Sequentiability and Determinacy for Reactive Systems

A Sequentially Constructive Circuit Semantics for Esterel

Alexander Schulz-Rosengarten,
Steven Smyth, Reinhard von Hanxleden, Kiel University
and Michael Mendler, Bamberg University

Berry Constructive Circuits (BCC)

module OffOn:
output S, T, U;
present S then emit T end;
emit S;
present S then emit U end

Constructive coherence law:
A signal is present/absent iff it must/cannot be emitted
Berry Constructive Circuits (BCC)

module OffOn:
output S, T, U;
present S then emit T end;
emit S;
present S then emit U end

GO-
module OffOn:
output S, T, U;
present S then emit T end;
emit S;
present S then emit U end

Berry Constructive Circuits (BCC)
Berry Constructive Circuits (BCC)

module OffOn:
output S, T, U;
present S then emit T end;
emit S;
present S then emit U end

Proposal

Recall:
Constructive coherence law:
A signal is present/absent iff it must/cannot be emitted
Recall:
Constructive coherence law:
A signal is present/absent iff it must/cannot be emitted

Sequentially Constructive Coherence Law:
A signal is present/absent iff it must/cannot be emitted concurrently or sequentially preceding

We say that an emit E is **SC-visible** to a present test P if:
1) E is concurrent to P or
2) E sequentially precedes P
SC-Visibility in Circuit Construction

P; Q; [R || S]

P Q R S

E'
E

SC-Visibility in Circuit Construction

P; Q; [R || S]

P Q R S

E'
E

Ec'
Ec
SC-Visibility in Circuit Construction

\[P ; Q ; [R \parallel S] \]

Circuit Interface

\[P \]

- E
- E'
- GO SEL
- RES k0
- SUS k1
- KILL k2

Berry Constructive Circuit
Circuit Interface

\[P \]

- E
- E'
- GO
- RES
- SUS
- KILL

\text{BCC}
Berry Constructive Circuit

emit s

GO
E'
k0

BCC

Circuit Interface

\[P \]

- Ec
- Ec'
- Es
- Es'

\text{SCC}
Sequently Constructive Circuit

emit s

GO
Es'Ec'
k0

SCC
present s then P else Q

present s then P else Q

P ; Q

P ; Q
Formal Semantics and Conservativeness

Behavior of BC circuit with SC-visibility evaluation
⇒ Behavior of SC circuit with BC evaluation
(Proof sketch in Technical Report 1801)

Evaluation Relation:
\[C, I, R \vdash e \leftrightarrow_\pi b \]

Evaluation Rules:
\[\exists w \leftarrow_I e \in C. \pi \not\models l \land e \leftrightarrow_\pi \bigoplus l \frac{1}{PRES(\pi, l)} \leftarrow_\pi 1 \]
\[\forall w \leftarrow_I e \in C. \pi \not\models l \Rightarrow e \leftrightarrow_\pi \bigoplus l \frac{0}{ABS(\pi, w)} \leftarrow_\pi 0 \]

Formal Semantics and Conservativeness

\[T[G1] \iff GO \land S[G2] \]

Weak Unemit Circuit

\[Es \quad \text{Go} \quad \text{Es'} \]

\[Go \quad k0 \]

Formal Semantics and Conservativeness

\[T[G1] \iff GO \land S[G2] \]

\[G1 \preceq G2 \implies S[G2] \iff 0 \]

\[\text{Go} \quad \text{G1} \quad \text{G2} \quad \text{Done} \]