Synchronous Languages—Lecture 17

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

30 Jan. 2017

Last compiled: January 30, 2017, 10:26 hrs

Lustre

Slide 1

Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE, a tool used in software development for avionics and automotive industries
- → Translatable to FSMs with finitely many control states
 - ► Same advantages as Esterel for hardware and software design

Lustre Modules

General form:

```
node f(x_1:\alpha_1, \ldots, x_n:\alpha_n) returns (y_1:\beta_1, \ldots, y_m:\beta_m) var z_1:\gamma_1, \ldots, z_k:\gamma_k;
let z_1 = \tau_1; \ldots; z_k = \tau_k; y_1 = \pi_1; \ldots; y_m = \pi_k; assert \varphi_1; \ldots; assert \varphi_\ell; tel
```

where

- ▶ f is the name of the module
- ▶ Inputs x_i , outputs y_i , and local variables z_i
- Assertions φ_i (boolean expressions)

Lustre Programs

- ► Lustre programs are a list of modules that are called nodes
- ▶ All nodes work synchronously, i. e. at the same speed
- Nodes communicate only via inputs and outputs
- ▶ No broadcasting of signals, no side effects
- ▶ Equations $z_i = \tau_i$ and $y_i = \pi_i$ are not assignments
- Equations must have solutions in the mathematical sense

Lustre Programs

- As $z_i = \tau_i$ and $y_i = \pi_i$ are equations, we have the Substitution Principle:
 - The definitions $z_i = \tau_i$ and $y_i = \pi_i$ of a Lustre node allow one to replace z_i by τ_i and y_i by π_i .
- ▶ Behavior of z_i and y_i completely given by equations $z_i = \tau_i$ and $y_i = \pi_i$

Assertions

- \blacktriangleright Assertions assert φ do not influence the behavior of the system
- \blacktriangleright assert φ means that during execution, φ must invariantly hold
- Equation X = E equivalent to assertion assert(X = E)
- Assertions can be used to optimize the code generation
- Assertions can be used for simulation and verification

Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- ► Example: given x = (0, 1, 2, 3, 4, ...) and y = (0, 2, 4, 6, 8, ...), then x + y is the stream (0, 3, 6, 9, 12, ...)
- However, streams may refer to different clocks
- → Each stream has a corresponding clock

Data Types

- ▶ Primitive data types: bool, int, real
 - Semantics is clear?
- Imported data types: type α
 - Similar to Esterel
 - Data type is implemented in host language
- ▶ Tuples of types: $\alpha_1 \times ... \times \alpha_n$ is a type
 - Semantics is Cartesian product

Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - ightharpoonup au_1 and au_2 , au_1 or au_2 , not au_1
- ► Numeric expressions:
 - ightharpoonup $au_1+ au_2$ and $au_1- au_2$, $au_1* au_2$ and au_1/ au_2 , au_1 div au_2 and au_1 mod au_2
- Relational expressions:

$$\bullet$$
 $\tau_1 = \tau_2, \ \tau_1 < \tau_2, \ \tau_1 \le \tau_2, \ \tau_1 > \tau_2, \ \tau_1 \ge \tau_2$

- Conditional expressions:
 - if b then τ_1 else τ_2 for all types

Node Expansion

- Assume implementation of a node f with inputs $x_1 : \alpha_1, \ldots, x_n : \alpha_n$ and outputs $y_1 : \beta_1, \ldots, y_m : \beta_m$
- ▶ Then, f can be used to create new stream expressions, e.g., $f(\tau_1, \ldots, \tau_n)$ is an expression
 - Of type $\beta_1 \times \ldots \times \beta_m$
 - If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```
node f(x:\alpha) returns (y:\beta)

var z:\gamma;

let

z = \tau;

y = \pi;

assert \varphi;

tel
```

Clock-Operators

- ► All expressions are streams
- Clock-operators modify the temporal arrangement of streams
- Again, their results are streams
- ► The following clock operators are available:
 - pre au for every stream au
 - $au_1 o au_2$, (pronounced "followed by") where au_1 and au_2 have the same type
 - $ightharpoonup au_1$ when au_2 where au_2 has boolean type (downsampling)
 - current τ (upsampling)

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- lacktriangle A clock is thereby a stream φ of boolean type

 $lackbox{ clocks}(au) := []$ for expressions without clock operators

- clocks $(\tau) := []$ for expressions without clock operators
- ightharpoonup clocks(au) := clocks(au)

- ightharpoonup clocks(au) := [] for expressions without clock operators
- ightharpoonup clocks(pre(au)) := clocks(au)
- ▶ clocks $(\tau_1 \rightarrow \tau_2) := \text{clocks}(\tau_1)$, where clocks $(\tau_1) = \text{clocks}(\tau_2)$ is required

- ightharpoonup clocks(au) := [] for expressions without clock operators
- ightharpoonup clocks(pre(au)) := clocks(au)
- ▶ clocks $(\tau_1 \rightarrow \tau_2) := \text{clocks}(\tau_1)$, where clocks $(\tau_1) = \text{clocks}(\tau_2)$ is required
- ▶ clocks(τ when φ) := [φ , c_1 , ..., c_n], where clocks(φ) = clocks(τ) = [c_1 , ..., c_n]

- ightharpoonup clocks(au) := [] for expressions without clock operators
- ightharpoonup clocks(pre(au)) := clocks(au)
- ▶ clocks $(\tau_1 \rightarrow \tau_2) := \text{clocks}(\tau_1)$, where clocks $(\tau_1) = \text{clocks}(\tau_2)$ is required
- ▶ clocks(τ when φ) := [φ , c_1 , ..., c_n], where clocks(φ) = clocks(τ) = [c_1 , ..., c_n]
- ▶ clocks(current(τ)) := [c_2, \ldots, c_n], where clocks(τ) = [c_1, \ldots, c_n]

$$ightharpoonup \llbracket \operatorname{pre}(au)
rbracket := (oldsymbol{\perp}, au_0, au_1, \ldots)$$
, provided that $\llbracket au
rbracket = (au_0, au_1, \ldots)$

```
ightharpoonup \llbracket \operatorname{pre}(	au) 
rbracket := (ot, 	au_0, 	au_1, \ldots), 	ext{ provided that } \llbracket 	au 
rbracket = (	au_0, 	au_1, \ldots)
```

▶
$$\llbracket \tau \rightarrow \pi \rrbracket := (\tau_0, \pi_1, \pi_2, ...),$$
 provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, ...)$ and $\llbracket \pi \rrbracket = (\pi_0, \pi_1, ...)$

- $lackbox{ [pre(} au)]\!] := (\bot, au_0, au_1, \ldots), ext{ provided that } [\![au]\!] = (au_0, au_1, \ldots)$
- $\llbracket \tau \ \, \neg > \ \, \pi \rrbracket := (\tau_0, \pi_1, \pi_2, \ldots),$ provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$ and $\llbracket \pi \rrbracket = (\pi_0, \pi_1, \ldots)$
- ▶ $\llbracket \tau \text{ when } \varphi \rrbracket = (\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots)$, provided that
 - $ightharpoonup [\![\tau]\!] = (\tau_0, \tau_1, \ldots)$
 - $\{t_0, t_1, \ldots\}$ is the set of points in time where $\llbracket \varphi \rrbracket$ holds

- $ightharpoonup \llbracket \operatorname{pre}(au)
 rbracket := (oldsymbol{\perp}, au_0, au_1, \ldots), ext{ provided that } \llbracket au
 rbracket = (au_0, au_1, \ldots)$
- $\llbracket au$ when $\varphi
 rbracket = (au_{t_0}, au_{t_1}, au_{t_2}, \ldots)$, provided that
 - $\blacktriangleright \llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
 - $\{t_0,t_1,\ldots\}$ is the set of points in time where $[\![\varphi]\!]$ holds
- $[[\mathtt{current}(\tau)]] = (\bot, \ldots, \bot, \tau_{t_0}, \ldots, \tau_{t_0}, \tau_{t_1}, \ldots, \tau_{t_1}, \tau_{t_2}, \ldots) ,$ provided that

 - $\{t_0, t_1, \ldots\}$ is the set of points in time where the highest clock of current (τ) holds

φ	0	1	0	1	0	0	1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$							

φ	0	1	0	1	0	0	1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	T						

φ	0	1	0	1	0	0	1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	Τ	$ au_0$					

		1					
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$	T	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
au -> pre (au)	$ au_0$						

φ				1			
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$	T	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au -> pre (au)	$ au_0$	$ au_0$					

φ				1			
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	Τ	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
au -> pre (au)	$ au_0$	$ au_{0}$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$
au when $arphi$							

φ							1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	T	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
$\tau \rightarrow pre(\tau)$	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$
au when $arphi$		$ au_1$					

φ						0	
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$	1	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
τ -> pre (τ)	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au when $arphi$		$ au_1$		$ au_3$			$ au_6$
$ \mathtt{current}(au \mathtt{ when } arphi) $							

φ				1			
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	1	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
τ -> pre (τ)	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au when $arphi$		$ au_1$		$ au_3$			$ au_6$
$\mid \mathtt{current}(au \ \mathtt{when} \ arphi)$							

φ	0	1	0	1	0	0	1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$	1	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
$\tau \rightarrow pre(\tau)$	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au when $arphi$		$ au_1$		$ au_3$			$ au_6$
current $(au$ when $arphi)$	_	$ au_1$					

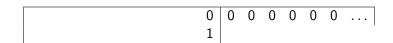
φ				1			- 1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{ extsf{4}}$	$ au_{5}$	$ au_6$
$\mathtt{pre}(au)$	T	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
τ -> pre (τ)	$ au_0$	$ au_{0}$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au when $arphi$		$ au_{1}$		$ au_3$			$ au_6$
$\mid \mathtt{current}(au \ \mathtt{when} \ arphi) \mid$	1	$ au_1$	$ au_1$				

φ	0	1	0	1	0	0	1
au	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$	$ au_6$
$\mathtt{pre}(au)$	\perp	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_5$
τ -> pre (τ)	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	$ au_{5}$
au when $arphi$		$ au_1$		$ au_3$			$ au_{6}$
$\operatorname{\mathtt{current}}(au \ \mathtt{when} \ arphi)$	\perp	$ au_1$	$ au_1$	$ au_3$	$ au_3$	$ au_3$	$ au_6$

- Note: $[\tau \text{ when } \varphi] = (\tau_1, \tau_3, \tau_6, \ldots)$, *i. e.*, gaps are not filled!
- ▶ This is done by current(τ when φ)

0

Example: Counter Example: ABRO



```
0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 ...

n = (0 -> pre(n)+1) 0 1 2 3 4 5 ...

e = (1 -> not pre(e))
```

```
0 0 0 0 0 0 0 ...

1 1 1 1 1 1 ...

n = (0 -> pre(n)+1) 0 1 2 3 4 5 ...

e = (1 -> not pre(e)) 1 0 1 0 1 0 ...
```

```
0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 ...

n = (0 -> pre(n)+1) 0 1 2 3 4 5 ...

e = (1 -> not pre(e)) 1 0 1 0 1 0 ...

n when e current(n when e)
```

```
0 0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 ...

n = (0 -> pre(n)+1) 0 1 2 3 4 5 ...

e = (1 -> not pre(e)) 1 0 1 0 1 0 ...

n when e 0 2 4 ...

current(n when e) 0 0 2 2 4 4 ...

current (n when e) div 2
```

```
0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 ...

n = (0 -> pre(n)+1) 0 1 2 3 4 5 ...

e = (1 -> not pre(e)) 1 0 1 0 1 0 ...

n when e 0 2 4 ...

current(n when e) 0 0 2 2 4 4 ...

current (n when e) div 2 0 0 1 1 2 2 ...
```

Example: ABRO

$$n = 0 \rightarrow pre(n)+1$$

Example: Counter Example: ABRO

Example: ABRO

Example: ABRO

Example: ABRO

```
n = 0 \rightarrow pre(n)+1
                                                                    10
                                                                         11
     d2 = (n \ div \ 2)*2 = n
                                                                         0
                                                             8
                                                                    10
            n2 = n when d2
     d3 = (n \ div \ 3)*3 = n
                                              0
                                                                    0
                                                                         0
                                                     6
            n3 = n when d3
                                              0
                                                                    0
          d3' = d3 when d2
                                       0
                                                             0
          n6 = n2 when d3,
c3 = current(n2 when d3')
```

$n = 0 \rightarrow pre(n)+1$	0	1	2	3	4	5	6	7	8	9	10	11
d2 = (n div 2)*2 = n	1	0	1	0	1	0	1	0	1	0	1	0
n2 = n when d2			2		4		6		8		10	
d3 = (n div 3)*3 = n	1	0	0	1	0	0	1	0	0	1	0	0
n3 = n when $d3$				3			6			9		
d3' = d3 when d2	1		0		0		1		0		0	
n6 = n2 when d3'							6					
c3 = current(n2 when d3')			0		0		6		6		6	

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
  n = x0 → if r then x0 else pre(n) + d
tel
```

ABRO in Lustre

```
node EDGE(X:bool) returns (Y:bool);
let.
 Y = false \rightarrow X \text{ and not pre}(X);
tel
node ABRO (A,B,R:bool) returns (O: bool);
 var seenA. seenB : bool:
let
 0 = EDGE(seenA and seenB):
  seenA = false → not R and (A or pre(seenA));
  seenB = false → not R and (B or pre(seenB));
tel
```

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions
- Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - ▶ a = a and pre(a) is

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - a = a and pre(a) is cyclic

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- ► Examples:
 - a = a and pre(a) is cyclic
 - a = b and pre(a) is

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - a = a and pre(a) is cyclic
 - a = b and pre(a) is acyclic

- $x = \tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - a = a and pre(a) is cyclic
 - a = b and pre(a) is acyclic
- Acyclic equations have a unique solution!
- Analyze cyclic equations to determine causality?
- But: Lustre only allows acyclic equation systems
- Sufficient for signal processing

Malik's Example

▶ However, some interesting examples are cyclic

```
y = if c then y_f else y_g;
y_f = f(x_f);
y_g = g(x_g);
x_f = if c then y_g else x;
x_g = if c then x else y_f;
```

- ► Implements if c then f(g(x)) else g(f(x)) with only one instance of f and g
- Impossible without cycles

Sharad Malik.

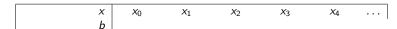
Analysis of cyclic combinatorial circuits.

in IEEE Transactions on Computer-Aided Design, 1994

Consider the following equations:

```
b = 0 \rightarrow \text{not pre}(b);
y = x + (x when b)
```

▶ We obtain the following:



Consider the following equations:

```
b = 0 \rightarrow \text{not pre}(b);
y = x + (x \text{ when } b)
```

▶ We obtain the following:

Consider the following equations:

```
b = 0 \rightarrow \text{not pre}(b);
y = x + (x \text{ when } b)
```

▶ We obtain the following:

Consider the following equations:

```
b = 0 \rightarrow \text{not pre}(b);
y = x + (x \text{ when } b)
```

We obtain the following:

Х	<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	
Ь	0	1	0	1	0	
x when b		<i>X</i> ₁		<i>X</i> 3		
x + (x when b)	$x_0 + x_1$	$x_1 + x_3$	$x_2 + x_5$	$x_3 + x_7$	$x_4 + x_9$	

Consider the following equations:

```
b = 0 \rightarrow \text{not pre}(b);
y = x + (x \text{ when } b)
```

We obtain the following:

- ▶ To compute $y_i := x_i + x_{2i+1}$, we have to store x_i, \ldots, x_{2i+1}
- Problem: not possible with finite memory

- **Expressions** like x + (x when b) are not allowed
- Only streams at the same clock can be combined
- What is the 'same' clock?
- Undecidable to prove this semantically
- Check syntactically

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$x = a$$
 when $(y > z)$;
 $y = b + c$;
 $u = d$ when $(b + c > z)$;
 $v = e$ when $(z < y)$;

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$x = a$$
 when $(y > z)$;
 $y = b + c$;
 $u = d$ when $(b + c > z)$;
 $v = e$ when $(z < y)$;

x and u have the same clock

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$x = a$$
 when $(y > z)$;
 $y = b + c$;
 $u = d$ when $(b + c > z)$;
 $v = e$ when $(z < y)$;

- x and u have the same clock
- x and v do not have the same clock

Arrays

- ▶ Given type α , α ⁿ defines an array with n entries of type α
- ▶ Example: x: boolⁿ
- ► The bounds of an array must be known at compile time, the compiler simply transforms an array of n values into n different variables.
- ▶ The i-th element of an array X is accessed by X[i].
- ▶ X[i..j] with $i \le j$ denotes the array made of elements i to j of X.
- ▶ Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
  var A: bool^(d+1);
let
  A[0] = X;
  A[1..d] = (false^(d)) \rightarrow pre(A[0..d--1]);
  Y = A[d];
tel
```

- ▶ false^(d) denotes the boolean array of length d, which entries are all false
- ▶ Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
  var A: bool^(d+1);
let
  A[0] = X;
  A[1..d] = (false^(d)) \rightarrow pre(A[0..d--1]);
  Y = A[d];
tel
```

- ▶ false^(d) denotes the boolean array of length d, which entries are all false
- Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation
- ▶ The node outputs each input delayed by *d* steps.
- ▶ So $Y_n = X_{n-d}$ with $Y_n = false$ for n < d

Static Recursion

- Functional languages usually make use of recursively defined functions
- Problem: termination of recursion in general undecidable
- → Primitive recursive functions guarantee termination
 - Problem: still with primitive recursive functions, the reaction time depends heavily on the input data
- → Static recursion: recursion only at compile time
 - Observe: If the recursion is not bounded, the compilation will not stop.

Example for Static Recursion

Disjunction of boolean array

```
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
y = with n=1 then x[0]
    else x[0] or BigOr(n--1,x[1..n--1]);
tel
```

- ▶ Constant *n* must be known at compile time
- ▶ Node is unrolled before further compilation

Example for Maximum Computation

Static recursion allows logarithmic circuits:

```
node Max(const n:int; x:int^n) returns (y:int)
   var y_1,y_2: int;
let
   y_1 = with n=1 then x[0]
        else Max(n div 2,x[0..(n div 2)--1]);
   y_2 = with n=1 then x[0]
        else Max((n+1) div 2, x[(n div 2)..n--1]);
   y = if y_1 >= y_2 then y_1 else y_2;
tel
```

Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false \rightarrow pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:

Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false \rightarrow pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:

```
Y = false → pre(Y2)

Y2 = false → pre(Y1)

Y1 = false → pre(Y0)

Y0 = X;
```

Summary

- Lustre is a synchronous dataflow language.
- ► The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.

To Go Further

- Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre, 2002 http://www-verimag.imag.fr/~halbwach/ lustre-tutorial.html
- Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud, The Synchronous Data-Flow Programming Language Lustre, In Proceedings of the IEEE, 79:9, September 1991, http://www-verimag.imag.fr/~halbwach/lustre: ieee.html