
Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Synchronous Languages—Lecture 14

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

19 Jan. 2017
Last compiled: January 19, 2017, 14:02 hrs

Sequentially Constructive
Concurrency in Practice

Synchronous Languages Lecture 14 Slide 1

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

The 5-Minute Review Session

1. What are goals and challenges in defining the SC MoC?

2. What is confluence in the SC MoC?

3. What is thread reincarnation?

4. In the SC MoC, when are threads considered statically
concurrent?

5. What is a thread tree? How can it be used to define static
concurrency?

Synchronous Languages Lecture 14 Slide 2

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

The 5-Minute Review Session

1. How is run-time concurrency defined? How does it relate to
static concurrency?

2. What is SC-admissibility?

3. When is a program sequentially constructive?

4. What is an SC-schedule? When is it valid?

5. What are conservative, practical approximations of sequential
constructiveness?

Synchronous Languages Lecture 14 Slide 3

References

Most of the material here draws from this reference [TECS]:

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C.
Motika, S. Mercer, O. O’Brien, and P. Roop.
Sequentially Constructive Concurrency – A Conservative Extension of the
Synchronous Model of Computation.
ACM Transactions on Embedded Computing Systems, Special Issue on
Applications of Concurrency to System Design, July 2014, 13(4s).
http://rtsys.informatik.uni-kiel.de/˜biblio/downloads/
papers/tecs14.pdf

Unless otherwise noted, the numberings of definitions, sections etc.
refer to this.

There is also an extended version [TR]:

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C.
Motika, S. Mercer, O. O’Brien, and P. Roop.
Sequentially Constructive Concurrency – A Conservative Extension of the
Synchronous Model of Computation.
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
Technical Report 1308, ISSN 2192-6247, Aug. 2013, 13(4s).
http://rtsys.informatik.uni-kiel.de/˜biblio/downloads/
papers/report-1308.pdf

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

SC-Schedules
Schedule Order
Schedule / Program Classes

Overview

Conservative Static Approximation of SC
SC-Schedules
Schedule Order
Schedule / Program Classes

Determining SC-Schedules with Priorities

Summary

Synchronous Languages Lecture 14 Slide 5

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

SC-Schedules
Schedule Order
Schedule / Program Classes

Conservative Static Approximation

In practice, a compiler must be conservative:

I Use a relation n1|n2 to over-approximate n1|Rn2, i. e., what
statements are concurrently invoked in the same tick,

I by considering only static control flow, or
I ignoring dependency on initial conditions, or
I by falsely considering nodes to be in the same tick.

I May not recognize confluence

I May not recognize that writes are relative

Synchronous Languages Lecture 14 Slide 6

SC-Schedules [Def. 5.1, Lemma 5.3]
I Given: SCG G = (N,E)

I SC-schedule Σ is subset of G ’s instantaneous edges: Σ ⊆ Eins

I Eins is structural SC-schedule; derived solely by analysis of the
program structure

I An SC-schedule Σ is valid if
I for every macro tick R of G which can be reached and

executed under the SC-admissibility rules,
I if (n1, i1)→R

α (n2, i2) for some node instances (n1,2, i1,2) in R
and some α ∈ αins ,

I then (n1 →α n2) ∈ Σ.

Validity guarantees:

I If G is executed in an SC-admissible fashion,

I then static node relations →α of Σ are conservative
over-approximation of dynamic relations →R

α on node
instances

Lemma: Eins is valid

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

SC-Schedules
Schedule Order
Schedule / Program Classes

Schedule order [Def. 5.2]

I Given: Valid SC-schedule Σ
I Schedule order: n1 �Σ

ins n2 iff

1. n1 ‖ n2 and
2. Σ contains a path from n1 to n2 that includes an iur-edge

To enforce the iur protocol among concurrent threads, it suffices to
always execute �Σ

ins -minimal nodes

However: valid schedule may still contain conflicting orderings that
cannot be satisfied or where it depends on the capabilities of the
compiler or the run-time system whether it can be implemented

Synchronous Languages Lecture 14 Slide 8

Note that (2) is conservative in that it may also impose a
scheduling order between nodes if they are not run-time concurrent.
We choose this conservative definition to be compatible with the
priority-based scheduling scheme introduced in Sec. ??.
A less conservative, thread-instance aware definition of schedule
order would for example not consider paths that include
lcafork(n1, n2), since at run time, executing lcafork(n1, n2) would
preclude that the node instances corresponding to n1,2 could be
run-time concurrent.

Schedule / Program Classes [Def. 5.4]

Schedule properties

I acyclic: does not contain any cycle

I iur-acyclic: does not contain any cycle that contains edges
induced by →iur

Program (SCG) properties

I Acyclic SC (ASC): ∃ valid acyclic SC-schedule

I Iur-acyclic SC (IASC): ∃ valid iur-acyclic SC-schedule

I Structurally acyclic SC (SASC): Eins is acyclic

I Structurally iur-acyclic SC (SIASC): Eins is iur-acyclic

Implications (see also Theorem 5.5):

I SASC =⇒ SIASC =⇒ IASC =⇒ SC

I SASC =⇒ ASC =⇒ IASC =⇒ SC

May also relax the sequential order to only order non-confluent
statements ; data-flow acyclic programs

ASC, and hence SC, but not
SIASC, hence not SASC

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

SC, but not IASC, and hence
not SIASC/ASC/SASC

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Priority-Based Scheduling [Sec. 5.2]
Computing Priorities [Sec. 5.3]

Overview

Conservative Static Approximation of SC

Determining SC-Schedules with Priorities
Priority-Based Scheduling [Sec. 5.2]
Computing Priorities [Sec. 5.3]

Summary

Synchronous Languages Lecture 14 Slide 12

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Priority-Based Scheduling [Sec. 5.2]
Computing Priorities [Sec. 5.3]

Priorities [Def. 5.6, Lemma 5.7]

I Given: valid SC-schedule Σ

I Priority n.pr of statement n ∈ N: maximal number of →iur

edges traversed by any path in Σ that originates in n

Lemma: Priorities implement the schedule order
Given:

I Priority assignment according to some SC-schedule Σ

I Run-time (and hence also statically) concurrent statements
n1,2 ∈ N

Then: n1 �Σ
ins n2 implies n1.pr > n2.pr

Synchronous Languages Lecture 14 Slide 13

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Priority-Based Scheduling [Sec. 5.2]
Computing Priorities [Sec. 5.3]

Priority-Based Scheduler [Theorem 5.8]

Priority-based scheduler: always gives control to the thread with
highest priority, chosen from the set of threads that are still active
in the current tick

I Never allows a statement that is ready for execution to wait
on another statement with lower priority

I Implements a valid schedule, as can be verified from the SCG
construction

I For example n1 →iu n2 implies n1 →iur n2, which implies, by
definition of priorities, n1.pr > n2.pr , which in turn implies
that n1 gets scheduled before n2

Theorem
A program is IASC iff there exists a valid SC-schedule such that all
statement priorities are finite

Synchronous Languages Lecture 14 Slide 14

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Priority-Based Scheduling [Sec. 5.2]
Computing Priorities [Sec. 5.3]

Computing Priorities for IASC Programs

I Given a valid SC-schedule Σ, can formulate the calculation of
priorities as longest weighted path problem

I Assign to each edge e ∈ Σ a weight e.w , with e.w = 0 iff
e.src →seq e.tgt, and e.w = 1 iff e.src →iur e.tgt

I As relations →iur and →seq exclude each other, weight of
each edge is uniquely determined

I n.pr becomes maximal weight of any path originating in n

I Difficulty: want to handle (sequential) loops, i. e., cyclic SCGs

I For arbitrary (i. e., possibly cyclic) weighted graphs, the
computation of the longest weighted path is NP-hard

I However, can exclude all graphs with a positive weight cycle

Synchronous Languages Lecture 14 Slide 15

Algorithm for Computing Priorities I

1. Detect whether Σ has a positive weight cycle.
We can do so by computing the Strongly Connected
Components (SCCs), e. g., by Tarjan’s algorithm, and
checking if any SCC contains a node that is connected to
another node within the same SCC by a →iur edge.

2. If a positive weight cycle exists, then Σ is not iur-acyclic; we
then reject the program.
Otherwise, we accept the program, and continue.
Now nodes in the same SCC can reach each other, but only
through paths with weight 0, and therefore must have the
same priority.

Algorithm for Computing Priorities II

3. From the SCCs, construct the directed acyclic graph
GSCC = (NSCC ,ESCC), where NSCC ⊂ N contains a
representative node from each SCC of G (using e. g. the SCC
roots computed by Tarjan’s algorithm), and ESCC contains an
edge from one SCC representative to another iff the
corresponding SCCs are connected in G .
Here we assign an edge in ESCC the maximum weight of the
corresponding edges in Σ.

4. Compute for each nSCC ∈ NSCC the maximum weighted length
(priority) nSCC .pr of any path originating in nSCC , e. g., with a
depth-first recursive traversal of all edges in the acyclic GSCC .

5. Assign each statement n ∈ N the priority computed for its
SCC.

Complexity: linear in size of SCG

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Overview

Conservative Static Approximation of SC

Determining SC-Schedules with Priorities

Summary

Synchronous Languages Lecture 14 Slide 18

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Summary I

Underlying idea of sequential constructiveness rather simple

I Prescriptive instead of descriptive sequentiality

I Thus circumventing “spurious” causality problems

I Initialize-update-read protocol

However, precise definition of SC MoC not trivial

I Challenging to ensure conservativeness relative to
Berry-constructiveness

I Plain initialize-update-read protocol does not accomodate,
e. g., signal re-emissions

I Restricting attention to concurrent, non-confluent node
instances is key

Synchronous Languages Lecture 14 Slide 19

Conservative Static Approximation of SC
Determining SC-Schedules with Priorities

Summary

Summary II

ASC-schedulability

I Is conservative approximation to SC

I Basis for practical implementation

Future work

I Plenty of it (SC+, optimized code gen, improved SCCharts
transformations, . . .)

I Talk to us if you want to be part of it

Synchronous Languages Lecture 14 Slide 20

