$x_2 + x_5$	$x_3 + x_7$	$x_4 + x_9$	

• To compute $y_i := x_i + x_{2i+1}$, we have to store x_i, \ldots, x_{2i+1}

Problem: not possible with finite memory

Clock Consistency

- Expressions like x + (x when b) are not allowed
- Only streams at the same clock can be combined
- What is the 'same' clock?
- Undecidable to prove this semantically
- Check syntactically

Clock Consistency

Two streams have the same clock if their clock can be syntactically unified

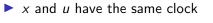
Example:

$$x = a \text{ when } (y > z);$$

$$y = b + c;$$

$$u = d \text{ when } (b + c > z);$$

$$v = e \text{ when } (z < y);$$



x and v do not have the same clock

Arrays

- Given type α , α^n defines an array with *n* entries of type α
- Example: x: boolⁿ
- The bounds of an array must be known at compile time, the compiler simply transforms an array of *n* values into *n* different variables.
- ▶ The i-th element of an array X is accessed by X[i].
- X[i..j] with i ≤ j denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
var A: bool^(d+1);
let
    A[0] = X;
    A[1..d] = (false^(d)) → pre(A[0..d--1]);
    Y = A[d];
tel
```

- false^(d) denotes the boolean array of length d, which entries are all false
- Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation
- The node outputs each input delayed by d steps.

So
$$Y_n = X_{n-d}$$
 with $Y_n = false$ for $n < d$

Static Recursion

- Functional languages usually make use of recursively defined functions
- Problem: termination of recursion in general undecidable
- \rightsquigarrow Primitive recursive functions guarantee termination
- Problem: still with primitive recursive functions, the reaction time depends heavily on the input data
- \sim Static recursion: recursion only at compile time
- Observe: If the recursion is not bounded, the compilation will not stop.

Example for Static Recursion

```
Disjunction of boolean array
```

```
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
y = with n=1 then x[0]
    else x[0] or BigOr(n--1,x[1..n--1]);
tel
```

- Constant n must be known at compile time
- Node is unrolled before further compilation

Example for Maximum Computation

Static recursion allows logarithmic circuits:

```
node Max(const n:int; x:int^n) returns (y:int)
var y_1,y_2: int;
let
y_1 = with n=1 then x[0]
        else Max(n div 2,x[0..(n div 2)--1]);
y_2 = with n=1 then x[0]
        else Max((n+1) div 2, x[(n div 2)..n--1]);
y = if y_1 >= y_2 then y_1 else y_2;
tel
```

Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false → pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:

 $\begin{array}{l} Y = \texttt{false} \rightarrow \texttt{pre}(\texttt{Y2}) \\ \texttt{Y2} = \texttt{false} \rightarrow \texttt{pre}(\texttt{Y1}) \\ \texttt{Y1} = \texttt{false} \rightarrow \texttt{pre}(\texttt{Y0}) \\ \texttt{Y0} = \texttt{X}; \end{array}$

Summary

- Lustre is a synchronous dataflow language.
- The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.

To Go Further

- Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre, 2002 http://www-verimag.imag.fr/~halbwach/ lustre-tutorial.html
- Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud, The Synchronous Data-Flow Programming Language Lustre, In Proceedings of the IEEE, 79:9, September 1991, http://www-verimag.imag.fr/~halbwach/lustre: ieee.html