
Alexander Schulz Rosengarten, Reinhard von Hanxleden
Kiel University

Fréderic Mallet, Robert de Simone, Julien DeAntoni
INRIA Sophia Antipolis

0 t

Input:
Output:

40 60

pedestrian
sigG

deltaT:
122.2127.2

sigY sigR

187.2

pedestrian
sigG

0 40 20 62.2 5 60
sleepT:60 20 1000 5 60 60

Lecture 17: Time in SCCharts

Alexander Schulz Rosengarten, Reinhard von Hanxleden
Kiel University

Fréderic Mallet, Robert de Simone, Julien DeAntoni
INRIA Sophia Antipolis

Traffic Light as Timed Automaton

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

[Lee/Seshia]

3Alur, Dill, A theory of timed automata, Theoretical Computer Science, 1994

Traffic Light
in SCCharts

4

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

TimedTra�cLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

5

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

6

Discrete (Logical) Time
in Synchronous Programming

• Synchrony Hypothesis:
Outputs are synchronous with inputs
• Computation "does not take time"
• Actual computation time does not influence result
• Sequence of outputs determined by inputs

0

I0O0

tl

I1O1 I2O2

1 2

7

Event-Triggered Execution

Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

Event Trigger

Trigger Unit

Actuators

Tick

8

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

0 t

Input:
Output:

40 122.2

pedestrian
sigG
pedestrian

Event-Triggered Execution, with initial tick at t = 0:

Assume pedestrian button
pressed at t = 40 and t = 122.2

[Lee/Seshia]

9

Synchronous Execution

[Benveniste et al., The Synchronous Languages Twelve Years
Later, Proc. IEEE, 2003] 10

Time-Triggered Execution

Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

Event Trigger

Time Trigger

Trigger Unit

Actuators

Tick

Time Manager

11

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

0 t

Input:
Output:

40 122.2

pedestrian
sigG
pedestrian

Recall: Event-Triggered Execution:

Assume pedestrian button
pressed at t = 40 and t = 122.2

[Lee/Seshia]

12

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Time-Triggered Execution (every 5 sec):

Assume pedestrian button
pressed at t = 40 and t = 122.2

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigYsigRsigG

180 190

pedestrian
sigG

[Lee/Seshia]

13

Multiform Notion of Time

Only the simultaneity and precedence of events are
considered.
This means that the physical time does not play any
special role.
This is called multiform notion of time.
[https://en.wikipedia.org/wiki/Esterel]

14

[Timothy Bourke, SYNCHRON 2009]

Event "HMS": 100 μsec have passed since last HMS
Event "TMS": 1000 μsec have passed since last TMS

Packaging Physical Time as Events
TMS TMS TMS TMS

HMS HMS

await 5 HMS; emit Enable(true); await 3 TMS; emit Enable(false);

await 5 HMS; emit Enable(true); await 30 HMS; emit Enable(false);

Fig. 4: Granularity of timing inputs

or module, as for pause statements, certain timing inputs are distinguished and
assigned fixed delay values. The delay values are usually relative to the initial
reaction or to system startup. Timing inputs must be provided by the interface or
run-time layer at regular intervals. They are invariably given suggestive names,
for example SECOND or MSEC.

Returning to the microprinter, a controller program could commence with
declarations of two timing inputs, TMS for ‘tenths of milliseconds’ and HMS for
‘hundredths of milliseconds’:

input TMS, % ms/10
HMS; % ms/100

r e l a t i o n TMS => HMS; .

Longer delays would be specified in terms of TMS:
present LongStep

then await 24 TMS
e l s e await 17 TMS

end present .

and shorter ones in terms of HMS:
loop

emit Enab le (f a l s e) ;
await 5 HMS;
emit Enab le (true) ;
await 30 HMS

end loop .

Timing inputs are employed in several examples [6,7]. They fit superbly with
the idea of multiform time and the abstract synchronous model. They work well
with other Esterel constructs like suspend and abort.

There are, however, at least three disadvantages to counting timing inputs.
First, although the relation between timing inputs and physical time seems in-
tuitive, there are some subtleties related to granularity and relativity. Second,
although signal counting programs are relatively unaffected by changes to ex-
ecution mode and period, the choice of signal granularity is effectively an im-
plementation choice and trading accuracy for economy afterward may not be
trivial. Third, the structure of the state space of signal counting programs may
be difficult for debugging and model checking tools to exploit.

15

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Time-Event-Triggered Execution, Multiform Time:

Assume pedestrian button
pressed at t = 40 and t = 122.2

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigG

180 190

pedestrian
sigGsigYsigR

[Lee/Seshia]

16

17

Event-Triggered Time-Triggered

Time-Event-Triggered Eager

What the User (Probably) Wanted

„We assume here that a transition is
taken as soon as it is enabled. Other
transition semantics are possible.“
[Lee/Seshia 2017]

We call this eager semantics.

18

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Eager Semantics:

Assume pedestrian button
pressed at t = 40 and t = 122.2

0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2127.2

[Lee/Seshia]

19

Time in SCCharts – Requirements
1. Seamless fit into synchronous paradigm

• Still deterministic behavior – outputs fully determined by inputs
• No changes to underlying SC (Sequentially Constructive) MoC

2. Approximate eager semantics
• Modulo run-time variations and imperfections of physical timers

3. Scalability
• E.g., allow arbitrary number of (concurrent) timers

4. Fine granularity
• Gcd may be arbitrarily small, w/o performance penalty
• E.g., may have timeouts of 1 sec and 3.1415926 msec in same model

5. Time composability
• E.g., waiting 1 sec. twice should mean the same as waiting 2 sec’s once

20

Time in SCCharts – Requirements
6. Preserve temporal order and simultaneity

• E.g., timers started in same tick and running same duration should expire
in same tick

7. Minimize impact of physical timer variations
• E.g., avoid accumulations of timer imperfections

8. Give application access to physical time and tick computation
time
• Facilitates e.g. load-dependent execution modes

9. Lean, application-independent interface to environment
• E.g., interface should not change if number of timers changes

10. Fit into Single Language-Driven Incremental Compilation (SLIC)
concept
• New timing constructs are just syntactic sugar on top of existing SCCharts
• Transforming away timing constructs requires only local changes
• No changes needed to compilation back-end

21

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

22

Real-Time
Ticks for Synchronous

Programming

Reinhard von Hanxleden (U Kiel)
Timothy Bourke (INRIA and ENS, Paris)
Alain Girault (INRIA and U Grenoble)

19 Sep 2017, FDL '17, Verona
23

Dynamic Ticks

0

I0O0

tl

I1O1 I2O2

1 2
• Recall logical time:

• Physical time,
time-triggered:

• Physical time,
dynamic ticks:

24

Recall: Time-Triggered Execution

Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

Event Trigger

Time Trigger

Trigger Unit

Actuators

Tick

Time Manager

25

Eager Execution with Dynamic Ticks

Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

sleepTdeltaT

Event Trigger

Time Trigger

Trigger Unit

Actuators

Tick

Time Manager

26

deltaT: Time since last tick
sleepT: Requested delay until next tick

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Recall: Eager Semantics

Assume pedestrian button
pressed at t = 40 and t = 122.2

0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2127.2

[Lee/Seshia]

27

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Eager Execution with Dynamic Ticks:

Assume pedestrian button
pressed at t = 40 and t = 122.2

[Lee/Seshia]

0 t

Input:
Output:

40 60

pedestrian
sigG

deltaT:
122.2127.2

sigY sigR

187.2

pedestrian
sigG

0 40 20 62.2 5 60
sleepT:60 20 1000 5 60 60

28

Multiform Notion of Time – Again!

• Semantically, treat clocks (time) as a unit-less number
• As in timed automata, clocks must satisfy
monotonicity (modulo resets) and progress
• Current implementation maps time (clock variables)

to an approximation of real numbers (float),
interpreted as seconds
• However, could also map clocks to integers,

interpreted as Euros spent, fathoms travelled, or
beers consumed

29

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

30

Recall: Traffic Light in SCCharts
TimedTra�cLight

input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

31

1st: Expand Clock
TimedTra�cLight

input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

TimedTra�cLight
input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
 x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
 x = 0.0

-

32

TimedTra�cLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

TimedTra�cLight
input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
 x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
 x = 0.0

-

33

2nd: Add Dynamic Ticks
TimedTra�cLight

input �oat deltaT
input signal pedestrian
output signal sigR, sigG, sigY
�oat x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
 x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
 x = 0.0

-

34

35

“x ≥ 6” induces
lower timing

bound (ltb) of 6

“x < 6” cancels
ltb of 6

Must guard
timeout tick

(missed this in
paper!)

No reset here For x,
SC MoC orders
reset, update,

read

For sleepT,
SC MoC orders

reset and
update(s)

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

36

Multiclocks

Motor
output bool motorL = false, motorR = false

period 4.2

/ motorL = true

/ motorL = false

- Left
period 1.0

/ motorR = true

/ motorR = false

- Right

37

Multiclocks

Motor
output bool motorL = false, motorR = false

period 4.2

/ motorL = true

/ motorL = false

- Left
period 1.0

/ motorR = true

/ motorR = false

- Right

Motor
output bool motorL = false, motorR = false

clock x = 0
bool tick = false

tick
/ motorL = true

tick
/ motorL = false

- Left

2: / tick = false

1: x >= 4.2
/ x = 0;
 tick = true

- Period

-
clock x = 0
bool tick = false

tick
/ motorR = true

tick
/ motorR = false

- Right

2: / tick = false

1: x >= 1.0
/ x = 0;
 tick = true

- Period

-

38

Roadmap

1. Traffic Light Example
2. Execution Models
3. Dynamic Ticks
4. Time in SCCharts: “clock”
5. Multiclocks in SCCharts: “period”
6. Demo

39

Eclipse Layout Kernel

SCCharts
http://www.sccharts.com/

http://www.rtsys.informatik.uni-
kiel.de/en/research/kieler

https://www.eclipse.org/elk/

All available as open source under EPL 40

”avoid accumulations of timer imperfections”

41
PROBLEM: After 13 sec, accu-
mulated 0.453 sec delay!

Grab deltaT from environment, derive from it physical time t

The culprit: always
reset clocks to 0!

”avoid accumulations of timer imperfections”

42
After 13 sec, accumulated only
0.027 sec delay!

SOLUTION: Change @HardReset (in paper) to @SoftReset (now default)

Instead of reset to 0, subtract
previously requested time-out

Summary
• Timed automata used not just for verification, but also

for synthesis
• Synchronous execution model cleanly contains non-

determinism, at timing I/O-interface
• Can extend easily to multi-clock design
• Multiform notion of time retained – but package “time”

not as events, but clocks (represented as, e.g., integers)
• Added two keywords (clock, period) as extended

SCChart features
• Further annotations (@HardReset, @DefaultSleep) to

control external interface
• Same concepts can be applied to other synchronous

languages
ADVERTISEMENT

FDL is a well-established international forum to exchange experiences and promote new trends in the application of languages, their associated
design methods, and tools for the design of electronic systems. Electronic systems of interest to FDL include (but are not limited to) those that are
used in Internet of Things (IoT), Cyber-Physical Systems (CPS), mixed criticality embedded systems, embedded systems for high-performance
computing, automated driving and driver assistance, real-time systems, reconfigurable and secure computing.
FDL stimulates scientific and controversial discussions within and in-between scientific topics as described below. The program structure includes
original research sessions, tutorials, panels, and technical discussions. “Wild and Crazy Ideas” and work in progress are welcome.
We welcome authors to submit manuscripts on topics including, but not limited to:
• Languages and formalisms in the design, test, verification, and simulation of electronic systems.
• Requirements and property specifications, models of computations, automata, networks, model- and component-based design.
• Platform modeling and abstraction, and system-level design languages.
• Synchronous and functional languages for reactive and concurrent systems.
• System design involving modern approaches such as machine learning and its verification, as well as modern computing architectures such

as energy-efficient and high-performance computing, accelerators including GPUs and FPGAs, and IoT applications.
• Languages and compilers for multi/many-core and heterogeneous architectures.
• Formal methods and languages for model development and verification
• Languages in model-based design of intelligent systems and machine learning
• High-level hardware and software synthesis, virtual prototyping, and design space exploration.
Keynotes: David Broman | KTH Royal Institute of Technology, Stephen Edwards | Columbia University, Marc Pouzet | École Normale Supérieure

Important Deadlines (AoE):
Special Sessions: Mar 22, 2019
Abstract Deadline: Apr 19, 2019
Paper Deadline: Apr 26, 2019
Author Notification: Jun 21, 2019
Final Version: Jul 19, 2019

Submissions:
We invite full research papers, for oral presentation,
which cover novel and complete research work
supported by experimental results. We also invite
short papers, for interactive presentations/posters,
which may include "wild and crazy ideas", work in
progress, case studies or industrial experience reports.
Authors should submit papers in double column, IEEE
format as PDF through the submission system. A full
research paper has a maximum of 8 pages, short
papers may have up to 4 pages. Submitted papers
must be anonymous (double blind), must describe
original unpublished work, and must not be under
consideration for publication elsewhere. Full research
papers may be accepted as short papers.

Publications:
Conference proceedings will be
published in electronic form with
an ISSN and an ISBN number and
made available on IEEE Xplore.
In addition, an edited collection of
extended versions of selected
best papers will be published as a
book by Springer.
Accepted papers must be
presented by one of the authors. A
full registration for each paper is
required prior to the final paper
version deadline.

Call for Special Sessions:
Special Sessions should focus on a topic
which is of particular interest to the FDL
audience. Special Sessions consist of two
to four invited talks. Speakers are
requested to either submit a one page
abstract of their presentation, or to submit
a short or full paper that goes through the
regular review and publication process.
Potential organizers of a Special Session
must submit a brief proposal (no more
than two pages) which describes the
topic, the intended audience, as well as a
list of possible speakers to
fdl2019@easychair.org.

General Chair: Tom J Kazmierski | Univ. of Southampton
Program Chair: Reinhard von Hanxleden | Kiel Univ.

Program Co-Chair and Local Chair: Terrence Mak | Univ. of
Southampton

Special Session Chair: Daniel Grosse | Univ. of Bremen
Finance Chair: Franco Fummi | Univ. of Verona
Web Chair: Florenc Demrozi | Univ. of Verona

Panel/Tutorial Chair: Carna Zivkovic | TU Kaiserslautern

Source:
https://pixabay.com/de/southam
pton
d%C3%A4mmerung
(southampton
1391713_1920.jpg), CC0 Creative
Commons (free commercial use,
no attribution needed)

2–4 September 2019 | Southampton, UK

Forum on specification &
Design Languages

Website: www.fdl-conference.org | Contact: fdl2019@easychair.org

• FDL’19:
Southampton,
Papers wanted!

• FDL’20: Kiel,
Papers and PC
wanted!

• FDL’21: France,
Papers, PC and
GC wanted!

