Synchronous Languages—Lecture 9

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

3 Dec. 2018 Last compiled: December 2, 2018, 14:11 hrs

Esterel Compilation

1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?
- 3. In hw synthesis, which Esterel statements introduce registers?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?
- 3. In hw synthesis, which Esterel statements introduce registers?
- 4. In the context of Esterel, what is reincarnation?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?
- 3. In hw synthesis, which Esterel statements introduce registers?
- 4. In the context of Esterel, what is *reincarnation*? What is *schizophrenia*?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?
- 3. In hw synthesis, which Esterel statements introduce registers?
- 4. In the context of Esterel, what is *reincarnation*? What is *schizophrenia*?
- 5. How is schizophrenia dealt with in classical programming languages?

- 1. How does the constructive Boolean logic (intuitionistic logic) differ from classical Boolean logic?
- 2. What is the relationship between 1. logical correctness, 2. acyclicity, 3. constructiveness, 4. delay insensitivity?
- 3. In hw synthesis, which Esterel statements introduce registers?
- 4. In the context of Esterel, what is *reincarnation*? What is *schizophrenia*?
- 5. How is schizophrenia dealt with in classical programming languages? Which problems does schizophrenia cause in hw synthesis?

1. In the context of Esterel, what is *reincarnation*?

- 1. In the context of Esterel, what is reincarnation?
- 2. What is schizophrenia?

- 1. In the context of Esterel, what is reincarnation?
- 2. What is *schizophrenia*?
- 3. What is a simple solution to the schizophrenia/reincarnation problem?

- 1. In the context of Esterel, what is reincarnation?
- 2. What is *schizophrenia*?
- 3. What is a simple solution to the schizophrenia/reincarnation problem?
- 4. What is the approach by Tardieu and de Simone?

- 1. In the context of Esterel, what is reincarnation?
- 2. What is *schizophrenia*?
- 3. What is a simple solution to the schizophrenia/reincarnation problem?
- 4. What is the approach by Tardieu and de Simone?
- 5. How do these approaches compare?

Esterel Compilation

Automata-Based Compilation Netlist-Based Compilation Control-Flow Graph-Based Compilation Experimental Comparison

Compiling Esterel

- Semantics of the language are formally defined and deterministic
- Compiler must ensure that generated executable behaves correctly w.r.t. the semantics
- Challenging for Esterel

The following material is adapted with kind permission from Stephen Edwards (http://www1.cs.columbia.edu/~sedwards/)

Concurrency

Interaction between exceptions and concurrency

Concurrency

Interaction between exceptions and concurrency

- Preemption
- Resumption (pause, await, etc.)

Concurrency

- Interaction between exceptions and concurrency
- Preemption
- Resumption (pause, await, etc.)
- Checking causality

Concurrency

- Interaction between exceptions and concurrency
- Preemption
- Resumption (pause, await, etc.)
- Checking causality
- Reincarnation (schizophrenia)
 - Loop restriction generally prevents any statement from executing more than once in a cycle
 - Complex interaction between concurrency, traps, and loops can make certain statements execute more than once

- Given Esterel program P and an input event I, the SOS inference rules introduced earlier produce an output event O and a program derivative P'
 - From P' and subsequent input event I', can produce another program derivative P'' and further output event O'
 - Can view this as sequence of state transitions—from state P to state P' to state P'' etc.

- Given Esterel program P and an input event I, the SOS inference rules introduced earlier produce an output event O and a program derivative P'
 - From P' and subsequent input event I', can produce another program derivative P'' and further output event O'
 - Can view this as sequence of state transitions—from state P to state P' to state P'' etc.
- Inference rules guarantee that set of states is finite (Finite State Machine, FSM)

- Given Esterel program P and an input event I, the SOS inference rules introduced earlier produce an output event O and a program derivative P'
 - From P' and subsequent input event I', can produce another program derivative P'' and further output event O'
 - Can view this as sequence of state transitions—from state P to state P' to state P'' etc.
- Inference rules guarantee that set of states is finite (Finite State Machine, FSM)
- First compiler simulated an Esterel program in every possible state and generated code for each one

Note: Strictly speaking, the state of an Esterel program—i.e., what must be remembered from one tick to the next—includes the following:

1. The set of program counter values where the program has paused between cycles

- 1. The set of program counter values where the program has paused between cycles
- 2. Presence status of signals accessed via pre operator

- 1. The set of program counter values where the program has paused between cycles
- 2. Presence status of signals accessed via pre operator
- 3. Values of valued signals

- 1. The set of program counter values where the program has paused between cycles
- 2. Presence status of signals accessed via pre operator
- 3. Values of valued signals
- 4. Values of variables

- 1. The set of program counter values where the program has paused between cycles
- 2. Presence status of signals accessed via pre operator
- 3. Values of valued signals
- 4. Values of variables
- 5. Any state kept in the host language

Note: Strictly speaking, the state of an Esterel program—i.e., what must be remembered from one tick to the next—includes the following:

- 1. The set of program counter values where the program has paused between cycles
- 2. Presence status of signals accessed via pre operator
- 3. Values of valued signals
- 4. Values of variables
- 5. Any state kept in the host language

Only the program counters are reflected in states of FSM

<pre>void tick() {</pre>
<pre>static int state = 0;</pre>
sigtype $A = B = 0;$
<pre>switch (state) {</pre>
case 0:
A = 1;
<pre>state = 1;</pre>
break;
case 1:
if (C) {
B = 1;
<pre>state = 0;</pre>
}
break;
}
}

First State

 A, B, emitted, go to second state


```
switch (state) {
case 0:
 A = 1;
 B = 1;
 state = 1;
 break;
case 1:
 if (C) {
   D = 1;
   if (E) B = 1;
   state = 2;
 }
 break;
case 2:
3
```

First State

 A, B, emitted, go to second state

Second state

- if C is present, emit D, check E & emit B & go on
- otherwise, stay in second state

<pre>switch (state) {</pre>
case 0:
A = 1;
B = 1;
<pre>state = 1;</pre>
break;
case 1:
if (C) {
D = 1;
if (E) B = 1;
state = 2;
}
break;
case 2:
}

First State

 A, B, emitted, go to second state

Second state

- if C is present, emit D, check E & emit B & go on
- otherwise, stay in second state

Third state

Terminated

- ③ Very fast code
- © Internal signaling can be compiled away

- ③ Very fast code
- © Internal signaling can be compiled away
- © Can generate a lot of code because

- ③ Very fast code
- © Internal signaling can be compiled away
- © Can generate a lot of code because
 - Concurrency can cause exponential state growth
 - *n*-state machine interacting with another *n*-state machine can produce n² states

- ③ Very fast code
- Internal signaling can be compiled away
- © Can generate a lot of code because
 - Concurrency can cause exponential state growth
 - *n*-state machine interacting with another *n*-state machine can produce n² states
- Language provides input constraints for reducing state count
 - "these inputs are mutually exclusive" relation A # B # C
 - "if this input arrives, this one does, too" relation D => E

Automata Compilation

- Not practical for large programs
- Theoretically interesting, but doesn't work for most programs longer than 1000 lines
- All other techniques produce—in general—slower code

Netlist-Based Compilation

Second key insight:

Esterel programs can be translated into Boolean logic circuits

Netlist-Based Compilation

Second key insight:

 Esterel programs can be translated into Boolean logic circuits Netlist-based compiler:

Translate each statement into a small number of logic gates

- A straightforward, mechanical process
- Follows circuit semantics defined earlier

Netlist-Based Compilation

Second key insight:

 Esterel programs can be translated into Boolean logic circuits Netlist-based compiler:

Translate each statement into a small number of logic gates

- A straightforward, mechanical process
- Follows circuit semantics defined earlier
- Generate code that simulates the netlist

Netlist Example

Netlist Example

Assessment of Netlist Compilation

Scales very well

- Netlist generation roughly linear in program size
- Generated code roughly linear in program size

Assessment of Netlist Compilation

© Scales very well

- Netlist generation roughly linear in program size
- Generated code roughly linear in program size
- © Good framework for analyzing causality
 - Semantics of netlists straightforward
 - Constructive reasoning equivalent to three-valued simulation

Assessment of Netlist Compilation

Scales very well

- Netlist generation roughly linear in program size
- Generated code roughly linear in program size
- © Good framework for analyzing causality
 - Semantics of netlists straightforward
 - Constructive reasoning equivalent to three-valued simulation
- S Terribly inefficient code
 - Lots of time wasted computing ultimately irrelevant results
 - Can be hundreds of time slower than automata
 - Little use of conditionals

Netlist Compilation

- Currently the only solution for large programs that appear to have causality problems
- Scalability attractive for industrial users

Control-Flow Graph-Based

► Third key insight:

Esterel looks like a imperative language, so treat it as such

Control-Flow Graph-Based

Third key insight:

Esterel looks like a imperative language, so treat it as such

 Esterel has a fairly natural translation into a concurrent control-flow graph

Control-Flow Graph-Based

Third key insight:

Esterel looks like a imperative language, so treat it as such

- Esterel has a fairly natural translation into a concurrent control-flow graph
- Trick is simulating the concurrency
- Concurrent instructions in most Esterel programs can be scheduled statically
- Use this schedule to build code with explicit context switches in it

The CFG Approach

Step 1: Build Concurrent CFG

→every R do	
loop	
await A;	
emit B;	
present C then	
emit D end;	
pause	
end	
11	
loop	
present B then	
emit C end;	
pause	
end	
\rightarrow end	

Add Threads

Split at Pauses

Add Code Between Pauses

```
every R do
→loop
\rightarrow await A;
\rightarrow emit B;
\rightarrow present C then
\rightarrow emit D end;
\rightarrow pause
\rightarrowend
11
  loop
  present B then
     emit C end;
   pause
  end
end
```


Build Right Thread

```
every R do
 loop
    await A;
  emit B;
   present C then
    emit D end;
   pause
 end
11
→loop
\rightarrow present B then
   emit C end;
\rightarrow
→ pause
\rightarrowend
end
```


Step 2: Schedule

```
every R do
 loop
   await A;
   emit B;
   present C then
    emit D end;
   pause
 end
11
 loop
  present B then
    emit C end;
   pause
 end
end
```


Step 3: Sequentialize

- Hardest part: Removing concurrency
- Simulate the Concurrent CFG
- Main Loop:
 - For each node in scheduled order,
 - Insert context switch if from different thread
 - Copy node & connect predecessors

Run First Node

Esterel Compilation

Run First Part of Left Thread

Context switch: Save State

Run Right Thread

Esterel Compilation

Context Switch: Restore State

Resume Left Thread

Step 3: Finished

Scales as well as the netlist compiler, but produces much faster code, almost as fast as automata

- Scales as well as the netlist compiler, but produces much faster code, almost as fast as automata
- Solution Not an easy framework for checking causality

- Scales as well as the netlist compiler, but produces much faster code, almost as fast as automata
- © Not an easy framework for checking causality
- Static scheduling requirement more restrictive than netlist compiler
 - This compiler rejects some programs that others accept

- Scales as well as the netlist compiler, but produces much faster code, almost as fast as automata
- © Not an easy framework for checking causality
- Static scheduling requirement more restrictive than netlist compiler
 - This compiler rejects some programs that others accept
- Extension: Pre-process constructive Esterel programs with cycles into equivalent non-cyclic programs [Lukoschus/von Hanxleden 2007]
 - Extends applicability of compilation approaches such as the CFG-based approach

Existing Esterel Compilers

Simulation Speed

Edwards 2001

Existing Esterel Compilers

Edwards 2001

Existing Esterel Compilers

Simulation Speed

Edwards 2001

Speed of Generated Code

Size of Generated Code

Esterel compilation techniques:

Esterel compilation techniques:

Automata

- Fast code
- Doesn't scale

Esterel compilation techniques:

- Automata
 - Fast code
 - Doesn't scale
- Netlists
 - Scales well
 - Slow code
 - Good for causality

Esterel compilation techniques:

- Automata
 - Fast code
 - Doesn't scale
- Netlists
 - Scales well
 - Slow code
 - Good for causality
- Control-flow
 - Scales well
 - Fast code
 - Bad at causality

To Go Further

- Stephen A. Edwards. Tutorial: Compiling Concurrent Languages for Sequential Processors. ACM Transactions on Design Automation of Electronic Systems (TODAES), 8(2):141-187, April 2003. http://www1.cs.columbia.edu/~sedwards/papers/ edwards2003compiling.pdf
- Stephen A. Edwards and Jia Zeng. Code Generation in the Columbia Esterel Compiler. EURASIP Journal on Embedded Systems, vol. 2007, Article ID 52651, 31 pages, 2007. http://dx.doi.org/10.1155/2007/52651
- Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling Esterel. Springer-Verlag, New York, 2007. ISBN 9780387706269
- Jan Lukoschus and Reinhard von Hanxleden. Removing Cycles in Esterel Programs. EURASIP Journal on Embedded Systems, Special Issue on Synchronous Paradigms in Embedded Systems. http: //www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979, 2007.