
Logical Correctness
The Logical Behavioral Semantics

Synchronous Languages—Lecture 05

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

12 Nov 2018
Last compiled: November 18, 2018, 16:53 hrs

Esterel III—The Logical
Semantics

Synchronous Languages Lecture 05 Slide 1

Logical Correctness
The Logical Behavioral Semantics

The 5-Minute Review Session

1. How do concurrent threads in Esterel communicate?

2. What is the difference between weak and strong abortion?

3. What is the difference between aborts and traps?

4. What is syntactic sugar, and what is it good for?

5. What is the multiform notion of time?

Synchronous Languages Lecture 05 Slide 2

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Overview

Logical Correctness
Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

The Logical Behavioral Semantics

Synchronous Languages Lecture 05 Slide 3

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Causality Problems

present A

else emit A

end

abort

pause;

emit A

when A

present A

then pause

end;

emit A

I It’s easy to write contradictory
programs

I Unfortunate side-effect of
instantaneous communication coupled
with the single valued signal rule

I These sorts of programs are erroneous
and flagged by the Esterel compiler as
incorrect

I Note: the first and third example are
considered valid in SCEst, see later . . .

Synchronous Languages Lecture 05 Slide 4

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Causality Problems

[

abort

emit A

when immediate B

]

||

[

present A

then emit B

end;

]

Can be very complicated
because of instantaneous
communication

Synchronous Languages Lecture 05 Slide 5

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Causality

I Definition has evolved since first version of the language
I Original compiler had concept of “potentials”

I Static concept: at a particular program point, which signals
could be emitted along any path from that point

I Current definition based on “constructive causality”
I Dynamic concept: whether there’s a “guess-free proof” that

concludes a signal is absent

Synchronous Languages Lecture 05 Slide 6

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Causality Example

emit A;

present B then emit C end;

Red statements reachable

present A else emit B end;

Analysis done by original compiler:

I After emit A runs, there’s a static path to emit B

I Therefore, the value of B cannot be decided yet

I Execution procedure deadlocks: Program is bad

Synchronous Languages Lecture 05 Slide 7

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Causality Example

emit A;

present B then emit C end;

Red statements reachable

present A else emit B end;

Analysis done by later compilers:

I After emit A runs, it is clear that B cannot be emitted
because A’s presence runs the “then” branch of the second
present

I B declared absent, both present statements run

I Program is OK

Synchronous Languages Lecture 05 Slide 8

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

I The intuitive semantics:
I Specifies what should happen when executing a program

I However, also want to guarantee that
I Execution actually exists (at least one possible execution)
I Execution is unique (at most one possible execution)

I Need extra criteria for this!

I The apparently simplest possible criterion: logical correctness

Synchronous Languages Lecture 05 Slide 9

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

Recall:

I Signal S is absent by default

I Signal S is present if an emit S statement is executed

The Logical Coherence Law:

A signal S is present in a tick if and only if an
emit S statement is executed in this tick.

Logical Correctness requires:

I There exists exactly one status for each signal that respects
the coherence law

Synchronous Languages Lecture 05 Slide 10

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

Given:

I Program P and input event I

P is logically reactive w. r. t. I :

I There is at least one logically coherent global status

P is logically deterministic w. r. t. I :

I There is at most one logically coherent global status

P is logically correct w. r. t. I :

I P is both logically reactive and deterministic

P is logically correct:

I P is logically correct w. r. t. all possible input events

Is logical correctness decidable?

I Yes!

Synchronous Languages Lecture 05 Slide 11

I Pure Esterel programs can be analyzed for logical correctness
by performing exhaustive case analysis

I Given the status of each input signal, one can make all
possible assumptions about the global status and check them
individually

I Therefore, logical correctness is decidable

I We here generally consider just a single reaction. However, in
general one also has to consider all possible sequences of
reactions and all possible program states. As there is a finite
number of program states, this is still decidable.

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P1:

input I;

output O;

signal S1, S2 in

present I then emit S1 end

||

present S1 else emit S2 end

||

present S2 then emit O end

end signal

end module

Is P1 logically correct?

I Yes!

Synchronous Languages Lecture 05 Slide 12

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P2:

signal S in

emit S;

present O then

present S then

pause

end;

emit O

end

end signal

Is P2 logically correct?

I Yes!

I Notice that P2 is
inputless

I Inputless programs react
on empty input events,
i. e., on clock ticks

Synchronous Languages Lecture 05 Slide 13

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P3:

present O else emit O end

end module

Is P3 logically correct?

I No!

I This is non-reactive

module P4:

present O emit O end

end module

Is P4 logically correct?

I No!

I This is nondeterministic

module P5:

present O1 then emit O2 end

||

present O2 else emit O1 end

Is P5 logically correct?

I No!

I This is non-reactive

Synchronous Languages Lecture 05 Slide 14

I To make examples shorter, we omit input-output declarations
from now on

I Inputs will be written I, I1, etc., and outputs will be written
O, O1, etc.

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P6:

present O1 then emit O2 end

||

present O2 then emit O1 end

Is P6 logically correct?

I No!

I This is nondeterministic

module P7:

present O then pause end;

emit O

Is P7 logically correct?

I No!

I This is non-reactive

Synchronous Languages Lecture 05 Slide 15

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P8:

trap T in

present I else pause end;

emit O

||

present O then exit T end

end trap;

emit O

Is this logically correct?

I Yes for I present

I Nondeterministic for I
absent

Synchronous Languages Lecture 05 Slide 16

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness

module P9:

[

present O1 then emit O1 end

||

present O1 then

present O2 else emit O2 end

end

]

Is P9 logically correct?

I Yes

I Note that this contains
the nondeterministic
program P4 and the
non-reactive program P3!

Synchronous Languages Lecture 05 Slide 17

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Instantaneous Feedback

I Want to reject logically incorrect programs at compile time
I One option:

I Forbid static self-dependency of signals
I Similar to acyclicity requirement for electrical circuits
I This is what the Esterel v4 compiler did

module P3:

present O else emit O end

end module ≡ O = not O

module P4:

present O emit O end

end module ≡ O = O

Synchronous Languages Lecture 05 Slide 18

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Instantaneous Feedback

I However, forbidding cycles would also reject the following:

module GoodCycle1:

present I then

present O1 then emit O2 end

else

present O2 then emit O1 end

end present

I O1 and O2 cyclically depend on each other

I However, any given status of I breaks the cycle

Synchronous Languages Lecture 05 Slide 19

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Instantaneous Feedback

module GoodCycle2:

present O1 then emit O2 end;

pause;

present O2 then emit O1 end

I Here the cycle is neutralized with a delay

I In general, requiring acyclicity turns out to be
inadequate to Esterel practice

Synchronous Languages Lecture 05 Slide 20

Logical Correctness
The Logical Behavioral Semantics

Causality issues
The logical coherence law
Logical reactivity and determinism
Instantaneous Feedback

Logical Correctness—Assessment
I We now introduced logical correctness
I But do we want to use it as basis for the language?

, sound
/ sometimes unintuitive (consider P9)
/ computationally complex

I Alternative 1: allow only programs that are acyclic
, simple
/ too restrictive (consider GoodCycle1/2)

I Alternative 2: accept everything for which the compiler finds a
static execution schedule

, relatively simple for the compiler
/ definition not precise, depends on abilities of compiler

(different compilers accept different programs)
I Alternative 3: the constructive semantics

/ analysis not trivial
, clear semantics

Synchronous Languages Lecture 05 Slide 21

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Overview

Logical Correctness

The Logical Behavioral Semantics
Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Synchronous Languages Lecture 05 Slide 22

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

The Semantics of Esterel

1. Logical Behavioral Semantics
I Rewriting rules defining reactivity, determinism, and logical

correctness
I Signal coherence law embedded in rules for local signals

2. Constructive Behavioral Semantics
I Refines logical behavioral semantics
I Based on must and cannot analysis

3. Logical/Constructive State Behavioral Semantics
I Replaces rewriting with marking of active delays (v5 debugger)

4. Constructive State Operational Semantics
I Defines reaction as sequence of microsteps (v3 compiler)

5. Constructive Circuit Semantics
I Translates Esterel programs into Boolean digital circuits

(v5 compiler)

Synchronous Languages Lecture 05 Slide 23

I The logical behavioral semantics accepts more programs than we
would like (for example, program P9 presented in Lecture 03)

I However, the logical behavioral semantics is important in that all
other semantics should be a refinement of it, and it is also a natural
starting point

I The constructive semantics are equivalent; the constructive
behavioral semantics is the most intuitive, and can be derived fairly
directly from the logical behavioral semantics, so we will focus on
these two semantics here

I Note that the terminology (and categorization) used in different
references (and sometimes within the same reference—e.g., in
Berry’s draft book) is a bit in flux; the keywords to look out for to
distinguish which is which are “logical” vs. “constructive”, “state”
and “behavioral” vs. “operational”

I In this class, will focus on semantics 1, 2, and 5

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Notation and Definitions

I Sort S : A set of signals

I Signal statuses: B = {+,–}
I Event E :

I Given sort S , defines status E (s) ∈ B for each s ∈ S
I Obtain sort of E as S(E) = S

I Two equivalent representations for E :
I As subset of S : E = {s ∈ S | E (s) = +}
I As a mapping from S to B: E = {(s, b) | b = E (s)}

Synchronous Languages Lecture 05 Slide 24

I Allowing to represent events in alternate ways somewhat
simplifies the subsequent presentation of the rewriting rules

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Notation and Definitions

I Write s+ ∈ E iff E (s) = +

I Write s− ∈ E iff E (s) = −
I Write E ′ ⊂ E iff ∀s ∈ S(E ′) : s+ ∈ E ′ =⇒ s+ ∈ E
I Given signal s, define singleton event {s+}:

I {s+}(s) = +
I ∀s ′ 6= s : {s+}(s ′) = −

I Given signal set S and signal s ∈ S , write S \ s = S − {s}
I Given E and s ∈ S(E), write E \ s to denote event of sort

S(E) \ s, which coincides with E on all signals but s

I Define E ∗ sb as event E ′ of sort S(E) ∪ {s} with
I E ′(s) = b, E ′(s ′) = E (s ′) for s ′ 6= s

Synchronous Languages Lecture 05 Slide 25

I Note that in the definition of E ∗ sb, s may or may not be in
S(E); in the former case, the status of s in E is lost in E ∗ sb

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Notation and Definitions

I Will present formal semantics as Plotkin’s Structural
Operational Semantics (SOS) inference rules

I Behavioral Semantics formalizes reaction of program P as
behavioral transition

P
O−→
I

P ′

I I : input event
I O: output event
I P ′: derivative of P—the program for the next instance

Synchronous Languages Lecture 05 Slide 26

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Notation and Definitions

I Auxiliary statement transition relation:

p
E ′,k−−→
E

p′

I p: program body (of P)

I E : event defining status of all signals declared in scope of p

I E ′: event composed of all signals emitted by p in the reaction

I k: completion code returned by p (0 iff p terminates)

I p′: derivative of p

I Logical coherence (or broadcasting invariant):

E ′ ⊂ E

Synchronous Languages Lecture 05 Slide 27

I Here, we consider an Esterel program to consist of an
input/output signal interface and an executable body

I Note that the event E is an assumption in the sense of the
logical semantics

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Notation and Definitions

I Given:
I Program P with body p
I Input event I

I Define program transition of P by statement transition of p:

P
O−→
I

P ′ iff p
O,k−−→
I∪O

p′ for some k

I These program transitions, yielding an output reaction O and
a derivative P ′, determine the logical behavioral semantics of
P

Synchronous Languages Lecture 05 Slide 28

I Note how the definition of the program transition reflects the
logical coherence

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

The Basic Broadcasting Calculus
I For concise presentation of rules: Replace Esterel syntax with

terser process-calculus syntax
I Use parenthesis for grouping statements

nothing 0
pause 1
emit s !s
present s then p else q end s?p, q
p; q p; q
loop p end p∗
p ‖ q p|q
signal s in p end p \ s
suspend p when s end s ⊃ p
trap T in p end {p}
exit T k with k ≥ 2
[no concrete syntax] ↑p

Synchronous Languages Lecture 05 Slide 29

Recall: trap T in p end

I Defines a lexically scoped exit point T for p

I Immediately starts its body p and behaves as p until
termination or exit

I If p terminates, so does the trap statement

I If p exits T , then the trap statement terminates
instantaneously

I If p exits an enclosing trap U, this exit is propagated by the
trap statement

I Is part of pure Esterel

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Example
pause;

emit O1;

loop

pause;

[

present I1 then

emit O2

end present

||

present I3 else

emit O3

end present

]

end loop

≡
1; !O1; (1; ((I1 ? !O2, 0) | (I3 ? 0, !O3)))*

Synchronous Languages Lecture 05 Slide 30

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Basic Transition Rules

The null process 0: 0
∅,0−−→
E

0 (null)

The unit delay process 1: 1
∅,1−−→
E

0 (unit delay)

Signal emission: !s
{s},0−−−→
E

0 (emit)

Synchronous Languages Lecture 05 Slide 31

I The null process 0 terminates instantaneously and rewrites
into itself

I The unit delay process 1 waits in the current reaction and
rewrites itself into 0 for the next reaction

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules

I In addition to simple transition rules, will also use deduction
rules

I Hypothesis: If sub-instructions behave like this . . .

p1
E ′1,k1−−−→
E

p′1 p2
E ′2,k2−−−→
E

p′2 Other hypotheses

Instruction(p1, p2)
E ′(E ′1,E

′
2) K(k1,k2)−−−−−−−−−−−−−→
E

Instruction′(p′1, p
′
2)

I Conclusion: . . . then the compound instruction behaves like
that

Synchronous Languages Lecture 05 Slide 32

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules—Sequencing

p
E ′,k−−→
E

p′ k 6= 0

p; q
E ′,k−−→
E

p′; q
(seq1)

p
E ′p ,0−−→
E

p′ q
E ′q ,k−−→
E

q′

p; q
E ′p∪E ′q ,k−−−−−→

E
q′

(seq2)

Synchronous Languages Lecture 05 Slide 33

I If the first component of a sequence waits, the sequence also
waits

I For reasons that will become clear later, write waiting as k 6= 0
instead of k = 1

I If the first component of a sequence terminates, the second is
started (in zero delay), in the same environment E , and the
emitted signals are merged

I Using same E for both premises implements forward
broadcasting from p to q, as broadcasting invariant of first
premise implies E ′P ⊂ E

I However, with the same reasoning we have backward
broadcasting from q to p, conflicting with our requirement for
causality—will rule this out later

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules—Looping and Parallel

p
E ′,k−−→
E

p′ k 6= 0

p∗
E ′,k−−→
E

p′; (p∗)
(loop)

p
E ′p ,k−−→
E

p′ q
E ′q ,l−−→
E

q′

p|q E ′p∪E ′q ,max(k,l)−−−−−−−−−→
E

p′|q′
(parallel)

Synchronous Languages Lecture 05 Slide 34

I Note how the global broadcasting invariant expresses that
signals are broadcast between parallel branches: E ′p ∪ E ′q ⊂ E
holds iff both E ′p ⊂ E and E ′q ⊂ E hold

I Note that parallel constructs where all threads have
terminated get cleaned up by the (seq2) rule or (trap1)

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules—Conditional

s+ ∈ E p
E ′,k−−→
E

p′

s?p, q
E ′,k−−→
E

p′
(present +)

s− ∈ E q
E ′,k−−→
E

q′

s?p, q
E ′,k−−→
E

q′
(present −)

Zero delay: can use decision trees to test for arbitrary Boolean
conditions:

I (s1 ∧ s2)?p, q is s1?(s2?p, q), q

I (s1 ∨ s2)?p, q is s1?p, (s2?p, q)

I ¬s?p, q is s?q, p

Synchronous Languages Lecture 05 Slide 35

Example: loop emit S; pause; emit T end.

In the process calculus: (!S ; 1; !T)∗
Calculating initial reaction, as a derivative tree (Ableitungsbaum):

!S
{S},0−−−→
{S}

0, 1
∅,1−−→
{S}

0

!S ;1
{S},1−−−→
{S}

0

(seq2)

!S;1;!T
{S},1−−−→
{S}

0;!T
(seq1)

(!S ; 1; !T)∗ {S},1−−−→
{S}

0; !T ; (!S ; 1; !T)∗
(loop)

See next note for an alternative notation.
Similarly, for next reaction (and all following):

0; !T ; (!S ; 1; !T)∗ {S ,T},1−−−−−→
{S ,T}

0; !T ; (!S ; 1; !T)∗

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules—Restriction

p
E ′∗s+,k−−−−−→
E∗s+

p′ S(E ′) = S(E)\s

p \ s E ′,k−−→
E

p′ \ s
(sig +)

p
E ′∗s−,k−−−−−→
E∗s−

p′ S(E ′) = S(E)\s

p \ s E ′,k−−→
E

p′ \ s
(sig −)

Note: This also properly handles nested restrictions of the same
signal

Synchronous Languages Lecture 05 Slide 36

I The additional sort condition expresses that the sort of E ′

does not contain s—this avoids propagating the local status
of s outside the p\s statement

Another notation for initial reaction of example from previous note:

!S
{S},0−−−→
{S}

0, 1
∅,1−−→
{S}

0
(seq2)
=⇒ !S ; 1

{S},1−−−→
{S}

0

(seq1)
=⇒ !S ; 1; !T

{S},1−−−→
{S}

0; !T

(loop)
=⇒ (!S ; 1; !T)∗ {S},1−−−→

{S}
0; !T ; (!S ; 1; !T)∗

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Traps—Example
I The trap exit encoding is

I k = 2 if the closest enclosing trap is exited, and
I k = n + 2 if n trap declarations have to be traversed

trap U in

trap T in

nothing

||

pause

||

exit T

||

exit U

end

||

exit U

end

≡ {{0 | 1 | 2 | 3}| 2}

Synchronous Languages Lecture 05 Slide 37

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Two Operators on Completion Codes

I The ↓k operator computes completion code of {p} from that
of p:

↓k = 0 if k = 0 or k = 2

↓k = 1 if k = 1

↓k = k − 1 if k > 2

I The ↑k operator computes completion code of ↑p from that
of p; want {↑p} ≡ p

↑k = k if k = 0 or k = 1

↑k = k + 1 if k > 1

Synchronous Languages Lecture 05 Slide 38

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

The Shift Operator

I ↑ (“shift”) shifts exit numbers of p by 1 when placing p in a
trap block

I May use ↑ in definitions of derived operators

suspend p when immediate s s ·⊃ p ≡ {(s?1, 2)∗}; s ⊃ p
await immediate s; p s ·⇒ p ≡ {(s?(↑p; 2), 1)∗}
await s; p s ⇒ p ≡ 1; s ·⇒ p
weak abort p when immediate s s ·> p ≡ {(↑p; 2) | s ·⇒ 2}
weak abort p when s s > p ≡ {(↑p; 2) | s ⇒ 2}
abort p when immediate s s ·� p ≡ s ·> (s ·⊃ p)
abort p when s s � p ≡ s > (s ⊃ p)

Synchronous Languages Lecture 05 Slide 39

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Traps—The Rules

k
∅,k−−→
E

0 (exit)

p
E ′,k−−→
E

p′ k = 0 or k = 2

{p} E ′,0−−→
E

0
(trap1)

p
E ′,k−−→
E

p′ k = 1 or k > 2

{p} E ′,↓k−−−→
E
{p′}

(trap2)

p
E ′,k−−→
E

p′

↑p E ′,↑k−−−→
E
↑p′

(shift)

Synchronous Languages Lecture 05 Slide 40

Note: It might be a bit surprising that in (trap2), the braces (trap
scope) remain in the program derivative when an internal
exception is propagated up. However, this works fine: the ↓k
operator keeps lowering the trap completion code, and as soon as
we reach the trap scope corresponding to the exception, everything
reduces to nothing. See for example { { !S1; 3; !S2 }; !S3 }:

!S1
{S1},0−−−−→
{S1}

0, 3
∅,3−−−→
{S1}

0

!S1;3
{S1},3−−−−→
{S1}

{0}
(seq1)

!S1;3;!S2
{S1},3−−−−→
{S1}

0;!S2

(seq2)

{!S1;3;!S2}
{S1},2−−−−→
{S1}

{0;!S2}
(trap2)

{!S1;3;!S2};!S3
{S1},2−−−−→
{S1}

{0;!S2};!S3
(seq1)

{{!S1; 3; !S2}; !S3} {S1},0−−−−→
{S1}

0
(trap1)

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Deduction Rules—Suspension

p
E ′,0−−→
E

p′

s ⊃ p
E ′,0−−→
E

0
(suspend1)

p
E ′,k−−→
E

p′ k 6= 0

s ⊃ p
E ′,k−−→
E

s ·⊃ p′
(suspend2)

Synchronous Languages Lecture 05 Slide 41

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Reactivity and Determinism

I Definition: Program P is logically reactive (resp. logically
deterministic) w.r.t. an input event I if there exists at least

(resp. at most) one program transition P
O−→
I

P ′ for some

output event O and program derivative P ′

I Definition: Program P is logically correct if it is logically
reactive and logically deterministic

I How about (s?!s, 0)?

I And how about (s?0, !s)?

Synchronous Languages Lecture 05 Slide 42

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Reactivity and Determinism

I I/O determinism still leaves room for internal
non-determinism
I Consider (s?!s, 0) \ s
I Forbidden in constructive semantics

I Definition: Program P is strongly deterministic for an input
event I iff
I P is reactive and deterministic for this event, and
I there exists a unique proof of the unique transition P

O−→
I

P ′.

Synchronous Languages Lecture 05 Slide 43

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Summary (1/3)

I The intuitive semantics specifies what should happen when
executing a program

I However, also want to guarantee that exactly one possible
execution exists that satisfies the intuitive semantics

I The Logical Coherence Law specifies that a signal S is present
in a tick if and only if an “emit S” statement is executed in
this tick

I Logical Correctness requires that there exists exactly one
status for each signal that respects the coherence law

Synchronous Languages Lecture 05 Slide 44

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Summary (2/3)

I P is logically reactive w. r. t. input I if there is at least one
logically coherent global status

I P is logically deterministic w. r. t. I if there is at most one
logically coherent global status

I P is logically correct w. r. t. I if P is both logically reactive and
deterministic

I P is logically correct if P is logically correct w. r. t. all possible
input events

Synchronous Languages Lecture 05 Slide 45

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

Summary (3/3)

I There exist several semantics for the Esterel language—one
important distinction is between logical and constructive
semantics, the latter being a refinement of the former

I We started discussing the logical behavioral semantics,
expressed in Plotkin’s Structural Operational Semantics, with
basic transition rules and deduction rules

I We formally defined reactivity, determinism, logical
correctness, and strong determinism

Synchronous Languages Lecture 05 Slide 46

Logical Correctness
The Logical Behavioral Semantics

Notation and Definitions
The Basic Broadcasting Calculus
Transition Rules
Reactivity and Determinism

To Go Further

I Gérard Berry, The Constructive Semantics of Pure Esterel,
Draft book, current version 3.0, Dec. 2002
http://www-sop.inria.fr/members/Gerard.Berry/

Papers/EsterelConstructiveBook.zip

I Gérard Berry, Preemption in Concurrent Systems, In
Proceedings FSTTCS 93, Lecture Notes in Computer Science
761, pages 72-93, Springer-Verlag, 1993,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.42.1557

Synchronous Languages Lecture 05 Slide 47

