Input: pedestrian pedestrian
Output: sigG sigYsigR sigG
| // 1 | // | | // | >
| 144 I I 144 I I // | t
0 40 60 122.2127.2 187.2
deltaT: O 40 20 62.2 5 60
sleepT:60 20 1000 5 60 60

Alexander Schulz Rosengarten, Reinhard von Hanxleden

Kiel University

Frederic Mallet, Robert de Simone, Julien DeAntoni
INRIA Sophia Antipolis

Lecture 17: Time in SCCharts

Alexander Schulz Rosengarten, Reinhard von Hanxleden

Kiel University

Frederic Mallet, Robert de Simone, Julien DeAntoni
INRIA Sophia Antipolis

Traffic Light as Timed Automaton

continuous variable: x(¢): R
inputs: pedestrian: pure
outputs: sigR, sigG, sigY . pure

x(t) > 60 / sigG [.(gtr)een j
x(7) :_/y o I Mlestrian Ax(t) <60/

red pedestrzan/\x() > 60 / sigY pendlng
x(t)=1 ()
\4
x(t) =0 /
|| > 60 Y
x(t) >5 / sigR ye o /szg

x(t) == [Lee/Seshia]

Alur, Dill, A theory of timed automata, Theoretical Computer Science, 1994

. . TimedTrafficLight
Tra ffl C I_I g ht input signal pedestrian lf-ne e

output signal sigR, sigG, sigY
clockx=0

in SCCharts C

continuous variable: x(¢): R ;(s>5(?0
inputs: pedestrian: pure x=0
outputs: sigR, sigG, sigY : pure &
(1) > 60 / sigG green green
x(t) > sig N
: 1: pedestrlan && x < 60 peYdestrian && x >=60
|9 ;
red pedestrian \x(t) > 60 / sigY =0
x(t)=1 x(t) =0
pending
x(t):=0 ¢ |
yellow |
x(t) >5 / sigR) =1 ;(>.=R5 ;(>-=Y60
t):=0 sigR; sigy;
x(t) X g 0 X g 0
yellow

Roadmap

1. Traffic Light Example

Roadmap

2. Execution Models

Discrete (Logica
iIn Synchronous

V V

) Time

Programming
1202

V

* Synchrony Hypothesis:

|
| > 1

Outputs are synchronous with inputs

 Computation "does not take time"

e Actual computation time does not influence result

* Sequence of outputs determined by inputs

Event-Triggered Execution

Environment

Trigger Unit}---H<K .
A
. Event Trigger
' >
Sensors Inputs

Tick
Function
(Automaton)

>
Outputs
>

Actuators

continuous variable: x(z): R Assume pedestrian button
inputs: pedestrian: pure

outputs: sigR, sigG, sigY : pure

green
x(t) > 60 / sigG

— EE—

red pedestrian /\x(t > 60 / sigY pendmg
0
x(1):=0 \ /
>
(1) > 5/ si yeIIow 60 / szgY

SigR

x(t):=0

.«

[Lee/Seshia]
Event-Triggered Execution, with initial tick at t = 0:

Input: pedestrian pedestrian
Output: sigG
| yya /L i //

pressedatt=40and t=122.2

x(7) :_/) =1 westrian Ax(t) <60 /

I /7 1 /7 I // 9
0 40 122.2

~Y

Synchronous Execution

Initialize Memory

Initialize Memor .
. Y for each clock tick do
for each input event do
Read Inputs
Compute Outputs
Compute Outputs
Update Memory
Update Memory
end end

Fig.1 Two common synchronous execution schemes: event
driven (left) and sample driven (right).

[Benveniste et al., The Synchronous Languages Twelve Years
Later, Proc. IEEE, 2003] 10

Time-Triggered Execution

Y

Environment

Time Manager

Time Trigger
Trigger Unit}---H<K .
A
. Event Trigger
' >
Sensors Inputs

Tick
Function
(Automaton)

>
Outputs
>

Actuators

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressed att=40and t = 122.2

x(t) > 60 / sigG ﬂ
o0): / I westrian Ax(t) <60 /
)

(red J pedestrian /\x(t > 60 / sigY [pending]
0

x(t):=0
0> fsigk [1 260 i

x(t):=0

.«

[Lee/Seshia]
Recall: Event-Triggered Execution:

Input: pedestrian pedestrian
Output: sigG

| //] // i //
! 7/ 1 7/ | 7/ 12
0 40 122.2

~Y

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressedatt=40and t=122.2

x(t) > 60 / sigG ﬂ
o) / I westrian Ax(t) <60 /
)

(red J pedestrian /\x(t > 60 / sigY [pending]
0

x(t):=0
0> fsigk [1 260 i

x(t):=0

.«

[Lee/Seshia]
Time-Triggered Execution (every 5 sec):

Input: pedestrian pedestrian
Output: sigG . :sigY:sigR sigG

T T Y 720 T R R R R Y 7 2 T R Y 7 2 T
/T T T T/ T 7/T T

0 10 40 50 60 120 130 180 190 ¢

Multiform Notion of Time

Only the simultaneity and precedence of events are
considered.

This means that the physical time does not play any
special role.

This is called multiform notion of time.
[https://en.wikipedia.org/wiki/Esterel]

Packaging Physical Time as Events

T™S TMS
HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS

RERRRREREER

[Timothy Bourke, SYNCHRON 2009]

Event "HMS": 100 psec have passed since last HMS
Event "TMS": 1000 psec have passed since last TMS

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressed att=40and t = 122.2

x(t) > 60 / sigG ﬂ
o0): / I wesm'an Ax(t) <60 /
)

(red J pedestrian /\x(t > 60 / sigY [pending]
0

x(t):=0
0> fsigk [1 260 i

x(t):=0

.«

[Lee/Seshia]
Time-Event-Triggered Execution, Multiform Time:

Input: pedestrian pedestrian
Output; sigG -SInggR sigG
| | L // 1| | | | i L // 11 L // 1 i
| | T 7/ 1 | | | | 7/ 11 | 7/ 1)

|
I
0 10 40 50 60 120 130 180 %90 L

£

Event-Triggered Time Trlggered
Time-Event-Triggered Eager

O EBLEFTHTL TD Uit Ouih) AUTHOR =

From the University of London Computer Centre Newsletter No. 53, March 1973

What the User (Probably) Wanted

,We assume here that a transition is
taken as soon as it is enabled. Other
transition semantics are possible.”

[Lee/Seshia 2017]

We call this eager semantics.

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressedatt=40and t=122.2

x(t) > 60 / sigG ﬂ
o) / I westrian Ax(t) <60 /
)

(red J pedestrian /\x(t > 60 / sigY [pending]
0

x(t):=0
0> fsigk [1 260 i

x(t):=0

.«

[Lee/Seshia]
Eager Semantics:

Input: pedestrian pedestrian
Output: sigG sigY:sigR SigG

| // | i 7/ | // |
i 7/ 1 | 7/ I 7/ 5
0 40 60 122.2127.2 187.2

~Y

Time in SCCharts — Requirements

1.

3.

4.

5.

Seamless fit into synchronous paradigm

* Still deterministic behavior — outputs fully determined by inputs
* No changes to underlying SC (Sequentially Constructive) MoC

Approximate eager semantics
 Modulo run-time variations and imperfections of physical timers

Scalability

e E.g., allow arbitrary number of (concurrent) timers

Fine granularity

* Gcd may be arbitrarily small, w/o performance penalty
* E.g., may have timeouts of 1 sec and 3.1415926 msec in same model

Time composability
* E.g., waiting 1 sec. twice should mean the same as waiting 2 sec’s once

Time in SCCharts — Requirements

6. Preserve temporal order and simultaneity
e E.g., timers started in same tick and running same duration should expire
in same tick
7. Minimize impact of physical timer variations
* E.g., avoid accumulations of timer imperfections

8. Give application access to physical time and tick computation
time
* Facilitates e.g. load-dependent execution modes

9. Lean, application-independent interface to environment
* E.g., interface should not change if number of timers changes

10. Fit into Single Language-Driven Incremental Compilation (SLIC)
concept
* New timing constructs are just syntactic sugar on top of existing SCCharts
* Transforming away timing constructs requires only local changes
* No changes needed to compilation back-end

Roadmap

3. Dynamic Ticks

Reinhard von Hanxleden (U Kiel)
e)

— —— E— o . . el e ey e
|

Alain Girault (INRIA and U Grrenoble)

| e 19 Sep 2017, FDL '17I Verona

"—-———-———u————————-———_—___—___—_—_—__

2

Dynamic Ticks vo. 10 Lo,

* Recall logical time:

|
I
0 1 2
I Co /‘OO I Cy 0, Iil Cs /?2
* Physical time, \'tick() SJtic;k() tick()
time-triggered: > 1 [psec]
Wy =0 w, =100 w,=200
1, O, I, 0, I, 0,
: : tick tick tick f
* Physical time, | & ()& | k) | k()
dynamic ticks: | N W > 1

24

Recall: Time-Triggered Execution

Y

Environment

Time Manager

Time Trigger
Trigger Unit}---H<K .
A
. Event Trigger
' >
Sensors Inputs

Tick
Function
(Automaton)

>
Outputs
>

Actuators

Eager Execution with Dynamic Ticks

Environment

-------------------- Time Manager

E Time Trigger deltaTv TsleepT
Y
Trigger Unith---"K - _»
X Tick
! Event Trigger Function
! » (Automaton) >
Sensors Inputs g Outputs > Actuators

deltaT: Time since last tick
sleepT: Requested delay until next tick .

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressedatt=40and t=122.2

x(t) > 60 / sigG ﬂ
o) / I westrian Ax(t) <60 /
)

red pedestrian /\x(t > 60 / sigY pending
0
=0

/> 60 / Sng

[Lee/Seshia]

=
ﬁi‘(
\V/
W
|~
S =
o
%/
(—II

X(t) =

Recall: Eager Semantics
Input: pedestrian pedestrian
Output: sigG sigY:sigR SigG
| //] i /L1 | // L5
I /7 1 I // | | // | ¢

0 40 60 122.2127.2 187.2

27

continuous variable: x(¢): R Assume pedestrian button

inputs: pedestrian: pure B -
outputs: sigR, sigG, sigY : pure pressedatt=40and t=122.2

x(t) > 60 / sigG ﬂ
o) / I westrian Ax(t) <60 /
)

red pedestrian /\x(t > 60 / sigY pending
0
=0

/> 60 / Sng

=
ﬁi‘(
\V/
W
|~
S =
o
%/
(—II

X(t) =

. . . . [Lee/Seshia]

Eager Execution with Dynamic Ticks:
Input: pedestrian pedestrian 5
Output: sigG sigY'sigR sigG

| /[| i [/ | | /L L3

I // I I // | | // | t

0 40 60 122.2127.2 187.2
deltaT: O 40 20 62.2 5 60

sleepT:60 20 1000 5 60 60

Multiform Notion of Time — Again!

* Semantically, treat clocks (time) as a unit-less number

* As in timed automata, clocks must satisfy
monotonicity (modulo resets) and progress

e Current implementation maps time (clock variables)
to an approximation of real numbers (float),
interpreted as seconds

* However, could also map clocks to integers,
interpreted as Euros spent, fathoms travelled, or
beers consumed

Roadmap

4. Time in SCCharts: “clock”

Recall: Traffic Light in SCCharts

TimedTrafficLight

input signal pedestrian
output signal sigR, sigG, sigY

clockx =0
(o)

X >= 60
/ sigG;
x=0

v

green

—

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigy;
x=0
pending
I
;(>'=R5 7(>_=Y60
sigR; sigY;
X g 0 X g 0

yellow

15t Expand Clock

TimedTrafficLight

input signal pedestrian
output signal sigR, sigG, sigY

TimedTrafficLight

input float deltaT

input signal pedestrian
output signal sigR, sigG, sigY
float x =0.0

red
during /x +=deltaT

~

clock x = 0 X >= 60
/ sigG;
;(s>|g(§0 S
X = during /x +=deltaT
grien ‘ 1: pedestriam e
| _— \ I |gY,
1: pedestrian && x < 60 pe\;iestrian && x >=60 = 0.0
4 pending
penI ing during /x += deltaT
X >= 5_ X>= 6_0 |
N o S S
/ sigR; / sigY;
\ l / x=0.0 x=0.0
- \ l /
yellow

during /x +=deltaT

pedestrian && x >= 60

TimedTrafficLight

input signal pedestrian
output S|gnal sigR, sigG, sigY

clock x =

¥ input float deltaT
“input-signal—pedestrian
_output.signal sigR, sigG, sigY
¢ float x = 0.0

TimedTrafficLight

/

1: pedestrian && x < 60

red
during /x +=deltaT

X >= 60
‘ / $igG;
X = 00

green
during /X += deltaT

219 Add Dynamic Ticks

TimedTrafficLight

input float deltaT

input signal pedestrian
output signal sigR, sigG, sigY
float x =0.0

red
during /x += deltaT

X >=60
/ sigG;
X = 0.0

'

green
during /x += deltaT

— I

1: pedestrian && x < 60 pedestrlan && x >= 60

IgY,
=0.0
pending
during /x += deltaT
X>=5 X >= 60
/ sigR; / sigy;
x =0.0 x=0.0
yellow

during /x += deltaT

TimedTrafficLight

input signal pedestrian
output signal sigR, sigG, sigY
float x = 0

input float deltaT = 0.0
output float sleepT = 0.0

immediate during / sleepT = 10.0

red

during / x += deltaT
immediate during x < 6.0 / sleepT min= 6.0 - x

— N

X>=6
/ sigG;
x=0

v

green
during / x += deltaT

~

1: pedestrian && x < 6 2: pedestrian && x >= 6
/ sigY;
x=0

pending

during / x += deltaT
immediate during x < 6.0 / sleepT min= 6.0 - x

X>=2 X>=6
/ sigR; / sigY;
x=0 x=0
yellow

during / x += deltaT
immediate during x < 2.0 / sleepT min= 2.0 - x
34

For sleepT,
SC MoC orders
reset and
update(s)

float x = 0

-

TimedTrafficLight

input signal pedestrian
output signal sigR, sigG, sigY

I T inputsfloat*deitaT="0r0

output float sleepT =
| immediate during / sleepT = 10.0

0.0

during / x +=
immediate during x < 6.0 / sleepT min= 6.0 - x

red
deltaT

/

Must guard
timeout tick
(missed this in

paper!)

No reset here

-

X>=2

/ sigR;
x=0

N~

X

/

green
during / x += deltaT

2: pedestrian && x >= 6

1: pedestrian && x < 6

l

pending

during / x += deltaT
immediate during x < 6.0 / sleepT min= 6.0 - x

X>=6
/ sigy;
Xx=0

v

yellow

during / x += deltaT
immediate during x < 2.0 / sleepT min= 2.0 - x

=~

>=6
sigG;
x=0

v

/ sigY;
x=0

N

“x > 6" induces

lower timing
bound (Itb) of 6

“x < 6” cancels
Itb of 6

RN

—

For X,
SC MoC orders
reset, update,
read

Roadmap

5. Multiclocks in SCCharts: “period”

Multiclocks

Motor
output bool motorL = false, motorR = false
Left Right
period 4.2 period 1.0

Cxl motorL = false ~ (xl motorR = false ~
/ motorL = true A / motorR = true A

Motor

|\/| U ‘t|C | OC kS output bool motorL = false, motorR = false

clockx =0 cloc

bool tick = false boo

Left Ri
tick

output bool motorL = false, | ImotorL = false C
i tick

period 4.2 /'motorL = true

/ motorL = false <~ _
Cx Period Pe
/ motorL = true — - _

2: | tick|= false

S —

Roadmap

6. Demo

2 ;|
@$?Jlj hSttE://CVV:\A}:\:lv.saccE:atrtSs.com/

@KIELER

The Key to Efficient Modeling

http://www.rtsys.informatik.uni-
kiel.de/en/research/kieler

Eclipse Layout Kernel

https://www.eclipse.org/elk/

All available as open source under EPL

40

http://www.sccharts.com/
http://www.rtsys.informatik.uni-kiel.de/en/research/kieler
https://www.eclipse.org/elk/

“avoid accumulations of timer imperfections”

Grab deltaT from environment, derive from it physical time t

[JON) y 4 kieler-workspace - fdl18/spec/motor_new.sctx - KIELER
il @~ bl Bt Q- Qi 71“5 R R RS - T
& | timed_traffic_| E motor_new.sctx 88 2y = O ol Diagram & S ELE HRSE O- =0
] 1=@Dynami q
z €0 h t‘Mo‘t 1%@ Motor
9 Scchar or during / t += deltaT
4= output bool motorL # false, immediate during / sleepT = 1000.0
5 motorR = falset
. "\ r \
& input float deltaT Lot Right
7= @PrintFormat "%.4f" ik tick
o c c
2 output float t / motorL = false / motorR = false
2, during do t += deltal tick tick
11 / motorL = true / motorR = true
12 region Left {
13e @HardReset // In paper: @Har
4 eriod 4.2 M:c>=4.2 1:¢>=1.0 m
L pert Je=0; 1) /c=0;
15 L. | tick = true tick = true =
16¢ initial state Off ""
7 do motorL = true go to On
18 . .
19 state On "" 2: [tick = false 2: [tick = false
20 do motorL = false go to Off /\
21
5 ¥ during / ¢ += deltaT during / ¢ += deltaT
22 . immediate during ¢ < 4.2 / SlgepT min= 4.2 - ¢ immediate during ¢ < 1.0 / sleepT min= 1.0 - ¢
23= region Right {
24¢ @HardReset // In paper: @Har —
25 period 1.0 A
L Kieler Compiler E Console [Simulation &2 |\ deltaT: 0,2410 sec; sleepT: 1,0000 sec = Dynamic B »eo A
Variable Value User History \
deltaT 0,7720 0,7720, 0,2540, 1,0360, 1,0400, 1,0320, 0,8680, 0,1500, 1,0320, 1,0280, 1,0340, 0,9940, 0,0470, 1,0480, 1,0420, 1,0300, 1,0460, 0,0000
motorL true true, true, false, false, false, false, false, true, true, true, true, true, false, false, false, false, false
motorR true true, false, false, true, false, true, false, false, true, false, true, false, false, true, false, true, false
sleepT 1,0000 14,000000,7460, 0,2240, 1,0000, 1,0000, 1,0000, 0,8500, 0,1120, 1,0000, 1,0000, 1,0000, 0,9530, 0,0340, 1,0000, 1,0000, 1,0000, 1,0000
t 13,4530 13,4530,12,6810, 12,4270, 11,3910, 10,3510, 9,3190, 8,4510, 8,3010, %,2690, 6,2410, 5,2070, 4,2130, 4,1660, 3,1180, 2,0760, 1,0460, 0,0000
P iR -
Af h lprit: al
L] L]
PROBLEM: Atter 13 sec, accu- The culprit: always
41

mulated 0.453 sec delay! reset clocks to O!

“avoid accumulations of timer imperfections”
SOLUTION: Change @HardReset (in paper) to @SoftReset (now default)

[NoN] ’_
S @kl B Q- Qi Y
o | timed_traffic_| |2 motor_new.sctx 2 A4 = O
f 12@

2 @ 1000

3 scchart Motor {

4 output bool motorL =/false,

5 motorR = false

6 input float deltal

@ "%.4F"

W oo~

output float t
10 during do t 4 deltaTl
11
12 region Left-{
3 @ ¥/ In paper: @Har
14 period 4.2
16¢ initial state Off ""
17 do motorL = true go to On
18
19 state On ""
20 do motorL = false go to Off
21 }
22
23 region Right {
24 @ // In paper: @Har
25 period 1.0

L Kieler Compiler E Console [Simulation 52
Variable Value User History

deltaT 0,4110
motorL true
motorR true
sleepT 0,9730
t 13,0270

~ X0 o

kieler-workspace - fdl18/spec/motor_new.sctx - KIELER

L =R

o Diagram &2

Motor
during / t += deltaT
immediate during / sleepT = 1000.0
3\ # 3
Left Right
tick tick
/ motorL = false / motorR = false
tick tick
| motorL = true / motorR = true
11:c>=4.2 1:c>=1.0
/c-=4.2; /c-=1.0;
| tick = true tick = true
2: [tick = false 2: [tick = false
during / ¢ += deltaT during / ¢ += deltaT
immediate during c < 4.2 / *epT min= 4.2 - ¢ immediate during c < 1.0 / sleepT min= 1.0-c
N ‘ \
A\

deltaT: 0,4370 sec; sleepT: 0,9730 sec Dynamic

B eppE v=15

0,4110, 0,5750, 1,0330, 0,9880, 0,9880, 0,6240, 0,3620, 1,0340, 0,8870, 1,0000, 0,7920, 0,2060, 1,0060, 0,9950, 0,9800, 1,0460, 0,0000

true, true, false, false, false, false, false, true, true, true, true, true, false, false, false, false, false

true, false, false, true, false, true, false, false, true, false, true, false, false, true, false, true, false

10,9730p0,3840, 0,5590, 0,9920, 0,9800, 0,9680, 0,5920, 0,3540, 0,9880, 0,9750, 0,9750, 0,7670, 0,1730, 0,9790, 0,9740, 0,9540, 1,0000

13,0270, 12,6160, 12,0410, 11,0080, 10,0200, 9,0320, 8,4080, 8,0460,7,0120, 6,0250, 5,0250, 4,2330, 4,0270, 3,0210, 2,0260, 1,0460, 0,0000
-

il

,
After 13 sec, accumulated only

0.027 sec delay!

\

Instead of reset to 0, subtract
42
previously requested time-out

Summary

* Timed automata used not just for verification, but also
for synthesis

* Synchronous execution model cleanly contains non-
determinism, at timing 1/O-interface

* Can extend easily to multi-clock design

* Multiform notion of time retained — but package “time”
not as events, but clocks (represented as, e.g., integers)

* Added two keywords (clock, period) as extended
SCChart features

* Further annotations (@HardReset, @DefaultSleep) to
control external interface

e Same concepts can be applied to other synchronous
languages

ADVERTISEMENT

Forum on specification <
Design Languages

A

2—4 September 2019 | S

FDL is a well-established international forum to exchange experiences and promote new trends in the application of languages, their associated
design methods, and tools for the design of electronic systems. Electronic systems of interest to FDL include (but are not limited to) those that are
used in Internet of Things (loT), Cyber-Physical Systems (CPS), mixed criticality embedded systems, embedded systems for high-performance

computing, automated driving and driver assistance, real-time systems, reconfigurable and secure computing.

FDL stimulates scientific and controversial discussions within and in-between scientific topics as described below. The program structure includes
original research sessions, tutorials, panels, and technical discussions. “Wild and Crazy Ideas” and work in progress are welcome.

We welcome authors to submit manuscripts on topics including, but not limited to:
« Languages and formalisms in the design, test, verification, and simulation of electronic systems.
« Requirements and property specifications, models of computations, automata, networks, model- and component-based design.

« Platform modeling and abstraction, and system-level design languages.
« Synchronous and functional languages for reactive and concurrent systems.

« System design involving modern approaches such as machine learning and its verification, as well as modern computing architectures such
as energy-efficient and high-performance computing, accelerators including GPUs and FPGAs, and loT applications.

« Languages and compilers for multi/many-core and heterogeneous architectures.

« Formal methods and languages for model development and verification
« Languages in model-based design of intelligent systems and machine learning
« High-level hardware and software synthesis, virtual prototyping, and design space exploration.

Keynotes: David Broman | KTH Royal Institute of Technology, Stephen Edwards | Columbia University, Marc Pouzet | Ecole Normale Supérieure

Submissions:

We invite full research papers, for oral presentation,
which cover novel and complete research work
supported by experimental results. We also invite
short papers, for interactive presentations/posters,
which may include "wild and crazy ideas", work in
progress, case studies or industrial experience reports.
Authors should submit papers in double column, IEEE
format as PDF through the submission system. A full
research paper has a maximum of 8 pages, short
papers may have up to 4 pages. Submitted papers
must be anonymous (double blind), must describe
original unpublished work, and must not be under
consideration for publication elsewhere. Full research
papers may be accepted as short papers.

< IEEE
EmA

@
& ey woniauo arow e

UNIVERSITA | oiarimento
di VERONA | ¢ INFoRmATICA

Special Sessions should focus on a topic
which is of particular interest to the FDL
audience. Special Sessions consist of two
to four invited talks. Speakers are
requested to either submit a one page
abstract of their presentation, or to submit
a short or full paper that goes through the
regular review and publication process.

Potential organizers of a Special Session
must submit a brief proposal (no more
than two pages) which describes the
topic, the intended audience, as well as a
list of possible speakers to
fdI2019@easychair.org.

General Chair: Tom J Kazmierski | Univ. of Southampton
Program Chair: Reinhard von Hanxleden | Kiel Univ.
Program Co-Chair and Local Chair: Terrence Mak | Univ. of

Southampton

Special Session Chair: Daniel Grosse | Univ. of Bremen
Finance Chair: Franco Fummi | Univ. of Verona
Web Chair: Florenc Demrozi | Univ. of Verona

UNIVERSITY OF Panel/Tutorial Chair: Carna Zivkovic | TU Kaiserslautern

Southampton

Conference proceedings will be
published in electronic form with
an ISSN and an ISBN number and
made available on IEEE Xplore.

In addition, an edited collection of
extended versions of selected
best papers will be published as a
book by Springer.

Accepted papers must be
presented by one of the authors. A
full registration for each paper is
required prior to the final paper
version deadline.

Special Sessions: Mar 22, 2019
Abstract Deadline: Apr 19, 2019
Paper Deadline: Apr 26, 2019
Author Notification: Jun 21, 2019

Final Version: Jul 19, 2019

FDL'19:
Southampton,
Papers wanted!

FDL'20: Kiel,
Papers and PC
wanted!

FDL'21: France,

Papers, PC and
GC wanted!

