Synchronous Languages—Lecture 05

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group

12 Nov 2018

Last compiled: November 18, 2018, 16:53 hrs

Esterel III—The Logical Semantics
The 5-Minute Review Session

1. How do concurrent threads in Esterel communicate?
2. What is the difference between *weak* and *strong* abortion?
3. What is the difference between *aborts* and *traps*?
4. What is *syntactic sugar*, and what is it good for?
5. What is the *multiform notion of time*?
Overview

Logical Correctness
Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

The Logical Behavioral Semantics
Causality Problems

- It’s easy to write contradictory programs
- Unfortunate side-effect of instantaneous communication coupled with the single valued signal rule
- These sorts of programs are erroneous and flagged by the Esterel compiler as incorrect
- Note: the first and third example are considered valid in SCEst, see later...
Causality Problems

Can be very complicated because of instantaneous communication
Causality

- Definition has evolved since first version of the language
- Original compiler had concept of “potentials”
 - Static concept: at a particular program point, which signals could be emitted along any path from that point
- Current definition based on “constructive causality”
 - Dynamic concept: whether there’s a “guess-free proof” that concludes a signal is absent
Causality Example

emit A;
present B then emit C end;
present A else emit B end;

Red statements reachable

Analysis done by original compiler:

- After emit A runs, there’s a static path to emit B
- Therefore, the value of B cannot be decided yet
- Execution procedure deadlocks: Program is bad
Causality Example

```cpp
emit A;
present B then emit C end;
present A else emit B end;
```

Red statements reachable

Analysis done by later compilers:

- After `emit A` runs, it is clear that `B` cannot be emitted because `A`’s presence runs the “then” branch of the second `present`
- `B` declared absent, both `present` statements run
- Program is OK
Logical Correctness

▶ The intuitive semantics:
 ▶ Specifies what should happen when executing a program
▶ However, also want to guarantee that
 ▶ Execution actually exists (at \textit{least} one possible execution)
 ▶ Execution is unique (at \textit{most} one possible execution)
▶ Need extra criteria for this!
▶ The apparently simplest possible criterion: logical correctness
Logical Correctness

Recall:
- Signal S is absent by default
- Signal S is present if an $\text{emit } S$ statement is executed

The **Logical Coherence Law**:

\[\text{A signal } S \text{ is present in a tick if and only if an } \text{emit } S \text{ statement is executed in this tick.} \]

Logical Correctness requires:
- There exists exactly one status for each signal that respects the coherence law
Logical Correctness

Given:

- Program P and input event I

P is **logically reactive** w. r. t. I:
 - There is at least one logically coherent global status

P is **logically deterministic** w. r. t. I:
 - There is at most one logically coherent global status

P is **logically correct** w. r. t. I:
 - P is both logically reactive and deterministic

P is **logically correct**:
 - P is logically correct w. r. t. *all* possible input events

Is logical correctness decidable?
- Yes!
Logical Correctness

module P1:
 input I;
 output 0;
 signal S1, S2 in
 present I then emit S1 end
 ||
 present S1 else emit S2 end
 ||
 present S2 then emit 0 end
end signal
end module

Is P1 logically correct?

▶ Yes!
Logical Correctness

Is P2 logically correct?

- Yes!
- Notice that P2 is inputless
- Inputless programs react on empty input events, i.e., on clock ticks

```plaintext
module P2:
signal S in
  emit S;
  present O then
    present S then
      pause
    end;
  emit 0
end
end signal
```
Logical Correctness

Is P3 logically correct?
► No!
► This is non-reactive

Is P4 logically correct?
► No!
► This is nondeterministic

Is P5 logically correct?
► No!
► This is non-reactive
Logical Correctness

module P6:
 present 01 then emit 02 end
 ||
 present 02 then emit 01 end

Is P6 logically correct?
- No!
- This is nondeterministic

module P7:
 present 0 then pause end;
 emit 0

Is P7 logically correct?
- No!
- This is non-reactive
Logical Correctness

module P8:
trap T in
 present I else pause end;
 emit O
 ||
 present 0 then exit T end
end trap;
emit 0

Is this logically correct?
- Yes for I present
- Nondeterministic for I absent
Logical Correctness

Is P9 logically correct?

- Yes
- Note that this contains the nondeterministic program P4 and the non-reactive program P3!
Instantaneous Feedback

- Want to reject logically incorrect programs at compile time
- One option:
 - Forbid static self-dependency of signals
 - Similar to acyclicity requirement for electrical circuits
 - This is what the Esterel v4 compiler did

```plaintext
module P3:
present 0 else emit 0 end
end module
≡ 0 = not 0

module P4:
present 0 emit 0 end
end module
≡ 0 = 0
```
Instantaneous Feedback

- However, forbidding cycles would also reject the following:

```plaintext
module GoodCycle1:
    present I then
        present 01 then emit 02 end
    else
        present 02 then emit 01 end
    end present
```

- 01 and 02 cyclically depend on each other
- However, any given status of I breaks the cycle
Instantaneous Feedback

module GoodCycle2:
present 01 then emit 02 end;
pause;
present 02 then emit 01 end

Here the cycle is neutralized with a delay

In general, requiring acyclicity turns out to be inadequate to Esterel practice
Logical Correctness—Assessment

- We now introduced logical correctness
- But do we want to use it as basis for the language?
 - ☑️ sound
 - ☹️ sometimes unintuitive (consider P9)
 - ☹️ computationally complex
- Alternative 1: allow only programs that are acyclic
 - ☑️ simple
 - ☹️ too restrictive (consider GoodCycle1/2)
- Alternative 2: accept everything for which the compiler finds a static execution schedule
 - ☑️ relatively simple for the compiler
 - ☹️ definition not precise, depends on abilities of compiler (different compilers accept different programs)
- Alternative 3: the constructive semantics
 - ☹️ analysis not trivial
 - ☑️ clear semantics
Overview

Logical Correctness

The Logical Behavioral Semantics
Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism
The Semantics of Esterel

1. **Logical** Behavioral Semantics
 - Rewriting rules defining reactivity, determinism, and logical correctness
 - Signal coherence law embedded in rules for local signals

2. **Constructive** Behavioral Semantics
 - Refines logical behavioral semantics
 - Based on *must* and *cannot* analysis

3. Logical/Constructive **State** Behavioral Semantics
 - Replaces rewriting with marking of active delays (v5 debugger)

4. **Constructive State** Operational Semantics
 - Defines reaction as sequence of microsteps (v3 compiler)

5. **Constructive** Circuit Semantics
 - Translates Esterel programs into Boolean digital circuits (v5 compiler)
Notation and Definitions

- **Sort** S: A set of signals
- **Signal statuses**: $B = \{+, -\}$
- **Event** E:
 - Given sort S, defines status $E(s) \in B$ for each $s \in S$
 - Obtain sort of E as $S(E) = S$
- **Two equivalent representations for E:**
 - As subset of S: $E = \{s \in S \mid E(s) = +\}$
 - As a mapping from S to B: $E = \{(s, b) \mid b = E(s)\}$
Notation and Definitions

- Write $s^+ \in E$ iff $E(s) = +$
- Write $s^- \in E$ iff $E(s) = -$
- Write $E' \subseteq E$ iff $\forall s \in S(E') : s^+ \in E' \implies s^+ \in E$
- Given signal s, define singleton event $\{s^+\}$:
 - $\{s^+\}(s) = +$
 - $\forall s' \neq s : \{s^+\}(s') = -$
- Given signal set S and signal $s \in S$, write $S \setminus s = S - \{s\}$
- Given E and $s \in S(E)$, write $E \setminus s$ to denote event of sort $S(E) \setminus s$, which coincides with E on all signals but s
- Define $E \ast s^b$ as event E' of sort $S(E) \cup \{s\}$ with
 - $E'(s) = b$, $E'(s') = E(s')$ for $s' \neq s$
Notation and Definitions

- Will present formal semantics as Plotkin’s Structural Operational Semantics (SOS) inference rules.
- Behavioral Semantics formalizes reaction of program P as behavioral transition

$$ P \xrightarrow{O} P' $$

- I: input event
- O: output event
- P': derivative of P—the program for the next instance
Notation and Definitions

- Auxiliary statement transition relation:
 \[p \xrightarrow{E',k,E} p' \]

- \(p \): program body (of \(P \))
- \(E \): event defining status of all signals declared in scope of \(p \)
- \(E' \): event composed of all signals emitted by \(p \) in the reaction
- \(k \): completion code returned by \(p \) (0 iff \(p \) terminates)
- \(p' \): derivative of \(p \)
- Logical coherence (or broadcasting invariant):
 \[E' \subseteq E \]
Notation and Definitions

- **Given:**
 - Program P with body p
 - Input event I

- Define *program transition* of P by statement transition of p:

\[
P \xrightarrow{O \cup I \cup O} P' \text{ iff } p \xrightarrow{O, k \cup I \cup O} p' \text{ for some } k
\]

- These program transitions, yielding an output reaction O and a derivative P', determine the logical behavioral semantics of P
The Basic Broadcasting Calculus

- For concise presentation of rules: Replace Esterel syntax with terser process-calculus syntax
- Use parenthesis for grouping statements

```
nothing 0
pause 1
emit s !s
present s then p else q end s?p, q
p; q p; q
loop p end p*
q p || q p|q
signal s in p end p\s
suspend p when s end s ? p
trap T in p end {p}
exit T k with k ≥ 2
[no concrete syntax] ↑p
```
Example

pause;
emit 01;
loop
 pause;
 [present I1 then emit 02
 end present
] ||
 present I3 else emit 03
 end present
] end loop

≡

1; !O1; (1; ((I1 ? !O2, 0) | (I3 ? 0, !O3)))*
Basic Transition Rules

The null process 0:

$$0 \xrightarrow{\emptyset,0} 0 \quad \text{(null)}$$

The unit delay process 1:

$$1 \xrightarrow{\emptyset,1} 0 \quad \text{(unit delay)}$$

Signal emission:

$$!s \xrightarrow{\{s\},0} 0 \quad \text{(emit)}$$
Deduction Rules

- In addition to simple transition rules, will also use **deduction rules**

- **Hypothesis:** If sub-instructions behave like this . . .

\[
\begin{array}{c}
p_1 \xrightarrow{E, k_1} p_1' \\
p_2 \xrightarrow{E, k_2} p_2' \\
E'_{1,2}(p_1', p_2') \xrightarrow{K(k_1, k_2)} \text{Instruction('} p_1', p_2')
\end{array}
\]

- **Conclusion:** . . . then the compound instruction behaves like that
Deduction Rules—Sequencing

(seq1)

\[
p \xrightarrow{E', k} p' \quad k \neq 0
\]

\[
p; q \xrightarrow{E', k} p'; q
\]

(seq2)

\[
p \xrightarrow{E_p', 0} p' \quad q \xrightarrow{E_q', k} q'
\]

\[
p; q \xrightarrow{E_p' \cup E_q', k} q'
\]
Deduction Rules—Looping and Parallel

\[p \xrightarrow{E',k} p' \quad k \neq 0 \]
\[\xrightarrow{E} \]
\[p^* \xrightarrow{E',k} p'; (p^*) \]

(loop)

\[p \xrightarrow{E_p',k} p' \quad q \xrightarrow{E_q',l} q' \]
\[\xrightarrow{E} \]
\[p|q \xrightarrow{E'_p \cup E'_q, \max(k,l)} p'|q' \]

(parallel)
Deduction Rules—Conditional

Zero delay: can use decision trees to test for arbitrary Boolean conditions:

- \((s_1 \land s_2)?p, q\) is \(s_1?(s_2?p, q), q\)
- \((s_1 \lor s_2)?p, q\) is \(s_1?p, (s_2?p, q)\)
- \(\neg s?p, q\) is \(s?q, p\)
Deduction Rules—Restriction

\[
\begin{align*}
E^*s^+ & \rightarrow E^*s^+ & S(E') = S(E) \setminus s \\
p & \quad \frac{E' * s^+, k}{E^*s^+} & S(E') = S(E) \setminus s \\
p \setminus s & \quad \frac{E', k}{E} & p' \setminus s
\end{align*}
\]

(sig +)

\[
\begin{align*}
E^*s^- & \rightarrow E^*s^- & S(E') = S(E) \setminus s \\
p & \quad \frac{E' * s^-, k}{E^*s^-} & S(E') = S(E) \setminus s \\
p \setminus s & \quad \frac{E', k}{E} & p' \setminus s
\end{align*}
\]

(sig −)

Note: This also properly handles nested restrictions of the same signal
Traps—Example

- The trap exit encoding is
 - $k = 2$ if the closest enclosing trap is exited, and
 - $k = n + 2$ if n trap declarations have to be traversed

```
trap U in
  trap T in
    nothing
    ||
    pause
    ||
    exit T
    ||
    exit U
end
||
exit U
end

≡ {{0 | 1 | 2 | 3}| 2}
```
Two Operators on Completion Codes

- The $\downarrow k$ operator computes completion code of $\{p\}$ from that of p:
 \[
 \downarrow k = 0 \quad \text{if} \quad k = 0 \quad \text{or} \quad k = 2 \\
 \downarrow k = 1 \quad \text{if} \quad k = 1 \\
 \downarrow k = k - 1 \quad \text{if} \quad k > 2
 \]

- The $\uparrow k$ operator computes completion code of $\uparrow p$ from that of p; want $\{\uparrow p\} \equiv p$
 \[
 \uparrow k = k \quad \text{if} \quad k = 0 \quad \text{or} \quad k = 1 \\
 \uparrow k = k + 1 \quad \text{if} \quad k > 1
 \]
The Shift Operator

- \uparrow ("shift") shifts exit numbers of p by 1 when placing p in a trap block
- May use \uparrow in definitions of derived operators

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>suspend p when immediate s</td>
<td>$s \triangleright p \equiv {(s?1, 2)^*}; s \triangleright p$</td>
</tr>
<tr>
<td>await immediate $s; p$</td>
<td>$s \trianglerightrightarrow p \equiv {(s?(\uparrow p; 2), 1)^*}$</td>
</tr>
<tr>
<td>await $s; p$</td>
<td>$s \Rightarrow p \equiv 1; s \trianglerightrightarrow p$</td>
</tr>
<tr>
<td>weak abort p when immediate s</td>
<td>$s \triangleright p \equiv {(\uparrow p; 2) \mid s \Rightarrow 2}$</td>
</tr>
<tr>
<td>weak abort p when s</td>
<td>$s \triangleright p \equiv {(\uparrow p; 2) \mid s \Rightarrow 2}$</td>
</tr>
<tr>
<td>abort p when immediate s</td>
<td>$s \trianglerightrightarrowrightarrow p \equiv s \triangleright (s \triangleright p)$</td>
</tr>
<tr>
<td>abort p when s</td>
<td>$s \trianglerightrightarrowrightarrow p \equiv s \triangleright (s \triangleright p)$</td>
</tr>
</tbody>
</table>
Traps—The Rules

(1) Exit:

\[k \xrightarrow{\emptyset,k} E \]

(2) Trap 1:

\[p \xrightarrow{E',k} p' \quad k = 0 \text{ or } k = 2 \]

\[\{p\} \xrightarrow{E',0} 0 \]

(3) Trap 2:

\[p \xrightarrow{E',k} p' \quad k = 1 \text{ or } k > 2 \]

\[\{p\} \xrightarrow{E',\downarrow k} \{p'\} \]

(4) Shift:

\[p \xrightarrow{E',k} p' \]

\[\uparrow p \xrightarrow{E',\uparrow k} \uparrow p' \]
Deduction Rules—Suspension

(suspend1)

\[
p \xrightarrow{E',0} p' \\
\frac{p \xrightarrow{E'} p'}{E} s \supset p \xrightarrow{E',0} 0
\]

(suspend2)

\[
p \xrightarrow{E',k} p' \quad k \neq 0 \\
\frac{p \xrightarrow{E'} p'}{E} s \supset p \xrightarrow{E',k} s \cdot \supset p'
\]
Reactivity and Determinism

- **Definition:** Program P is **logically reactive** (resp. **logically deterministic**) w.r.t. an input event I if there exists at least (resp. at most) one program transition $P \xrightarrow{O} P'$ for some output event O and program derivative P'.

- **Definition:** Program P is **logically correct** if it is logically reactive and logically deterministic.

- How about $(s?!s, 0)$?
- And how about $(s?0, !s)$?
Reactivity and Determinism

- I/O determinism still leaves room for internal non-determinism
 - Consider \((s?!s, 0) \backslash s\)
 - Forbidden in constructive semantics

- **Definition:** Program \(P\) is **strongly deterministic** for an input event \(I\) iff
 - \(P\) is reactive and deterministic for this event, and
 - there exists a unique proof of the unique transition \(P \xrightarrow{O \atop I} P'\).
Summary (1/3)

- The intuitive semantics specifies what should happen when executing a program.
- However, also want to guarantee that exactly one possible execution exists that satisfies the intuitive semantics.
- The Logical Coherence Law specifies that a signal S is present in a tick if and only if an “emit S” statement is executed in this tick.
- Logical Correctness requires that there exists exactly one status for each signal that respects the coherence law.
Summary (2/3)

- P is logically reactive w.r.t. input I if there is at least one logically coherent global status.
- P is logically deterministic w.r.t. I if there is at most one logically coherent global status.
- P is logically correct w.r.t. I if P is both logically reactive and deterministic.
- P is logically correct if P is logically correct w.r.t. all possible input events.
There exist several semantics for the Esterel language—one important distinction is between *logical* and *constructive* semantics, the latter being a refinement of the former.

We started discussing the logical behavioral semantics, expressed in Plotkin’s Structural Operational Semantics, with basic transition rules and deduction rules.

We formally defined reactivity, determinism, logical correctness, and strong determinism.
To Go Further

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1557