Synchronous Languages—Lecture 06

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group

13 Nov. 2018

Last compiled: November 18, 2018, 16:49 hrs

Esterel IV—The
Constructive Semantics
The 5-Minute Review Session

1. What is the *state* of an Esterel program? Which implementation alternatives are there to memorize state?
2. What are implementation alternatives to interface with the environment, *e.g.*, a device that can be on or off?
3. What is the relationship between *events* and *states*?
4. What are possible examples for *causality problems*? What is the reason for these problems?
5. When is an Esterel program *logically reactive*? ... *correct*?
Overview

The Constructive Semantics
 External Justification vs. Self-Justification
 The Constructive Behavioral Semantics
 The Constructive Operational Semantics
External Justification vs. Self-Justification

- Programming in Esterel:
 - Analyze input events to generate appropriate output signals
 - Use concurrent statements and intermediate local signals to create modular, well-structured programs
- Natural way of thinking:
 - Information propagation by *cause* and *effect*

```plaintext
present I then
  emit 0
end
```
External Justification vs. Self-Justification

```plaintext
module P1:
    input I;
    output 0;
    signal S1, S2 in
        present I then emit S1 end
    ||
        present S1 else emit S2 end
    ||
        present S2 then emit 0 end
    end signal
end module
```

- Is this logically correct?
 - Yes!

- Is this well-behaved wrt information propagation?
 - Yes!
External Justification vs. Self-Justification

```plaintext
module P9:
[
  present 01 then emit 01 end
  ||
  present 01 then
    present 02 else emit 02 end
  end
]
```

▷ Is this logically correct?
 ◀ Yes!

▷ Is this well-behaved wrt information propagation?
 ◀ No!

▷ Accepting P9 as correct is
 ◀ Logically possible
 ◀ But against (imperative) intention of the language
External Justification vs. Self-Justification

- “present S then p end”:
 - First test the status of S, then execute p if S is present
 - Status of S should not depend on what p might do
- Synchrony hypothesis:
 - Ordering implicit in the then word is not that of time, but that of sequential causality
- Want actual computation:
 - “Since S is present, we take the then branch”
- Don’t want speculative computation:
 - “If we assume S present, then we take the then branch”
External Justification vs. Self-Justification

- Aside from the explicit concurrency “||”, all Esterel statements are sequential
- Want to preserve this in the semantics

```plaintext
module P10:
  present 0 then
    nothing;
  end;
  emit 0
```

- This is logically correct
- But still want to reject it:
 - In the logical semantics, the information that 0 is present flows backwards across the sequencing operator
 - Contradicts basic intuition about sequential execution
The Constructive Semantics

Constructive semantics:
- Does not check assumptions about signal statuses
- Instead, propagates facts about control flow and signal statuses

Three equivalent presentations:
1. Constructive behavioral semantics
2. Constructive operational semantics
3. Circuit semantics
The Constructive Semantics

1. Constructive behavioral semantics:
 ▶ Derived from the logical behavioral semantics
 ▶ Adds constructive restrictions to logical coherence rule
 ▶ Is the simplest way of defining the language

2. Constructive operational semantics:
 ▶ Based on an interpretation scheme expressed by term rewriting rules defining microstep sequences
 ▶ Is the simplest way of defining an efficient interpreter

3. Circuit semantics:
 ▶ Translation of programs into constructive circuits
 ▶ Is the core of the Esterel v5 compiler
The Constructive Behavioral Semantics

- ... retains the spirit of the logical coherence semantics
- ... adds reasoning about what a program must or cannot do
- Define disjoint predicates to express
 - “A statement must terminate, must pause, must exit a trap \(T \), or must emit a signal \(S \)”
 - “A statement cannot terminate, cannot pause, cannot exit a trap \(T \), or cannot emit a signal \(S \)”
- The **Must** (**Cannot**) predicate determines
 - Which signals are present (absent)
 - Which statements are (cannot be) executed
The Constructive Behavioral Semantics

Recall: Logical Coherence Law

A signal S is present in an instant iff an “emit S” statement is executed in this instant.

Replace with disjoint Constructive Coherence Laws:

A signal S is present iff an “emit S” statement must be executed.
A signal S is absent iff an “emit S” statement cannot be executed
The Constructive Behavioral Semantics

- Define *Must* and *Cannot* predicates by structural induction on statements.
- A signal can have three statuses:
 - “+”: known to be present
 - “−”: known to be absent
 - “⊥”: yet unknown
- Is technically easier to define the *Cannot* predicate as the negation of a *Can* predicate.
 - No constructiveness problem here as we only deal with finite sets.
The Constructive Behavioral Semantics

\[p; q \] (Sequence)

- Must (resp. can) execute \(q \) if \(p \) must (resp. can) terminate

\[\text{present } S \text{ then } p \text{ else } q \text{ end} \] (Test)

- If \(S \) is known to be present:
 - Test behaves as \(p \)
- If \(S \) is known to be absent:
 - Test behaves as \(q \)
- If \(S \) is yet unknown:
 - Test can do whatever \(p \) or \(q \) can do
 - **There is nothing the test must do.** In particular, it does not even have to do what both \(p \) and \(q \) have to do—this is the essence of disallowing speculative execution.
The Constructive Behavioral Semantics

- Main novelty is in analysis of output and local signals
- Consider local signal here; output signal is similar

signal S in p end (Local signal)

Can predicate:
- Recursively analyze p with status \perp for S
The Constructive Behavioral Semantics

signal \(S \) in \(p \) end (Local signal)

\textit{Must} predicate:

- Assume we already know that we must execute signal \(S \) in \(p \) end in some signal context \(E \)
- Must compute final status of \(S \) to determine signal context of \(p \)
- First analyze \(p \) in \(E \) augmented by setting the unknown status \(\perp \) for \(S \)
- If \(S \) must be emitted:
 - Propagate this information by \textit{reanalyzing} \(p \) in \(E \) with \(S \) present
 - This may generate more information about the other signals
- Similarly, if we find that \(S \) cannot be emitted:
 - Reanalyze \(p \) in \(E \) with \(S \) absent
Accepting Programs

In the constructive behavioral semantics, a program is accepted as constructive iff fact propagation using the *Must* and *Can* (or *Cannot*) predicates suffices in establishing presence or absence of all output signals (and we can also compute a derivative—see later).

```plaintext
module P1:
  input I;
  output 0;
  signal S1, S2 in
    present I then emit S1 end
  ||
    present S1 else emit S2 end
  ||
    present S2 then emit 0 end
  end signal
end module
```
Accepting Programs

Can analyze this with just propagating facts
 - No need for speculative computation based on assumptions
 - Our analysis still “looks ahead” to see what must/cannot be done, but always builds on facts established so far, not on speculations

However, analysis involves recomputations
 - Avoiding this is goal of operational and circuit semantics!
Rejecting Programs

- If the must and cannot predicates bring no information about the status of some signal:
 - Programs is rejected

```plaintext
module P3:
output 0;
present 0 else emit 0 end
end module

module P4:
output 0;
present 0 then emit 0 end
end module
```
Rejecting Programs

- Constructiveness \iff logical correctness
- But not vice versa!

```plaintext
module P9:
[
  present 01 then emit 01 end
  ||
  present 01 then
    present 02 else emit 02 end
  end
]
```

- Both 01 and 02 can be emitted
- No signal must be emitted
- No progress—reject P9!
Rejecting Programs

Consider variant of P2:

```plaintext
module P11:
    signal S
    present O then
        emit S;
    present S then
        pause
    end;
    emit O
end
end signal
```

- Are not allowed to speculatively execute branches
- Again no progress—**reject P11!**
Rejecting Programs

Must reject P12 as well!

Does an equivalent HW-circuit always stabilize? (Will come back to this later . . .)
The *Must*, *Cannot*, and *Can* Functions

- *Must* function determines what must be done in a reaction $P \xrightarrow{O} P'$
- Has the form $\text{Must}(p, E) = \langle S, K \rangle$
 - E: partial event, associating status in $B_\perp = \{+, -, \perp\}$ with each signal
 - S: set of signals that p must emit
 - K: set of completion codes that p must return
 - Is either empty or a singleton
- Use subscripts to access elements of result pair:
 - $\text{Must}(p, E) = \langle \text{Must}_s(p, E), \text{Must}_k(p, E) \rangle$
The Constructive Semantics

The *Must*, *Cannot*, and *Can* Functions

- Cannot^m function prunes out false paths
- $\text{Cannot}^m(p, E) = \langle \text{Cannot}_s^m(p, E), \text{Cannot}_k^m(p, E) \rangle = \langle S, K \rangle$
- Extra argument $m \in \{+, \bot\}$ indicates whether it is known that p must be executed in event E
- $\text{Can}^m(p, E)$ is component-wise complement
Definitions of *Must* and *Can*

- Completion and signal emission:

 \[
 \text{Must}(k, E) = \text{Can}^m(k, E) = \langle \emptyset, \{ k \} \rangle
 \]

 \[
 \text{Must}(!s, E) = \text{Can}^m(!s, E) = \langle \{ s \}, \{ 0 \} \rangle
 \]

- Suspension:

 \[
 \text{Must}(s \supset p, E) = \text{Must}(p, E)
 \]

 \[
 \text{Can}^m(s \supset p, E) = \text{Can}^m(p, E)
 \]
Definitions of *Must* and *Can*

Signal test:

\[
\text{Must}((s?p, q), E) = \begin{cases}
\text{Must}(p, E) & \text{if } s^+ \in E \\
\text{Must}(q, E) & \text{if } s^- \in E \\
\langle\emptyset, \emptyset\rangle & \text{if } s^\perp \in E
\end{cases}
\]

\[
\text{Can}^m((s?p, q), E) = \begin{cases}
\text{Can}^m(p, E) & \text{if } s^+ \in E \\
\text{Can}^m(q, E) & \text{if } s^- \in E \\
\text{Can}^\perp(p, E) \cup \text{Can}^\perp(q, E) & \text{if } s^\perp \in E
\end{cases}
\]
Definitions of *Must* and *Can*

- Sequencing:

\[
\text{Must}(p; q, E) = \begin{cases}
\text{Must}(p, E) & \text{if } 0 \notin \text{Must}_k(p, E) \\
\langle \text{Must}_S(p, E) \cup \text{Must}_S(q, E), \text{Must}_k(q, E) \rangle & \text{if } 0 \in \text{Must}_k(p, E)
\end{cases}
\]

\[
\text{Can}^m(p; q, E) = \begin{cases}
\text{Can}^m(p, E) & \text{if } 0 \notin \text{Can}^m_k(p, E) \\
\langle \text{Can}^m_S(p, E) \cup \text{Can}^m_S(q, E), \text{Can}^m_k(p, E) \setminus 0 \cup \text{Can}^m'_k(q, E) \rangle & \text{if } 0 \in \text{Can}^m_k(p, E)
\end{cases}
\]

with \(m' = \begin{cases}
+ & \text{if } m = + \land 0 \in \text{Must}_k(p, E) \\
\perp & \text{otherwise}
\end{cases} \)
Definitions of *Must* and *Can*

- Local signal declaration:

$\text{Must}(p \setminus s, E) = \begin{cases}
\text{Must}(p, E \ast s^+) \setminus s & \text{if } s \in \text{Must}_S(p, E \ast s^\bot) \\
\text{Must}(p, E \ast s^-) \setminus s & \text{if } s \notin \text{Can}_S^+(p, E \ast s^\bot) \\
\text{Must}(p, E \ast s^\bot) \setminus s & \text{otherwise}
\end{cases}$

$\text{Can}^m(p \setminus s, E) = \begin{cases}
\text{Can}^+(p, E \ast s^+) \setminus s & \text{if } m = + \text{ and } s \in \text{Must}_S(p, E \ast s^\bot) \\
\text{Can}^m(p, E \ast s^-) \setminus s & \text{if } s \notin \text{Can}_S^+(p, E \ast s^\bot) \\
\text{Can}^m(p, E \ast s^\bot) \setminus s & \text{otherwise}
\end{cases}$
Definitions of *Must* and *Can*

- Note the *Can/Must* asymmetry: in the *Can*-predicate of the local signal declaration, check for $m = +$ before calling *Must* to avoid speculative computation.

- Otherwise, would accept program

```plaintext
present O then
  signal S in
    emit S
  ||
    present S else emit 0 end
end
end
```
Definitions of *Must* and *Can*

- **Loop:**
 \[
 \text{Must}(p^*, E) = \text{Must}(p, E) \\
 \text{Can}^m(p^*, E) = \text{Can}^m(p, E)
 \]

- **Parallel:**
 \[
 \text{Must}(p|q, E) = \langle \text{Must}_S(p, E) \cup \text{Must}_S(q, E), \\
 \max(\text{Must}_k(p, E), \text{Must}_k(q, E)) \rangle \\
 \text{Can}^m(p|q, E) = \langle \text{Can}^m_S(p, E) \cup \text{Can}^m_S(q, E), \\
 \max(\text{Can}^m_k(p, E), \text{Can}^m_k(q, E)) \rangle
 \]

The *Max*-operator on sets of completion codes is defined as

\[
\text{Max}(K, L) = \begin{cases} \\
\emptyset & \text{if } K = \emptyset \text{ or } L = \emptyset \\
\{\max(k, l) \mid k \in K, l \in L\} & \text{if } K, L \neq \emptyset \end{cases}
\]
Definitions of *Must* and *Can*

- **Trap:**
 \[
 \text{Must}(\{p\}, E) = \langle \text{Must}_S(p, E), \downarrow \text{Must}_k(p, E) \rangle \\
 \text{Can}_m^m(\{p\}, E) = \langle \text{Can}_S^m(p, E), \downarrow \text{Can}_k^m(p, E) \rangle
 \]

- **Shift:**
 \[
 \text{Must}(\uparrow p, E) = \langle \text{Must}_S(p, E), \uparrow \text{Must}_k(p, E) \rangle \\
 \text{Can}_m^m(\uparrow p, E) = \langle \text{Can}_S^m(p, E), \uparrow \text{Can}_k^m(p, E) \rangle
 \]
Definition of the Constructive Behavioral Semantics

The constructive behavioral semantics of a given program is defined by a two-step procedure, yielding the current reaction and the derivative:

1. Compute output event O using *Must* and *Cannot* predicates
 - This fails if status of some output signal cannot be determined to be $+$ or $-$

2. Compute behavioral transition yielding program derivative
 - This fails if body of some loop is found to terminate instantaneously
 - This also fails if we cannot establish the presence/absence of a local signal
Definition of the Constructive Semantics

Step 1: Compute output event \(O \)

Approach:
- Start with undefined \(O \) (all output signal statuses = \(\perp \))
- Iteratively enrich \(O \) using \textit{Must} and \textit{Can} information
- Terminate when this stabilizes (guaranteed by monotonicity)

Formalize this as computation of a least fixed point (see draft book)
Algorithm to Compute Outputs

function computeOut(P, I)
 \(E = I \cup \{s^\bot \mid s \in \text{Out}(P)\} \)
 do
 \(E' = E \)
 \(\text{can} = \text{Can}_S^+(P, E) \)
 \(\text{must} = \text{Must}_S(P, E) \)
 \(E = I \cup \{s^+ \mid s \in \text{must}\} \)
 \(\cup \{s^- \mid s \in \text{Out}(P) \setminus \text{can}\} \)
 \(\cup \{s^\bot \mid s \in \text{can} \setminus \text{must}\} \)
 while (\(E' \neq E \))
 if \(\exists s : s^\bot \in E \) then error ("not constructive")
 return \(E \)
Example for *Can* analysis

Consider the program $p = !S; S?!O, 1$ and environment $\{S^\perp, O^\perp\}$.

\[
\begin{align*}
Can^+(!S, \{S^\perp, O^\perp\}) &= \langle \{S\}, \{0\}\rangle \\
Must_k(!S, \{S^\perp, O^\perp\}) &= \{0\} \\
Can^\perp(!O, \{S^\perp, O^\perp\}) &= \langle \{O\}, \{0\}\rangle \\
Can^\perp(1, \{S^\perp, O^\perp\}) &= \langle \emptyset, \{1\}\rangle \\
Can^+(S?!O, 1, \{S^\perp, O^\perp\}) &= \langle \{O\}, \{0, 1\}\rangle \\
Can^+(!S; S?!O, 1, \{S^\perp, O^\perp\}) &= \langle \{S, O\}, \{0, 1\}\rangle
\end{align*}
\]

Gives no new information on signal status
Example for \textit{Must} analysis

Consider the program $p = \texttt{!}S; S?\texttt{!}O, 1$ and environment $\{S\bot, O\bot\}$

1. $\text{Must}(\texttt{!}S, \{S\bot, O\bot\}) = \langle \{S\}, \{0\} \rangle$
 $\text{Must}(S?\texttt{!}O, 1, \{S\bot, O\bot\}) = \langle \emptyset, \emptyset \rangle$
 $\text{Must}(\texttt{!}S; S?\texttt{!}O, 1, \{S\bot, O\bot\}) = \langle \{S\}, \emptyset \rangle$

2. Update environment to $\{S^+, O\bot\}$

3. $\text{Must}(\texttt{!}S, \{S^+, O\bot\}) = \langle \{S\}, \{0\} \rangle$
 $\text{Must}(\texttt{!}O, \{S^+, O\bot\}) = \langle \{O\}, \{0\} \rangle$
 $\text{Must}(S?\texttt{!}O, 1, \{S^+, O\bot\}) = \langle \{O\}, \{0\} \rangle$
 $\text{Must}(\texttt{!}S; S?\texttt{!}O, 1, \{S^+, O\bot\}) = \langle \{S, O\}, \{0\} \rangle$

4. Update environment to $\{S^+, O^+\}$

5. All signals have a defined status \rightarrow done
Definition of the Constructive Semantics

Step 2: Compute transition

Rules are exactly as for logical behavioral semantics—except for changed rules for local signals

\[
\begin{align*}
 p \xrightarrow{E' \ast s^+, k} p' & \quad S(E') = S(E) \setminus s \\
 E \ast s^+ & \\
 p \setminus s \xrightarrow{E', k} p' \setminus s
\end{align*}
\]

(is sig +)

is replaced with

\[
\begin{align*}
 s \in \text{Must}_s(p, E \ast s^\perp) & \quad p \xrightarrow{E' \ast s^+, k} p' & \quad S(E') = S(E) \setminus s \\
 E \ast s^+ & \\
 p \setminus s \xrightarrow{E', k} p' \setminus s
\end{align*}
\]

(csig +)
Definition of the Constructive Semantics

\[
p \xrightarrow{E^*s^- \cdot k} p' \quad S(E') = S(E) \setminus s
\]

\[
p \setminus s \xrightarrow{E} p' \setminus s
\]

is replaced with

\[
s \in \text{Cannot}_s^+(p, E \ast s^\perp) \quad p \xrightarrow{E^*s^- \cdot k} p' \quad S(E') = S(E) \setminus s
\]

\[
p \setminus s \xrightarrow{E', k} p' \setminus s
\]

\(\text{(csig } - \text{)}\)
The Constructive Operational Semantics

- ...is defined by a rewriting-based interpretation scheme
 - 😊 Instead of reasoning about what we must do, just do it
 - 😞 Formal definition and technical treatment of the constructive operational semantics is much heavier than that of the constructive behavioral semantics

- Will still take constructive behavioral semantics as the primary semantics
The Constructive Operational Semantics

- Decorate signal declarations with status $+,$ $-,$ \perp
- Initially, all signals except inputs unknown
- Constructive operational semantics is a micro-step semantics
 - Current state indicated by \bullet
The Constructive Operational Semantics

Consider P1 with I present:

```plaintext
module P1:
  input I⁺;
  output O⊥;
  • signal S1⊥, S2⊥ in
    present I then emit S1 end
  ||
    present S1 else emit S2 end
  ||
    present S2 then emit 0 end
end signal
end module
```
Fork of the parallel statement:

```plaintext
module P1:
  input I⁺;
  output O⊥;
  signal S1⊥, S2⊥ in
    • present I then emit S1 end
    ||
    • present S1 else emit S2 end
    ||
    • present S2 then emit 0 end
end signal
end module
```
The Constructive Operational Semantics

Only first thread can continue:

```plaintext
module P1:
  input I;
  output O;
  signal S1, S2 in
    present I then emit S1 end
    ||
    present S1 else emit S2 end
    ||
    present S2 then emit O end
end signal
end module
```
The Constructive Operational Semantics

Now emit S1:

```plaintext
module P1:
  input I;  
  output O; 
  signal S1, S2 in
   • present I then emit S1 end
   • present S1 else emit S2 end
   • present S2 then emit 0 end
end signal
end module
```
The Constructive Operational Semantics

Now the 2nd branch can continue:

module P1:
 input I⁺;
 output O⊥;
 signal S1⁺, S2⊥ in
 present I then emit S1 end ●
 •
 present S1 else emit S2 end ●
 •
 • present S2 then emit 0 end
 end signal
end module
The Constructive Operational Semantics

Cannot emit $S2$ any more:

```
module P1:
  input I^+;
  output O⊥;
  signal S1^+, S2^- in
    present I then emit S1 end•
    ||
    present S1 else emit S2 end•
    ||
    •present S2 then emit 0 end
  end signal
end module
```
The Constructive Operational Semantics

Now 3rd branch can continue:

```plaintext
module P1:
  input I^+;
  output O⊥;
  signal S1^+, S2^- in
    present I then emit S1 end;
  ||
    present S1 else emit S2 end;
  ||
    present S2 then emit 0 end;
end signal
end module
```
The Constructive Operational Semantics

Cannot emit 0 any more:

```plaintext
module P1:
  input I⁺;
  output O⁻;
  signal S1⁺, S2⁻ in
       present I then emit S1 end•
   ||
       present S1 else emit S2 end•
   ||
       present S2 then emit 0 end•
end signal
end module
```
Synchronize the terminated threads:

```plaintext
module P1:
    input I⁺;
    output O⁻;
    signal S1⁺, S2⁻ in
    present I then emit S1 end
    ||
    present S1 else emit S2 end
    ||
    present S2 then emit O end
end signal
end module
```
Now consider P2:

```plaintext
module P2:
  output 0 ⊥;
  • signal S ⊥ in
    emit S;
    present 0 then
      present S then
        pause
      end;
    emit 0
  end
end signal
end module
```
The Constructive Operational Semantics

After 3 microsteps:

```plaintext
module P2:
output O \perp;
signal S^+ in
  emit S;
  if present O then
    if present S then
      pause
    end;
  end;
end signal
end module
```
The Constructive Operational Semantics

Perform cannot analysis (as in constructive behavioral semantics)—and set 0 absent:

```
module P2:
  output 0-;
  signal S+ in
    emit S;
    •present 0 then
      present S then
        pause
      end;
    emit 0
  end
end signal
end module
```
The Constructive Operational Semantics

Take implicit `else` branch of test:

```plaintext
module P2:
  output O⁻;
  signal S⁺ in
    emit S;
    present 0 then
      present S then
        pause
        end;
        emit 0
      end
    end
  end signal
end module
```
The Constructive Operational Semantics

- Statues evolve monotonically
 - Hence avoid most of the recomputations that take place in the constructive behavioral semantics

- Rejecting programs is similar to constructive behavioral semantics

```module P3:
output 0;
present 0 else emit 0 end
end module```

- No possible initial microstep $\Rightarrow$ cannot set $O^+$
- Potential path to emit 0 $\Rightarrow$ cannot set $O^-$
Summary of Constructive Interpretation

Signals:

- Signals are shared objects with status \{+,-,\perp\}
- Signal status initialization:
  - Input signals are initialized according to the input event
  - Other signals initialized to \perp
- Signal status changes:
  - Status of a signal $S$ changes from $\perp$ to $+$ as soon as an “emit $S$” statement is executed
  - Status of a signal $S$ changes from $\perp$ to $-$ as soon as all the “emit $S$” statements have been found unreachable by the cannot false path analysis
Summary of Constructive Interpretation

Control:
- Sequential threads of control forked by parallel statements
- When a thread reaches a “present S” statement:
  - As long as the status of S is \( \bot \):
    - Control remains there, frozen,
  - As soon as S has a non-\( \bot \) status:
    - Control can resume
- If several threads are enabled, any one of them can be chosen
Summary of Constructive Interpretation

Control:

- Threads are stopped by termination or by executing pause or exit statements
- Parallel statements synchronize stopped threads, as explained in the intuitive semantics
- Finally, the false path analysis explores all possible instantaneous paths towards emit statements
  - Takes into account all facts established so far
  - No speculative reasoning
Summary of Constructive Interpretation

Program Acceptance:

- Given an input, a program is accepted if the analysis succeeds in setting each signal status to a defined value $+$ or $-$.
- Logical correctness is guaranteed for accepted programs.
To Go Further