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Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.
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[Lee/Seshia]

3Alur, Dill, A theory of timed automata, Theoretical Computer Science, 1994
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TimedTra�cLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
  x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0

x >= 60
/ sigY;
  x = 0

x >= 5
/ sigR;
  x = 0

-
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Discrete (Logical) Time 
in Synchronous Programming

• Synchrony Hypothesis: 
Outputs are synchronous with inputs
• Computation "does not take time"
• Actual computation time does not influence result
• Sequence of outputs determined by inputs

0

I0O0

tl

I1O1 I2O2

1 2
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Event-Triggered Execution
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Event-Triggered Execution, with initial tick at t = 0:

Assume pedestrian button 
pressed at t = 40 and t = 122.2

[Lee/Seshia]
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Synchronous Execution

[Benveniste et al., The Synchronous Languages Twelve Years 
Later, Proc. IEEE, 2003] 10
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Recall: Event-Triggered Execution:

Assume pedestrian button 
pressed at t = 40 and t = 122.2

[Lee/Seshia]
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Time-Triggered Execution (every 5 sec):

Assume pedestrian button 
pressed at t = 40 and t = 122.2

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigYsigRsigG

180 190

pedestrian
sigG

[Lee/Seshia]
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Multiform Notion of Time

Only the simultaneity and precedence of events are
considered. 
This means that the physical time does not play any
special role. 
This is called multiform notion of time.
[https://en.wikipedia.org/wiki/Esterel]

14

[Timothy Bourke, SYNCHRON 2009]

Event "HMS":  100 μsec have passed since last HMS
Event "TMS":  1000 μsec have passed since last TMS

Packaging Physical Time as Events
TMS TMS TMS TMS

HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS

await 5 HMS; emit Enable(true ); await 3 TMS; emit Enable( false );

await 5 HMS; emit Enable(true ); await 30 HMS; emit Enable( false );

Fig. 4: Granularity of timing inputs

or module, as for pause statements, certain timing inputs are distinguished and
assigned fixed delay values. The delay values are usually relative to the initial
reaction or to system startup. Timing inputs must be provided by the interface or
run-time layer at regular intervals. They are invariably given suggestive names,
for example SECOND or MSEC.

Returning to the microprinter, a controller program could commence with
declarations of two timing inputs, TMS for ‘tenths of milliseconds’ and HMS for
‘hundredths of milliseconds’:

input TMS, % ms/10
HMS; % ms/100

r e l a t i o n TMS => HMS; .

Longer delays would be specified in terms of TMS:
present LongStep

then await 24 TMS
e l s e await 17 TMS

end present .

and shorter ones in terms of HMS:
loop

emit Enab le ( f a l s e ) ;
await 5 HMS;
emit Enab le ( true ) ;
await 30 HMS

end loop .

Timing inputs are employed in several examples [6,7]. They fit superbly with
the idea of multiform time and the abstract synchronous model. They work well
with other Esterel constructs like suspend and abort.

There are, however, at least three disadvantages to counting timing inputs.
First, although the relation between timing inputs and physical time seems in-
tuitive, there are some subtleties related to granularity and relativity. Second,
although signal counting programs are relatively unaffected by changes to ex-
ecution mode and period, the choice of signal granularity is effectively an im-
plementation choice and trading accuracy for economy afterward may not be
trivial. Third, the structure of the state space of signal counting programs may
be difficult for debugging and model checking tools to exploit.

15
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Time-Event-Triggered Execution, Multiform Time:

Assume pedestrian button 
pressed at t = 40 and t = 122.2

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigG

180 190

pedestrian
sigGsigYsigR

[Lee/Seshia]

16



17

Event-Triggered Time-Triggered

Time-Event-Triggered Eager

What the User (Probably) Wanted 

„We assume here that a transition is
taken as soon as it is enabled. Other 
transition semantics are possible.“
[Lee/Seshia 2017]

We call this eager semantics.

18
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Eager Semantics:

Assume pedestrian button 
pressed at t = 40 and t = 122.2

0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2127.2

[Lee/Seshia]
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Time in SCCharts – Requirements
1. Seamless fit into synchronous paradigm

• Still deterministic behavior – outputs fully determined by inputs
• No changes to underlying SC (Sequentially Constructive) MoC

2. Approximate eager semantics
• Modulo run-time variations and imperfections of physical timers

3. Scalability
• E.g., allow arbitrary number of (concurrent) timers

4. Fine granularity
• Gcd may be arbitrarily small, w/o performance penalty
• E.g., may have timeouts of 1 sec and 3.1415926 msec in same model

5. Time composability
• E.g., waiting 1 sec. twice should mean the same as waiting 2 sec’s once

20



Time in SCCharts – Requirements
6. Preserve temporal order and simultaneity

• E.g., timers started in same tick and running same duration should expire 
in same tick

7. Minimize impact of physical timer variations
• E.g., avoid accumulations of timer imperfections

8. Give application access to physical time and tick computation 
time
• Facilitates e.g. load-dependent execution modes

9. Lean, application-independent interface to environment
• E.g., interface should not change if number of timers changes

10. Fit into Single Language-Driven Incremental Compilation (SLIC) 
concept
• New timing constructs are just syntactic sugar on top of existing SCCharts
• Transforming away timing constructs requires only local changes
• No changes needed to compilation back-end

21

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo
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Real-Time 
Ticks for Synchronous 

Programming

Reinhard von Hanxleden (U Kiel)
Timothy Bourke (INRIA and ENS, Paris)
Alain Girault (INRIA and U Grenoble)

19 Sep 2017, FDL '17, Verona
23

Dynamic Ticks

0

I0O0

tl

I1O1 I2O2

1 2
• Recall logical time:

• Physical time,
time-triggered:

• Physical time,
dynamic ticks:

24



Recall: Time-Triggered Execution

Environment
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Eager Execution with Dynamic Ticks

Environment

Sensors

Tick
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Inputs Outputs

sleepTdeltaT
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Actuators

Tick

Time Manager
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deltaT: Time since last tick
sleepT: Requested delay until next tick
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Recall: Eager Semantics

Assume pedestrian button 
pressed at t = 40 and t = 122.2

0 t

Input:
Output:
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sigY sigRsigG
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[Lee/Seshia]
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Eager Execution with Dynamic Ticks:

Assume pedestrian button 
pressed at t = 40 and t = 122.2

[Lee/Seshia]

0 t

Input:
Output:

40 60
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deltaT:
122.2127.2

sigY sigR
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0 40 20 62.2 5 60
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Multiform Notion of Time – Again!

• Semantically, treat clocks (time) as a unit-less number
• As in timed automata, clocks must satisfy 
monotonicity (modulo resets) and progress
• Current implementation maps time (clock variables) 

to an approximation of real numbers (float), 
interpreted as seconds
• However, could also map clocks to integers, 

interpreted as Euros spent, fathoms travelled, or 
beers consumed

29
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Recall: Traffic Light in SCCharts
TimedTra�cLight

input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
  x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0

x >= 60
/ sigY;
  x = 0

x >= 5
/ sigR;
  x = 0

-
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1st: Expand Clock
TimedTra�cLight

input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
  x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0

x >= 60
/ sigY;
  x = 0

x >= 5
/ sigR;
  x = 0

-

TimedTra�cLight
input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
  x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
  x = 0.0

-
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TimedTra�cLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
  x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0

x >= 60
/ sigY;
  x = 0

x >= 5
/ sigR;
  x = 0

-

TimedTra�cLight
input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
  x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
  x = 0.0

-
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2nd: Add Dynamic Ticks
TimedTra�cLight

input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
  x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
  x = 0.0

-
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“x ≥ 6” induces 
lower timing 

bound (ltb) of 6

“x < 6” cancels 
ltb of 6

Must guard 
timeout tick 

(missed this in 
paper!)

No reset here For x,
SC MoC orders 
reset, update, 

read

For sleepT, 
SC MoC orders 

reset and 
update(s)

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo
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Multiclocks

Motor
output bool motorL = false, motorR = false

period 4.2

/ motorL = true

/ motorL = false

-  Left
period 1.0

/ motorR = true

/ motorR = false

-  Right
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Multiclocks

Motor
output bool motorL = false, motorR = false

period 4.2

/ motorL = true

/ motorL = false

-  Left
period 1.0

/ motorR = true

/ motorR = false

-  Right

Motor
output bool motorL = false, motorR = false

clock x = 0
bool tick = false

tick
/ motorL = true

tick
/ motorL = false

- Left

2: / tick = false

1: x >= 4.2
/ x = 0;
  tick = true

- Period

-
clock x = 0
bool tick = false

tick
/ motorR = true

tick
/ motorR = false

-  Right

2: / tick = false

1: x >= 1.0
/ x = 0;
  tick = true

-  Period

-
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Eclipse Layout Kernel

SCCharts
http://www.sccharts.com/

http://www.rtsys.informatik.uni-
kiel.de/en/research/kieler

https://www.eclipse.org/elk/

All available as open source under EPL 40



”avoid accumulations of timer imperfections”

41
PROBLEM: After 13 sec, accu-
mulated 0.453 sec delay!

Grab deltaT from environment, derive from it physical time t

The culprit: always 
reset clocks to 0!

”avoid accumulations of timer imperfections”

42
After 13 sec, accumulated only 
0.027 sec delay!

SOLUTION: Change @HardReset (in paper) to @SoftReset (now default)

Instead of reset to 0, subtract 
previously requested time-out

Summary
• Timed automata used not just for verification, but also 

for synthesis
• Synchronous execution model cleanly contains non-

determinism, at timing I/O-interface
• Can extend easily to multi-clock design
• Multiform notion of time retained – but package “time” 

not as events, but clocks (represented as, e.g., integers)
• Added two keywords (clock, period) as extended 

SCChart features
• Further annotations (@HardReset, @DefaultSleep) to 

control external interface
• Same concepts can be applied to other synchronous 

languages
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