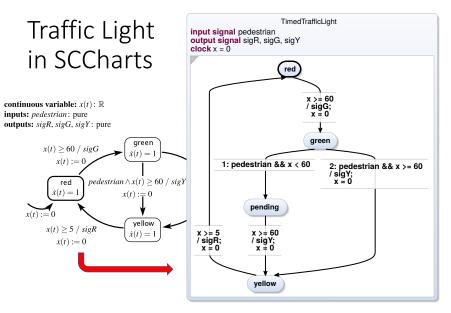


Alexander Schulz Rosengarten, Reinhard von Hanxleden Kiel University

Fréderic Mallet, Robert de Simone, Julien DeAntoni INRIA Sophia Antipolis

Traffic Light as Timed Automaton

continuous variable: x(t) : \mathbb{R}

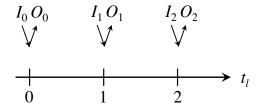


Alur, Dill, A theory of timed automata, Theoretical Computer Science, 1994

Lecture 17: Time in SCCharts

Alexander Schulz Rosengarten, Reinhard von Hanxleden Kiel University

Fréderic Mallet, Robert de Simone, Julien DeAntoni INRIA Sophia Antipolis



Roadmap

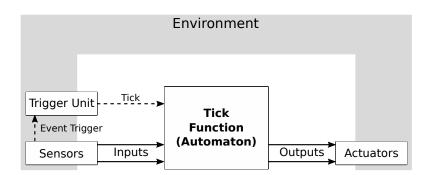
1. Traffic Light Example

- 2. Execution Models
- 3. Dynamic Ticks
- 4. Time in SCCharts: "clock"
- 5. Multiclocks in SCCharts: "period"
- 6. Demo

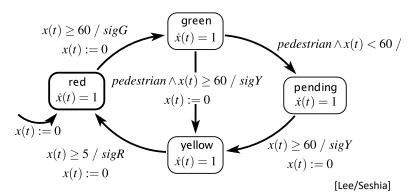
Discrete (Logical) Time in Synchronous Programming

- Synchrony Hypothesis: Outputs are synchronous with inputs
- Computation "does not take time"

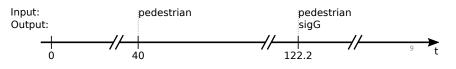
5


6

- Actual computation time does not influence result
- Sequence of outputs determined by inputs


Roadmap

- 1. Traffic Light Example
- 2. Execution Models
- 3. Dynamic Ticks
- 4. Time in SCCharts: "clock"
- 5. Multiclocks in SCCharts: "period"
- 6. Demo


Event-Triggered Execution


continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigG*, *sigY*: pure Assume pedestrian button pressed at t = 40 and t = 122.2

Event-Triggered Execution, with initial tick at t = 0:

Time-Triggered Execution

11

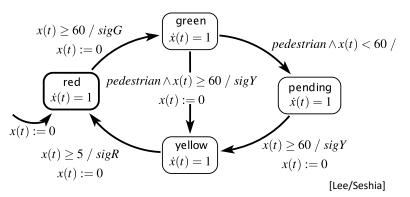
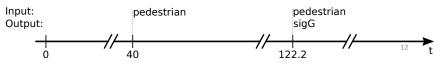
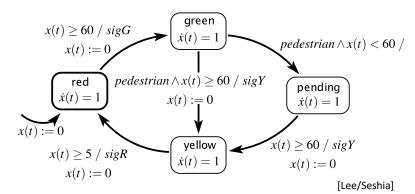

Synchronous Execution

Fig. 1 Two common synchronous execution schemes: event driven (left) and sample driven (right).


[Benveniste et al., *The Synchronous Languages Twelve Years Later*, Proc. IEEE, 2003]

10

continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigG*, *sigY*: pure Assume pedestrian button pressed at t = 40 and t = 122.2



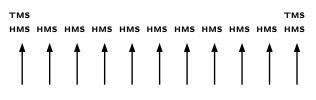
Recall: Event-Triggered Execution:

continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigY*: pure Assume pedestrian button pressed at t = 40 and t = 122.2

14

Time-Triggered Execution (every 5 sec):

Multiform Notion of Time

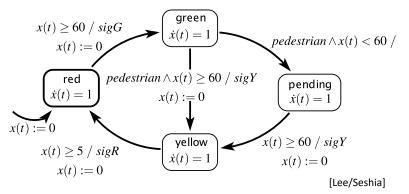

Only the simultaneity and precedence of events are considered.

This means that the physical time does not play any special role.

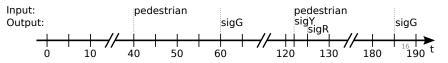
This is called multiform notion of time.

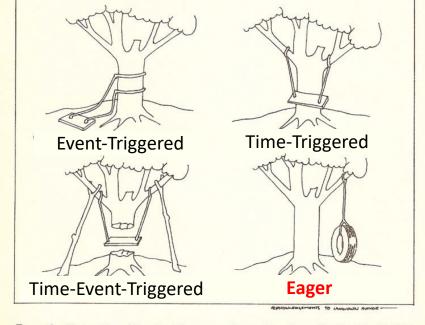
[https://en.wikipedia.org/wiki/Esterel]

Packaging Physical Time as Events


[Timothy Bourke, SYNCHRON 2009]

Event "HMS": 100 μsec have passed since last HMS Event "TMS": 1000 μsec have passed since last TMS


15

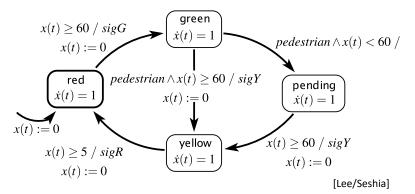

continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigG*, *sigY*: pure

Assume pedestrian button pressed at t = 40 and t = 122.2

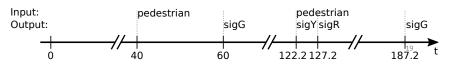
Time-Event-Triggered Execution, Multiform Time:

From the University of London Computer Centre Newsletter No. 53, March 1973

What the User (Probably) Wanted


"We assume here that a transition is taken as soon as it is enabled. Other transition semantics are possible."

[Lee/Seshia 2017]


We call this **eager** semantics.

continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigG*, *sigY*: pure

Assume pedestrian button pressed at t = 40 and t = 122.2

Eager Semantics:

Time in SCCharts – Requirements

- 1. Seamless fit into synchronous paradigm
 - Still deterministic behavior outputs fully determined by inputs
 - No changes to underlying SC (Sequentially Constructive) MoC
- 2. Approximate eager semantics
 - Modulo run-time variations and imperfections of physical timers
- 3. Scalability
 - E.g., allow arbitrary number of (concurrent) timers
- 4. Fine granularity
 - Gcd may be arbitrarily small, w/o performance penalty
 - E.g., may have timeouts of 1 sec and 3.1415926 msec in same model
- 5. Time composability
 - E.g., waiting 1 sec. twice should mean the same as waiting 2 sec's once

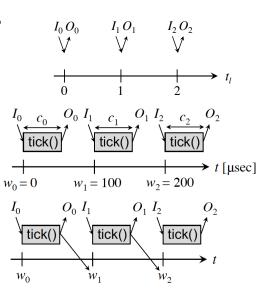
Time in SCCharts – Requirements

- 6. Preserve temporal order and simultaneity
 - E.g., timers started in same tick and running same duration should expire in same tick
- 7. Minimize impact of physical timer variations
 - E.g., avoid accumulations of timer imperfections
- 8. Give application access to physical time and tick computation time
 - Facilitates e.g. load-dependent execution modes
- 9. Lean, application-independent interface to environment
 - E.g., interface should not change if number of timers changes
- 10. Fit into Single Language-Driven Incremental Compilation (SLIC) concept
 - New timing constructs are just syntactic sugar on top of existing SCCharts
 - Transforming away timing constructs requires only local changes
 - No changes needed to compilation back-end

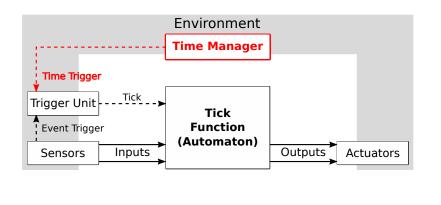
21

Real-Time Ticks for Synchronous Programming

Reinhard von Hanxleden (U Kiel) Timothy Bourke (INRIA and ENS, Paris) Alain Girault (INRIA and U Grenoble)

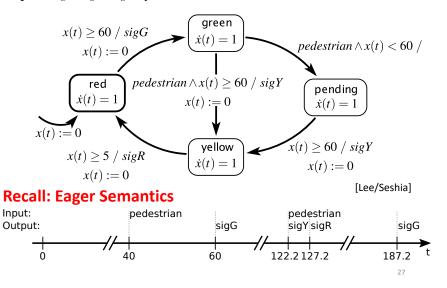

19 Sep 2017, FDL '17, Verona

Roadmap


- 1. Traffic Light Example
- 2. Execution Models
- 3. Dynamic Ticks
- 4. Time in SCCharts: "clock"
- 5. Multiclocks in SCCharts: "period"
- 6. Demo

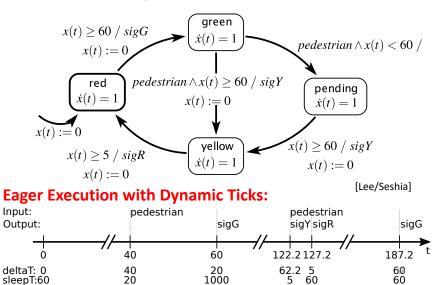
Dynamic Ticks

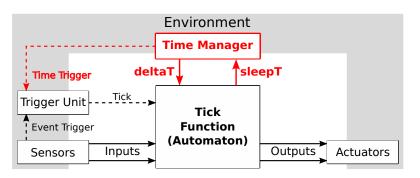
- Recall logical time:
- Physical time, time-triggered:
- Physical time, dynamic ticks:



Recall: Time-Triggered Execution

continuous variable: x(t): \mathbb{R} **inputs:** *pedestrian*: pure **outputs:** *sigR*, *sigG*, *sigY*: pure

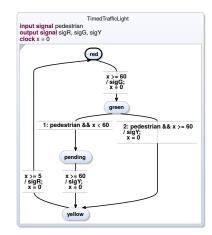

Assume pedestrian button pressed at t = 40 and t = 122.2


continuous variable: x(t): \mathbb{R} inputs: *pedestrian*: pure outputs: *sigR*, *sigY*: pure

25

Assume pedestrian button pressed at t = 40 and t = 122.2

Eager Execution with Dynamic Ticks

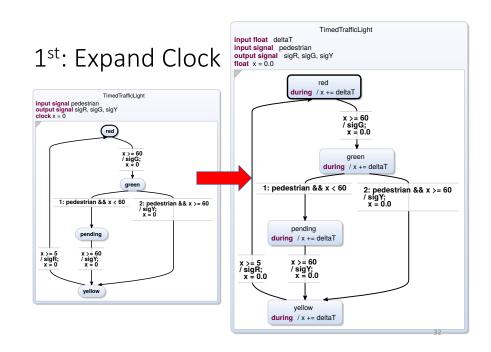


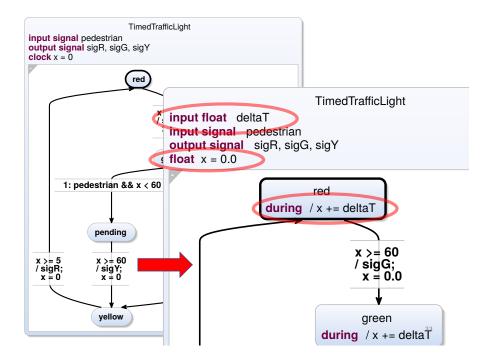
deltaT: Time since last tick sleepT: Requested delay until next tick

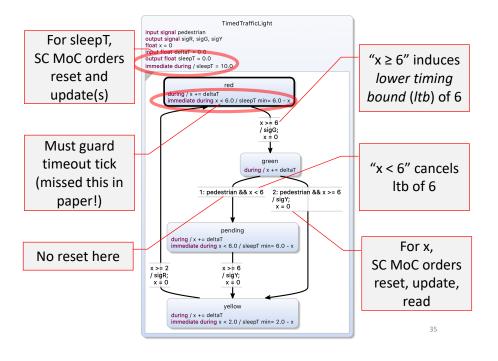
Multiform Notion of Time – Again!

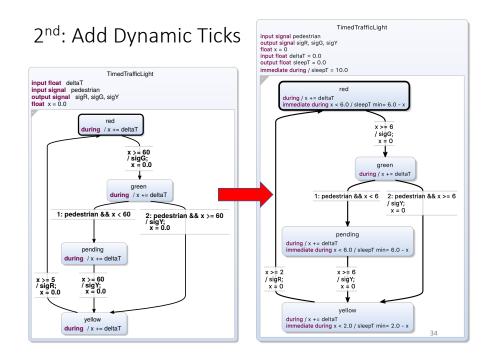
- Semantically, treat clocks (time) as a unit-less number
- As in timed automata, clocks must satisfy monotonicity (modulo resets) and progress
- Current implementation maps time (clock variables) to an approximation of real numbers (float), interpreted as seconds
- However, could also map clocks to integers, interpreted as Euros spent, fathoms travelled, or beers consumed

Recall: Traffic Light in SCCharts

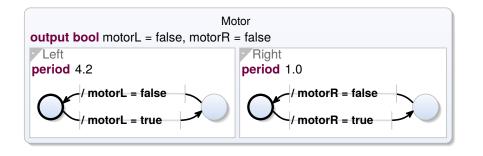

31


Roadmap


- 1. Traffic Light Example
- 2. Execution Models
- 3. Dynamic Ticks

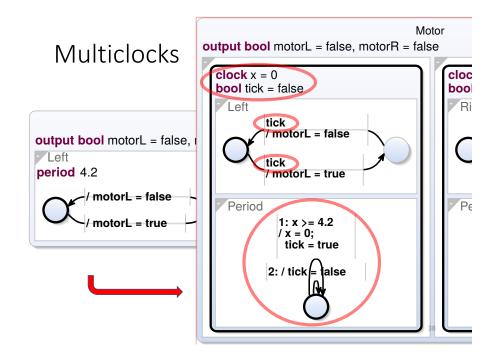

4. Time in SCCharts: "clock"

- 5. Multiclocks in SCCharts: "period"
- 6. Demo



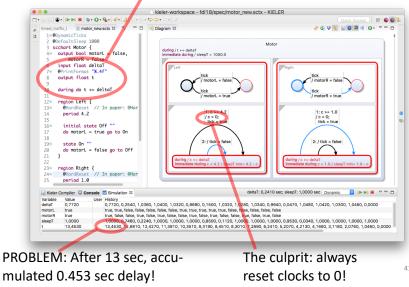
Roadmap

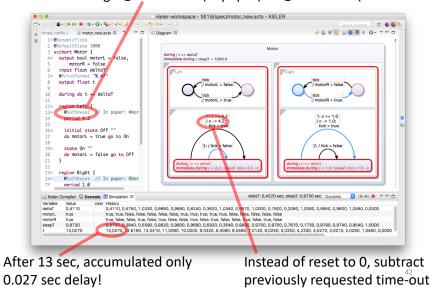
- 1. Traffic Light Example
- 2. Execution Models
- 3. Dynamic Ticks
- 4. Time in SCCharts: "clock"
- 5. Multiclocks in SCCharts: "period"
- 6. Demo


Multiclocks

Roadmap

- 1. Traffic Light Example
- 2. Execution Models
- 3. Dynamic Ticks
- 4. Time in SCCharts: "clock"
- 5. Multiclocks in SCCharts: "period"
- 6. Demo


37



"avoid accumulations of timer imperfections"

Grab deltaT from environment, derive from it physical time t

"avoid accumulations of timer imperfections" SOLUTION: Change @HardReset (in paper) to @SoftReset (now default)

Summary

- Timed automata used not just for verification, but also for synthesis
- Synchronous execution model cleanly contains nondeterminism, at timing I/O-interface
- Can extend easily to multi-clock design
- Multiform notion of time retained but package "time" not as events, but clocks (represented as, e.g., integers)
- Added two keywords (clock, period) as extended SCChart features
- Further annotations (@HardReset, @DefaultSleep) to control external interface
- Same concepts can be applied to other synchronous languages

ADVERTISEMENT

- FDL'19: Southampton, Papers wanted!
- FDL'20: Kiel, Papers and PC wanted!
- FDL'21: France, Papers, PC and GC wanted!