
Strict Sequential Constructiveness

Alexander Schulz-Rosengarten
Reinhard von Hanxleden, Michael Mendler

Why restricting sequential constructiveness?

Strict Sequential Constructiveness 2 / 42

Motivation: Program P10
1 module P10
2 int x, y;
3 {
4 y = 0; //S1
5 fork
6 x = 1; //S2
7 y = x //S3
8 par
9 if y == 0 then //S4

10 x = 0 //S5
11 end
12 join
13 }

SC-admissible Schedule
S1 — S2 — S3 — S4

entry

y = 0

fork

join

exit

entry

x = 1

y = x

exit

entry

y == 0

x = 0

exit

true

Strict Sequential Constructiveness 3 / 42

Problem

P10
is reactive (∃ SC-admissible Run)
is determinate (∀ SC-admissible Runs : same determinate macro responses)

is Sequentially Constructive
but is executed in a speculative manner

Strict Sequential Constructiveness 4 / 42

YOU SHALL NOT

SPECULATE!

Problem

P10:
is reactive (∃ SC-admissible Run)

is determinate (∀ SC-admissible Runs : same determinate macro responses)

is Sequentially Constructive
but is executed in a speculative manner

Problem
The SC MoC allows speculation
⇒ SC programs may form non-constructive (delay sensitive) circuits

Strict Sequential Constructiveness 6 / 42

Restricting Sequential Constructiveness

Strict Sequential Constructiveness
is

Sequential Constructiveness without speculation

How can we eliminate speculation?

Strict Sequential Constructiveness 7 / 42

Restricting Sequential Constructiveness

Idea
Ground SC in constructiveness in the spirit of Esterel

Constructive Esterel:
has no speculation
always transforms into delay-insensitive (constructive) circuits

but
requires globally consistent signal states
has no shared variables (write & read)

Strict Sequential Constructiveness 8 / 42

Concept

1 Transformation into SSA form
I sequential variable behavior
I iur protocol

2 Translation into Esterel
I signal encoding
I SSA functions encoding

3 Esterel constructiveness check

Strict Sequential Constructiveness 9 / 42

Static Single Assignment Form

entry

x0 = 0

i0

x1 = 1

x2 = Φ(x0, x1)

y0 = x2

exit

true
Procedure

1 Split up variables into versions
2 Introduce φ-functions to merge

variable versions

Strict Sequential Constructiveness 10 / 42

Static Single Assignment Form

entry

x0 = 0

i0

x1 = 1

x2 = Φ(x0, x1)

y0 = x2

exit

true

Each variable is assigned only once
(statically)
Only one reaching definition for
each read (def-use-chains)
Minimal placement of φ-nodes using
a dominator analysis
Intermediate representation based
on a CFG

What about SCGs with concurrency?

Strict Sequential Constructiveness 11 / 42

Static Single Assignment Form with Concurrency
entry

x1 = 0

fork

join

x6 = Φ(x3, x5)

y = x6

exit

entry

i

x2 = 1

x3 = Φ(x1, x2)

exit

true

entry

j

x4 = 2

x5 = Φ(x1, x4)

exit

true

Problem
φ-functions cannot handle
concurrency

Strict Sequential Constructiveness 12 / 42

Static Single Assignment Form with Concurrency

entry

x = 0

fork

join

y = x

exit

entry

i

x = 1

exit

true

entry

j

x = 2

exit

true

i j y

false false 0
false true 2
true false 1
true true reject

Strict Sequential Constructiveness 13 / 42

Static Single Assignment Form for SC Programs

SC-specific merge functions:
Sequential override
Encode concurrency
Detect confluent writes
Reject conflicting writes

Variable Representation: 〈xp, x〉
Inspired by valued signals.
xp: Presence signal
x: Actual variable value

1 seq(〈xp
i , xi〉, 〈xp

j , xj〉) :=
2 present xp

j then
3 return 〈xp

j , xj〉
4 else
5 present xp

i then
6 return 〈xp

i , xi〉
7 else
8 return 〈absent, nil〉

Strict Sequential Constructiveness 14 / 42

Static Single Assignment Form for SC Programs

SC-specific merge functions:
Sequential override
Encode concurrency
Detect confluent writes
Reject conflicting writes

Variable Representation: 〈xp, x〉
Inspired by valued signals.
xp: Presence signal
x: Actual variable value

1 conc(〈xp
i , xi〉, 〈xp

j , xj〉) :=
2 present xp

i then
3 present xp

j then
4 if xi == xj then
5 return 〈xp

i , xi〉
6 else
7 reject
8 else
9 return 〈xp

i , xi〉
10 else
11 present xp

j then
12 return 〈xp

j , xj〉
13 else
14 return 〈absent, nil〉

Strict Sequential Constructiveness 14 / 42

Static Single Assignment Form for SCGs

entry

x0 = 0

fork

join

y = seq(x0, conc(x1, x2))

exit

entry

i

x1 = 1

exit

true

entry

j

x2 = 2

exit

true
seq(x0, conc(x1, x2))

Strict Sequential Constructiveness 15 / 42

Static Single Assignment Form for SCGs

entry

x0 = 0

fork

join

y = seq(x0, conc(x1, x2))

exit

entry

i

x1 = 1

exit

true

entry

j

x2 = 2

exit

true

i j y

false false 0
false true 2
true false 1
true true reject

Strict Sequential Constructiveness 16 / 42

SSA Form: Further Aspects

Delays
I Merge functions use a variable with signals and implicit reset

Loops
I Merge expressions require explicit sequential ordering

Updates
I iur protocol ordering
I Confluent by definition

Interface
I SSA renaming

Strict Sequential Constructiveness 17 / 42

SSA Form: Delays

entry

fork

join

y = conc(x0, x1)

exit

entry

x0 = 0

exit

entry

surface

depth

x1 = 1

exit

1 conc(〈xp
i , xi〉, 〈xp

j , xj〉) :=
2 present xp

i then
3 present xp

j then
4 if xi == xj then
5 return 〈xp

i , xi〉
6 else
7 reject
8 else
9 return 〈xp

i , xi〉
10 else
11 present xp

j then
12 return 〈xp

j , xj〉
13 else
14 return 〈absent, nil〉

Strict Sequential Constructiveness 18 / 42

SSA Form: Delays

entry

x0 = 0

i

x1 = 1

surface

depth

y0 = seq(x0, x1)

exit

true

Presence signals are reset to absent
Runtime concurrent conflicts can be
detected
Merge function cannot resolve value
without write in the same tick

Strict Sequential Constructiveness 19 / 42

SSA Form: Delays Solved
entry

fork

join

exit

entry

x0 = 0

i

x1 = 1

y0 = seq(pre(xreg), x0)

surface

depth

term = true

exit

true
entry

xreg = seq(pre(xreg), x0, x1)

!term

surface

depth

exit

true

Solution:
Resolve and save variable
values in each tick
Store values in register
variables
Use pre to consider values of
the previous tick in merge
expressions
Reduce merge expression
based on tick borders

Strict Sequential Constructiveness 20 / 42

SSA Form: Loops
entry

x = 0

i

x = 1

y = x

surface

depth

x = 2 exit

true

Strict Sequential Constructiveness 21 / 42

SSA Form: Loops
entry

fork

join

exit

entry

x0 = 0

i

x1 = 1

y = seq(pre(xreg), x0, x1, x2)

surface

depth

x2 = 2

term = true

exit

true entry

xreg = seq(pre(xreg), x0, x1, x2)

!term

surface

depth

exit

true

Strict Sequential Constructiveness 22 / 42

SSA Form: Loop Handling

entry

x0 = 0

i

x1 = 1

y = seq(pre(xreg), x0, x1, x2)

surface

depth

x2 = 2

term = true

exit

true

Merge expressions require static
ordering
Wrong ordering due to simple
structure analysis

Solution:
Surface-Depth analysis
Requires a pause that is always
executed
Switch order of writes in the surface
with depth

Strict Sequential Constructiveness 23 / 42

SSA Form: Updates
entry

fork

join

exit

entry

x = 0

exit

entry

i

x = x + 1

exit

true

entry

j

x = x + 1

exit

true
entry

y = x

exit

Strict Sequential Constructiveness 24 / 42

SSA Form: Updates

entry

fork

join

exit

entry

x0 = 0

exit

entry

i

x1 = conc(x0, x2) + 1

exit

true

entry

j

x2 = conc(x0, x1) + 1

exit

true
entry

y = conc(x0, x1, x2)

exit

Strict Sequential Constructiveness 25 / 42

SSA Form: Update Handling

x = x + 1 → xup = 1
↓

combine(+, xinit, xup)

1 combine(f, 〈xp, x〉, 〈xp
up, xup〉) :=

2 present xp then
3 present xp

up then
4 return 〈xp, f(x, xup)〉
5 else
6 return 〈xp, x〉
7 else
8 present xp

up then
9 reject

10 else
11 return 〈absent, nil〉

Special seq function for updates
Requires partial static schedule to generate merge expressions

Strict Sequential Constructiveness 26 / 42

SSA Form: Updates Solved

entry

fork

join

exit

entry

x0 = 0

exit

entry

i

x1up = 1

exit

true

entry

j

x2up = 1

exit

true
entry

y = combine(+, combine(+, x0, x1up), x2up)

exit

Strict Sequential Constructiveness 27 / 42

SSA Form: Interface

1 module IO
2 input int I;
3 output int O;
4 {
5 if I < 0 then
6 I = 0
7 end;
8 O = I;
9 pause;

10 O = O * I
11 }

SSA renaming should not violate the
original interface
Inputs must be read from the
environment in each tick
Inputs can be locally overridden
Outputs must be conveyed to the
environment in each tick

Strict Sequential Constructiveness 28 / 42

SSA Form: Interface Solved

1 module IO-SSA
2 input int I;
3 int I0;
4 output int O;
5 int O0, O1, Oreg;
6 bool term = false;
7 {
8 fork
9 if I < 0 then

10 I0 = 0
11 end;
12 O0 = seq(I, I0)
13 pause;
14 O1 = pre(Oreg) * I;
15 term = true

16 par
17 PauseLoop:
18 Oreg = seq(pre(Oreg), O0, O1);
19 O = Oreg;
20 if !term then
21 pause;
22 goto PauseLoop
23 end
24 join
25 }

Strict Sequential Constructiveness 29 / 42

Strict Sequential Constructiveness 30 / 42

Translation into Esterel

Translation of
program structure
variables

Esterel data-types:
Variables
Valued signals
Pure signals

Presence Encoding
xp

i \ xi present absent
present true false
absent undef undef

Dual-Rail Encoding
xi \ not_xi present absent

present illegal true
absent false undef

Strict Sequential Constructiveness 31 / 42

Dual-Rail Encoding

xi = true → emit xi

xi = false → emit not_xi

xi = e →

present errorExpr(e) then
emit error

else
[

present trueExpr(e) then
emit xi

end
||

present falseExpr(e) then
emit not_xi

end
]

end

Strict Sequential Constructiveness 32 / 42

Dual-Rail Encoding

if (e) then
//then-block

else
//else-block

end

→

present errorExpr(e) then
emit error

else
[

present trueExpr(e) then
% then-block

end
||

present falseExpr(e) then
% else-block

end
]

end

Strict Sequential Constructiveness 33 / 42

Dual-Rail Encoding

xi:
trueExpr: xi

falseExpr: not_xi

conc(ei, ej):
errorExpr: (trueExpr(ei) ∧ falseExpr(ej))∨

(falseExpr(ei) ∧ trueExpr(ej))
trueExpr: trueExpr(ei) ∨ trueExpr(ej)
falseExpr: falseExpr(ei) ∨ falseExpr(ej)

seq(ei, ej):
trueExpr: trueExpr(ej) ∨ (¬falseExpr(ej) ∧ trueExpr(ei))
falseExpr: falseExpr(ej) ∨ (¬trueExpr(ej) ∧ falseExpr(ei))

Strict Sequential Constructiveness 34 / 42

Strict Sequential Constructiveness 35 / 42

Back to P10

entry

y = 0

fork

join

exit

entry

x = 1

y = x

exit

entry

y == 0

x = 0

exit

true

entry

y0 = 0

fork

join

exit

entry

x0 = 1

y1 = conc(x0, x1)

exit

entry

y1 == 0

x1 = 0

exit

true

Strict Sequential Constructiveness 36 / 42

Back to P10

entry

y0 = 0

fork

join

exit

entry

x0 = 1

y1 = conc(x0, x1)

exit

entry

y1 == 0

x1 = 0

exit

true

1 module P10:
2 signal x0, not_x0, x1, not_x1 in
3 signal y0, not_y0, y1, not_y1 in
4 signal error in
5 [
6 emit not_y0;
7 [
8 emit x0;
9 present (x0 and not_x1) or

(not_x0 and x1) then
10 emit error
11 else
12 [
13 present x0 or x1 then
14 emit y1
15 end
16 ||
17 present not_x0 or not_x1 then
18 emit not_y1
19 end
20]
21 end
22 ||
23 present not_y1 then
24 emit not_x1
25 end
26]
27 ||
28 signal err in
29 present error then
30 present err else emit err end
31 end
32 end signal
33]Strict Sequential Constructiveness 37 / 42

Back to P10
entry

y0 = 0

fork

join

exit

entry

x0 = 1

y1 = conc(x0, x1)

exit

entry

y1 == 0

x1 = 0

exit

true
Not constructive in Esterel
⇒ not Strict SC

Strict Sequential Constructiveness 38 / 42

Confluent P10 Variants
entry

y = 0

fork

join

exit

entry

x = 0

y = x

exit

entry

y == 0

x = 0

exit

true

entry

y = 0

fork

join

exit

entry

x = 1

y = x

exit

entry

y == 0

x = 1

exit

true

Strict Sequential Constructiveness 39 / 42

Confluent P10 Variants
1 [
2 emit not_y0;
3 [
4 emit not_x0;
5 present (x0 and not_x1) or (

not_x0 and x1) then
6 emit error
7 else
8 [
9 present x0 or x1 then

10 emit y1
11 end
12 ||
13 present not_x0 or not_x1 then
14 emit not_y1
15 end
16]
17 end
18 ||
19 present not_y1 then
20 emit not_x1
21 end
22]
23 ||
24 signal err in
25 present error then
26 present err else emit err end
27 end
28 end signal
29]

1 [
2 emit not_y0;
3 [
4 emit x0;
5 present (x0 and not_x1) or (

not_x0 and x1) then
6 emit error
7 else
8 [
9 present x0 or x1 then

10 emit y1
11 end
12 ||
13 present not_x0 or not_x1 then
14 emit not_y1
15 end
16]
17 end
18 ||
19 present not_y1 then
20 emit x1
21 end
22]
23 ||
24 signal err in
25 present error then
26 present err else emit err end
27 end
28 end signal
29]Strict Sequential Constructiveness 40 / 42

New Compile Chain

Strict Sequential Constructiveness 41 / 42

Future Work

Optimized translation for SCEst
Code optimization based on SSA
Loop unrolling for (bounded) instantaneous loops
Dynamic scheduling of updates
Reduction merge expression insertion

Strict Sequential Constructiveness 42 / 42

