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The 5-Minute Review Session

1. How do SCCharts and SyncCharts differ?

2. What does the initialize-update-read protocol refer to?

3. What is the SCG?

4. What are basic blocks? What are scheduling blocks?

5. When compiling from the SCG, what types of low-level
synthesis do we distinguish? How do they compare?
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Safety-Critical Embedded Systems

I Embedded systems often
safety-critical

I Safety-critical systems must
react deterministically

I Computations often exploit
concurrency

I Key challenge:
Concurrency must be
deterministic!

Thanks to Michael Mendler (U Bamberg) for support with these
slides
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Implementing (Deterministic) Concurrency

I C, Java, etc.:
, Familiar
, Expressive sequential paradigm
/ Concurrent threads unpredictable in functionality and timing

I Synchronous Programming:

, predictable by construction
=⇒ Constructiveness

/ Unfamiliar to most programmers
/ Restrictive in practice

Aim: Deterministic concurrency with synchronous foundations,
but without synchronous restrictions.
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Comparing Both Worlds

Sequential Languages

I C, Java, ...
I Asynchronous schedule

o By default: Multiple
concurrent readers/writers

o On demand: Single
assignment synchronization
(locks, semaphores)

I Imperative
o All sequential control flow

prescriptive
o Resolved by programmer

Synchronous Languages

I Esterel, Lustre, Signal,
SCADE, SyncCharts ...

I Clocked, cyclic schedule
o By default: Single writer per

cycle, all reads initialized
o On demand: Separate

multiple assignments by
clock barrier (pause, wait)

I Declarative
o All micro-steps sequential

control flow descriptive
o Resolved by scheduler
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Comparing Both Worlds (Cont’d)

Sequential Languages
I Asynchronous schedule

/ No guarantees of determinism
or deadlock freedom

, Intuitive programming
paradigm

Synchronous Languages
I Clocked, cyclic schedule

, Deterministic concurrency
and deadlock freedom

/ Heavy restrictions by
constructiveness analysis

=⇒
Sequentially Constructive Model of Computation (SC MoC)
, Deterministic concurrency and deadlock freedom

, Intuitive programming paradigm
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Implementing Deterministic Concurrency: SC MoC

I Concurrent micro-step control flow:

, Descriptive
, Resolved by scheduler
, =⇒ Deterministic concurrency and deadlock freedom

I Sequential micro-step control flow:

, Prescriptive
, Resolved by the programmer
, =⇒ Intuitive programming paradigm
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

A Sequentially Constructive Program
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

A Sequentially Constructive Program (Cont’d)
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A Sequentially Constructive Program (Cont’d)
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A Sequentially Constructive Program (Cont’d)

Imperative program order (sequential access to shared variables)
I “write-after-write” can change value sequentially

I Prescribed by programmer

, Accepted in SC MoC
/ Not permitted in standard synchronous MoC
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

A Sequentially Constructive Program (Cont’d)

Concurrency scheduling constraints (access to shared variables):
I “write-before-read” for concurrent write/reads

I “write-before-write” (i. e., conflicts!) for concurrent & non-confluent
writes

I Micro-tick thread scheduling prohibits race conditions

I Implemented by the SC compiler
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A Constructive Game of Schedulability

logically reactive program Programmer
I Defines the rules

I Prescribes sequential execution order

I Leaves concurrency to compiler and run-time

I “Free Schedules”

Compiler = Player
I Determines winning strategy

I Restricts concurrency to ensure determinacy
and deadlock freedom

I “Admissible Schedules”

Run-time = Opponent
I Tries to choose a spoiling execution from

admissible schedules
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Sequential Admissibility – Basic Idea

I Sequentially ordered variable accesses
I Are enforced by the programmer
I Cannot be reordered by compiler or run-time platform
I Exhibit no races

I Only concurrent writes/reads to the same variable
I Generate potential data races
I Must be resolved by the compiler
I Can be ordered under multi-threading and run-time

The following applies to concurrent variable accesses only ...
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Organizing Concurrent Variable Accesses

SC Concurrent Memory Access Protocol (per macro tick)

Confluent Statements (per macro tick)
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C, Java vs. Synchronous Programming
The Control Example
A Constructive Game of Schedulability

Goals and Challenges

The idea behind SC is simple – but getting it “right” not so!

What we are up to:

1. Want to be conservative wrt “Berry constructiveness”
I An Esterel program should also be SC

2. Want maximal freedom without compromising determinacy
I A determinate program should also be SC
I An SC program must be determinate

3. Want to exploit sequentiality as much as possible
I But what exactly is sequentiality?

4. Want to define not only the exact concept of SC, but also a
practical strategy to implement it

I In practice, this requires conservative approximations
I Compiler must not accept Non-SC programs
I Compiler may reject SC programs
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The Sequentially Constructive Language (SCL) [Sec. 2.1]

I Foundation for the SC MoC

I Minimal Language

I Adopted from C/Java and Esterel

s ::= x = e | s;s | if (e) s else s | l : s | goto l |
fork s par s join | pause

s Statement

x Variable

e Expression

l Program label
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The SC Language (SCL) and the SC Graph (SCG) [Sec. 2]
Free Scheduling of SCGs [Sec. 3]
The SC Model of Computation [Sec. 4]

The SC Graph (SCG) [Sec. 2.3]

The concurrent and sequential
control flow of an SCL program is
given by an SC Graph (SCG)

Internal representation for

I Semantic foundation
I Analysis
I Code generation

SC Graph:
Labeled graph G = (N,E )
I Nodes N correspond to statements of

sequential program
I Edges E reflect sequential execution

control flow
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Node Types in the SCG

Node n ∈ N has statement type n.st

I n.st ∈
{entry, exit, goto, x = ex , if (ex), fork, join, surf, depth}

I x : variable, ex : expression.
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Edge Types in the SCG [Def. 2.1]

Define edge types:

I iur-edges αiur =def {ww , iu, ur , ir}
I instantaneous edges αins =def {seq} ∪ αiur

I arbitrary edges αa =def {tick} ∪ αins

I flow edges αflow =def {seq, tick}
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Edge Types in the SCG [Def. 2.1]

Edge e ∈ E has edge type e.type ∈ αa

I Specifies the nature of the particular ordering constraint
expressed by e

I For e.type = α, write e.src →α e.tgt, pronounced “e.src
α-precedes e.tgt”

I n1 →seq n2: sequential successors

I n1 →tick n2: tick successors

I n1 →seq n2, n1 →tick n2: flow successors,
induced directly from source program

I �seq: reflexive and transitive closure of →seq

I Note: n1 →seq n2 does not imply fixed run-time ordering
between n1 and n2 (consider loops)
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The SC Language (SCL) and the SC Graph (SCG) [Sec. 2]
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Mapping SCL & SCG

Plus “;” (Sequence) and “goto” to specify sequential successors
(solid edges)
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SCL & SCG – The Control Example

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }
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Formalizing Sequential Constructiveness (SC)
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The SC Language (SCL) and the SC Graph (SCG) [Sec. 2]
Free Scheduling of SCGs [Sec. 3]
The SC Model of Computation [Sec. 4]

Sequentiality vs. Concurrency
Static vs. Dynamic Threads

Recall: We want to distinguish between sequential and concurrent
control flow.
But what do “sequential”/“concurrent” mean?
This distinction is not as easy to formalize as it may seem . . .

To get started, distinguish

I Static threads: Structure of a program (based on SCG)

I Dynamic thread instance: thread in execution
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Static Threads [Sec. 2.4]

I Given: SCG G = (N,E )

I Let T denote the set of threads of G

I T includes a top-level Root thread
I With each thread t ∈ T , associate unique

I entry node ten ∈ N
I exit node tex ∈ N

I Each n ∈ N belongs to a thread th(n) defined as
I Immediately enclosing thread t ∈ T
I such that there is a flow path to n that originates in ten, does

not traverse tex ,1 and does not traverse any other entry node
t ′en, unless that flow path subsequently traverses t ′ex also

I For each thread t, define sts(t) as the
set of statement nodes n ∈ N such that th(n) = t

1Added to definition in paper!
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Threads in Control Example

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

I Threads T = {Root,Request,Dispatch}
I Root thread consists of the statement nodes

sts(Root) = {L0, L7, L28, L29}
I The remaining statement nodes of N are partitioned into

sts(Dispatch) and sts(Request)



Static Thread Concurrency and Subordination [Def. 2.2]

Let t, t1, t2 be threads in T

I fork(t) =def fork node immediately preceding ten
I For every thread t 6= Root:

p(t) =def th(fork(t)), the parent thread

I p∗(t) =def {t, p(t), p(p(t)), . . . , Root}, the recursively
defined set of ancestor threads of t

I t1 is subordinate to t2, written t1 ≺ t2, if t1 6= t2 ∧ t1 ∈ p∗(t2)

I t1 and t2 are (statically) concurrent, denoted t1 || t2, iff
t1 and t2 are descendants of distinct threads sharing a
common fork node, i. e.:
∃t ′1 ∈ p∗(t1), t ′2 ∈ p∗(t2) : t ′1 6= t ′2 ∧ fork(t ′1) = fork(t ′2)

I Denote this common fork node as lcafork(t1, t2), the least
common ancestor fork

I Lift (static) concurrency notion to nodes: n1 || n2 ⇔
th(n1) || th(n2) ⇔ lcafork(n1, n2) = lcafork(th(n1), th(n2))

Concurrency and Subordination in Control-Program
1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

I Root ≺ Request and Root ≺ Dispatch
I Request || Dispatch, Root is not concurrent with any thread

Note: Concurrency on threads, in contrast to concurrency on node instances, is
purely static and can be checked with a simple, syntactic analysis of the program
structure.
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Thread Trees [TR, Sec. 3.7]

A Thread Tree illustrates the static thread relationships.
I Contains subset of SCG nodes:

1. Entry nodes, labeled with names of their threads
2. Fork nodes, attached to the entry nodes of their threads

I Similar to the AND/OR tree of Statecharts

Thread tree for Control example:

Root

L7

Request Dispatch

Synchronous Languages Lecture 13 Slide 31

Motivation
Formalizing Sequential Constructiveness (SC)

Wrap-Up

The SC Language (SCL) and the SC Graph (SCG) [Sec. 2]
Free Scheduling of SCGs [Sec. 3]
The SC Model of Computation [Sec. 4]

Thread Trees – The Reinc2 Example

1 module Reinc2
2 output int x, y;
3 {
4 loop:
5 fork { // Thread T1
6 x = 1; }
7 par { // Thread T2
8 fork { // Thread T21
9 y = 1; }

10 par { // Thread T22
11 pause;
12 y = 2; }
13 join;
14 fork { // Thread T23
15 y = 3; }
16 par { // Thread T24
17 x = 2; }
18 join}
19 join;
20 goto loop;
21 }

T1 T2

T21 T22

T23 T24

entry

exit

L6: x=1

L9: y=1

L12: y=2

L15: y=3 L17: x=2

Root

L5

T1 T2

L8 L14

T21 T22 T23 T24

Alternative definition for
static thread concurrency:

I Threads are concurrent iff
their least common
ancestor (lca) in thread
tree is a fork node
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Thread Reincarnation – The Reinc Example

1 module Reinc
2 output int x, y;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x = 1;
8 }
9 par {

10 // Thread T2
11 pause;
12 x = 2;
13 }
14 join;
15 goto loop;
16 }

T1 T2

entry

exit

L7: x=1

L12: x=2

Are interested in run-time
concurrency, i. e., whether
ordering is up to discretion
of a scheduler.
Observations:

I T2 exhibits thread
reincarnation

I Assignments to x
are both executed in
the same tick, yet
are sequentialized

I Thus, static thread
concurrency not
sufficient to
capture run-time
concurrency!
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Statement Reincarnation I

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

1 module InstLoop
2 output int x = 0, y = 0;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x += 1;
8 }
9 par {

10 // Thread T2
11 y = x;
12 }
13 join;
14 if (y < 2)
15 goto loop;
16 }

I Accesses to x in L7
and L11 executed twice
within tick

I Denote this as
statement
reincarnation

I Accesses are
(statically) concurrent

I Data dependencies ⇒
Must schedule L7
before L11

I But only within the
same loop iteration!

Not enough to impose an order on the program statements
⇒ Need to distinguish statement instances

Statement Reincarnation II

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

1 module InstLoop
2 output int x = 0, y = 0;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x += 1;
8 }
9 par {

10 // Thread T2
11 y = x;
12 }
13 join;
14 if (y < 2)
15 goto loop;
16 }

/ Traditional
synchronous languages:
Reject

I Instantaneous loops
traditionally forbidden

, SC: Determinate ⇒
Accept

I One might still want to
ensure that a program
always terminates

I But this issue is
orthogonal to
determinacy and
having a well-defined
semantics.
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Macroticks [Def. 2.3 + 2.4]

I Given: SCG G = (N,E )

I (Macro) tick R, of length len(R) ∈ N≥1:
mapping from micro tick indices 1 ≤ j ≤ len(R),
to nodes R(j) ∈ N

A macro tick is also: Linearly ordered set of node instances

I Node instance: ni = (n, i),
with statement node n ∈ N,
micro tick count i ∈ N

I Can identify macro tick R with set
{(n, i) | 1 ≤ i ≤ len(R), n = R(i)}
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Run-Time Concurrency [Def. 2.5 + 2.6]
Given: macro tick R, index 1 ≤ i ≤ len(R), node n ∈ N
Def.: last(n, i) = max{j | j ≤ i ,R(j) = n},
retrieves last occurrence of n in R at or before index i . If it does
not exist, lastR(n, i) = 0.

Given: macro tick R, i1, i2 ∈ N≤len(R), and n1, n2 ∈ N.
Def.: Two node instances ni1 = (n1, i1) and ni2 = (n2, i2) are
(run-time) concurrent in R, denoted ni1 |R ni2, iff

1. they appear in the micro ticks of R, i. e., n1 = R(i1) and
n2 = R(i2),

2. they belong to statically concurrent threads, i. e.,
th(n1) || th(n2), and

3. their threads have been instantiated by the same instance of
the associated least common ancestor fork, i. e.,
last(n, i1) = last(n, i2) where n = lcafork(n1, n2)
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Continuations & Thread Execution States [Def. 3.1]
A continuation c consists of

1. Node c .node ∈ N, denoting the current state of each thread,
i. e., the node (statement) that should be executed next,
similar to a program counter

2. Status c .status ∈ {active,waiting , pausing}

In a trace (see later slide), round/square/no parentheses around
n = c .node denote c .status, for enabled continuations c
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Free Scheduling of SCGs [Sec. 3]
The SC Model of Computation [Sec. 4]

Continuation Pool & Configuration [Def. 3.2 + 3.3]

Continuation pool: finite set C of continuations

I C is valid if C meets some coherence properties (see [TECS]),
e. g., threads in C adhere to thread tree structure

Configuration: pair (C ,M)

I C is continuation pool

I M is memory assigning values to variables accessed by G

A configuration is called valid if C is valid
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1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

Macro tick a 1 1
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 12

Input free t t
vars req f f
Output grant ⊥ f f
vars pend ⊥ f f
Local var checkReq ⊥ f f

CRoot L0 L7 [L28] [L28]
Continuations CRequest ⊥ L8 L10 L11 L13 L14 L14 L14 L14 L14 L16s (L16s)

CDispatch ⊥ L20 L20 L20 L20 L20 L22 L23 L25s (L25s) (L25s) (L25s)

Scheduled nodes Ra
i L0 L7 L8 L10 L11 L13 L20 L22 L23 L25s L14 L16s

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

Macro tick a 2 2
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 13 13

Input free t t
vars req t t
Output grant f f t t
vars pend f f t f f
Local var checkReq f t t

CRoot [L28] [L28]
Continuations CRequest L16d L10 L11 L12 L13 L14 L14 L14 L14 L14 L14 L15 L16s (L16s)

CDispatch L25d L25d L25d L25d L25d L25d L22 L23 L24 L25s (L25s) (L25s) (L25s) (L25s)

Scheduled nodes Ra
i L16d L10 L11 L12 L13 L25d L22 L23 L24 L25s L14 L15 L16s
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Free Scheduling [Sec. 3.2]

Now define free scheduling, to set the stage for later defining
“initialize-update-read” protocol
(→ SC-admissible scheduling)

Only restrictions:

1. Execute only ≺-maximal threads
I If there is at least one continuation in Ccur , then there also is a
≺-maximal one, because of the finiteness of the continuation
pool

2. Do so in an interleaving fashion
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Micro Steps I

Micro step: transition (Ccur ,Mcur )
c→µs (Cnxt ,Mnxt) between two

micro ticks

I (Ccur ,Mcur ): current configuration

I c : continuation selected for execution

I (Cnxt ,Mnxt): next configuration

The free schedule is permitted to pick any one of the ≺-maximal
continuations c ∈ Ccur with c .status = active and execute it in the
current memory Mcur
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Micro Steps II

(Recall:) Micro step: transition (Ccur ,Mcur )
c→µs (Cnxt ,Mnxt)

I Executing c yields a new memory Mnxt = µM(c ,Mcur ) and a
(possibly empty) set of new continuations µC (c ,Mcur ) by
which c is replaced, i. e., Cnxt = Ccur \ {c} ∪ µC (c ,Mcur )

I If µC (c ,Mcur ) = ∅: status flags set to active for all c ′ ∈ Cnxt

that become ≺-maximal by eliminating c from C

I Actions µM and µC (made precise in paper) depend on the
statement c.node.st to be executed

I (Cnxt ,Mnxt) uniquely determined by c , thus may write
(Cnxt ,Mnxt) = c(Ccur ,Mcur )
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Clock Steps I

Quiescent configuration (C ,M):

I No active c ∈ C

I All c ∈ C pausing or waiting

If C = ∅:
I Main program terminated

Otherwise:

I Scheduler can perform a global clock step
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Clock Steps II

Global clock step VI : (Ccur ,Mcur )→tick (Cnxt ,Mnxt)

I Transition between last micro tick of the current macro tick
to first micro tick of the subsequent macro tick

I VI is external input

I All pausing continuations of C advance from their surf node
to the associated depth node:

Cnxt = {c[active :: tick(n)] | c[pausing :: n] ∈ Ccur} ∪
{c[waiting :: n] | c[waiting :: n] ∈ Ccur}
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Clock Steps III

Global clock step updates the memory:

I Let I = {x1, x2, . . . , xn} be the designated input variables of
the SCG, including input/output variables

I Memory is updated by a new set of external input values
VI = [x1 = v1, . . . , xn = vn] for the next macro tick

I All other memory locations persist unchanged into the next
macro tick.

Formally,

Mnxt(x) =

{
vi , if x = xi ∈ I ,

Mcur (x), if x 6∈ I .
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Macro Ticks
Scheduler runs through sequence

(C a
0 ,M

a
0 )

ca1→µs (C a
1 ,M

a
1 )

ca2→µs · · ·
ca
k(a)→ µs (C a

k(a),M
a
k(a)) (1)

to reach final quiescent configuration (C a
k(a),M

a
k(a))

Sequence (1) is macro tick (synchronous instant) a:

(Ra,V a
I ) : (C a

0 ,M
a
0 ) =⇒ (C a

k(a),M
a
k(a)) (2)

I V a
I : projects the initial input, V a

I (x) = Ma
0 (x) for x ∈ I

I Ma
k(a): response of a

Ra: sequence of statement nodes executed during a

I len(Ra) = k(a) is length of a

I Ra is function mapping each micro tick index 1 ≤ j ≤ k(a) to
node Ra(j) = caj .node executed at index j
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Runs and Traces

Run of G : sequence of macro ticks Ra and external inputs V a
I ,

with

I initial continuation pool C 0
0 = {c0} activates the entry node

of the G ’s Root thread, i.e., c0.node = Root.en and
c0.status = active

I all macro tick configurations are connected by clock steps,
i.e., (C a

k(a),M
a
k(a))→tick (C a+1

0 ,Ma+1
0 )

Trace: externally visible output values at each macro tick R [TR,
Sec. 3.9]
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Determinacy
Recall:

(C a
0 ,M

a
0 )

ca1→µs (C a
1 ,M

a
1 )

ca2→µs · · ·
ca
k(a)→ µs (C a

k(a),M
a
k(a)) (1)

(Ra,V a
I ) : (C a

0 ,M
a
0 ) =⇒ (C a

k(a),M
a
k(a)) (2)

I Macro (tick) configuration: end points of a macro tick (2)

I Micro (tick) configuration: all other intermediate
configurations (C a

i ,M
a
i ), 0 < i < k(a) seen in (1)

Synchrony hypothesis:

I only macro configurations are observable externally
(in fact, only the memory component of those)

I Suffices to ensure that
sequence of macro ticks =⇒ is determinate

I Micro tick behavior →µs may well be non-determinate
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Active and Pausing Continuations are Concurrent [TR,
Prop. 2]

Given:

I (C ,M), reachable (micro or macro tick) configuration

I c1, c2 ∈ C , active or pausing continuations with c1 6= c2

Then:

I c1.node 6= c2.node

I th(c1.node) || th(c2.node)

I No instantaneous sequential path from c1.node to c2.node or
vice versa

(Proof: see [TR])
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Concurrency vs. Sequentiality Revisited I

Recall: Want to exploit sequentiality as much as possible

I Thus, consider only run-time concurrent data dependencies

Recall: Static concurrency 6⇒ run-time concurrency

I Consider Reinc example

I Thus, can ignore some statically concurrent data dependencies
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Concurrency vs. Sequentiality Revisited II
Question: Does (static) sequentiality preclude run-
time concurrency?

I Then we could ignore data dependencies
between nodes that are sequentially ordered

I But the answer is: no

Counterexample: Reinc3 (SCG shown on right)

I Assignments to x run-time concurrent? Yes!

I Assignments to x sequentially ordered? Yes!

Thus, concurrency and (static) sequentiality are
not mutually exclusive, but orthogonal!
However, (instantaneous) run-time sequentiality
(on node instances) does exclude run-time concur-
rency

T1 T2

entry

exit

x=1 x=2
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Notes on Free Scheduling I

Key to determinacy:
rule out uncertainties due to unknown scheduling mechanism

I Like the synchronous MoC, the SC MoC ensures macro-tick
determinacy by inducing certain scheduling constraints on
variable accesses

I Unlike the synchronous MoC, the SC MoC tries to take
maximal advantage of the execution order already
expressed by the programmer through sequential commands

I A scheduler can only affect the order of variable accesses
through concurrent threads
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Notes on Free Scheduling II

Recall:

I If variable accesses (within tick) are already sequentialized by
→seq, they cannot appear simultaneously in the active
continuation pool

I Hence, no way for thread scheduler to reorder them and thus
lead to a non-determinate outcome

Similarly, threads are not concurrent with parent thread

I Because of path ordering ≺, a parent thread is always
suspended when a child thread is in operation

I Thus, not up to scheduler to decide between parent and child
thread

I No race conditions between variable accesses performed by
parent and child threads; no source of non-determinacy
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The Aim

Want to find a suitable restriction on the “free” scheduler which is

1. easy to compute

2. leaves sufficient room for concurrent implementations

3. still (predictably) sequentializes any concurrent variable
accesses that may conflict and produce unpredictable
responses

In the following, will define such a restriction:
the SC-admissible schedules
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Guideline for SC-admissibility

I Initialize-Update-Read protocol, for concurrent accesses

I Want to conservatively extend Esterel’s “Write-Read
protocol” (must do emit before testing)

I But does Esterel always follow write-read protocol?
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Write After Read Revisited
module WriteAfterRead
output x, y, z;

emit x;
[
present x then
emit y

end
||
present y then
emit z

end;
emit x

]
end

Esterel version

module WriteAfterRead
output int x, y, z;
{
x = 1;
fork
y = x;

par
z = y;
x = 1;

join
}

SCL version

SCG
I Concurrent emit after present test
I But WriteAfterRead is BC – hence should also be SC!
I Observation: second emit is ineffective, i. e., does not change

value
I One approach: permit concurrent ineffective writes after read

Ineffectiveness – 1st Try [TR, Sec. 5.2]
1 module InEffective1
2 output int x = 2;
3 int y;
4 {
5 fork
6 if (x == 2) {
7 y = 1;
8 x = 7
9 }

10 else
11 y = 0
12 par
13 x = 7
14 join
15 }

If L13 is scheduled before L6:

I L13 is effective

I No out-of-order write

I y = 0

If L13 is scheduled after L8 (and L6):

I L13 is out-of-order write

I However, L13 is ineffective

I y = 1 (→ non-determinacy!)

I The problem: L8 hides the
potential effectiveness of L13 wrt.
L6!

I Both schedules would be permitted under a scheduling regime
that permits ineffective writes

I → Strengthen notion of “ineffective writes”:

I Consider writes “ineffective” only if they do not change read!



Ineffectiveness – 2nd Try

1 module InEffective2
2 output bool x = false;
3 int y;
4 {
5 fork
6 if (!x) {
7 y = 1;
8 x = x xor true
9 }

10 else
11 y = 0
12 par
13 x = x xor true;
14 join
15 }

“x = x xor true”

I Relative writes

I Equivalent to “x = !x”

Sequence L13; L6; L11:

I y = 0

Sequence L6; L7; L8; L13:

I Q: Is L13 ineffective relative to L6?

I A: Yes!

I L13 is out-of-order . . .

I but writes x = true, which is what
L6 read!

I y = 1 (→ again non-determinacy!)

I Again, both schedules would be permitted under a scheduling
regime that permits ineffective writes

I → Replace “ineffectiveness” by “confluence”
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Combination Functions [Def. 4.1]

Combination function f :

I f (f (x , e1), e2) = f (f (x , e2), e1)
for all x and all side-effect free expressions e1, e2

I Sufficient condition: f is commutative and associative

I Examples: *, +, –, max, and, or
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Relative and Absolute Writes [Def. 4.2]

Relative writes, of type f (“increment” / “modify”): x = f (x , e)

I f must be a combination function

I Evaluation of e must be free of side effects

I Thus, schedules
’x = f (x , e1); x = f (x , e2)’ and
’x = f (x , e2); x = f (x , e1)’ yield same result for x

I Thus, writes are confluent

I E.g., x++, x = 5*x, x = x-10

Absolute writes (“write” / “initialize”): x = e

I Writes that are not relative

I E.g., x = 0, x = 2*y+5, x = f(z)
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iur Relations [Def. 4.3]

Given two statically concurrent accesses n1 ‖ n2 on some variable
x , we define the iur relations

I n1 →ww n2 iff n1 and n2 both initialize x or both perform
updates of different type. We call this a ww conflict

I n1 →iu n2 iff n1 initializes x and n2 updates x

I n1 →ur n2 iff n1 updates x and n2 reads x

I n1 →ir n2 iff n1 initializes x and n2 reads x

Since n1 →ww n2 implies n2 →ww n1:

I abbreviate the conjunction of n1 →ww n2 and n2 →ww n1 with
n1 ↔ww n2

I by symmetry →ww implies ↔ww
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Confluence of Nodes [Def. 4.4]

Given:

I Valid configuration (C ,M) of SCG

I Nodes n1, n2 ∈ N

n1, n2 are conflicting in (C ,M) iff

1. n1, n2 active in C ,
i. e., ∃c1, c2 ∈ C with
ci .status = active and ni = ci .node

2. c1(c2(C ,M)) 6= c2(c1(C ,M))

n1, n2 are confluent with each other in (C ,M),
written: n1 ∼(C ,M) n2, iff

I 6 ∃ Sequence of micro steps (C ,M)�µs (C ′,M ′)
such that n1 and n2 are conflicting in (C ′,M ′)
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Notes on Confluence

(From definition:) n1 ∼(C ,M) n2 iff

I 6 ∃ Sequence of micro steps (C ,M)�µs (C ′,M ′)
such that n1 and n2 are conflicting in (C ′,M ′)

Observations I

I Confluence is taken relative to valid configurations (C ,M)
and indirectly as the absence of conflicts

I Instead of requiring that confluent nodes commute with each
other for arbitrary memories, we only consider those
configurations (C ′,M ′) that are reachable from (C ,M)

I E. g., if it happens for a given program that in all memories
M ′ reachable from a configuration (C ,M) two expressions ex1
and ex2 evaluate to the same value, then the assignments x =
ex1 and x = ex2 are confluent in (C ,M)
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Notes on Confluence
(From definition:) n1 ∼(C ,M) n2 iff

I 6 ∃ Sequence of micro steps (C ,M)�µs (C ′,M ′)
such that n1 and n2 are conflicting in (C ′,M ′)

Observations II

I Similarly, if the two assignments are never jointly active in any
reachable continuation pool C ′, they are confluent in (C ,M),
too

I Thus, statements may be confluent for some program relative
to some reachable configuration, but not for other
configurations or in another program

I However, notice that relative writes of the same type are
confluent in the absolute sense, i. e., for all valid
configurations (C ,M) of all programs
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Notes on Confluence
(From definition:) n1 ∼(C ,M) n2 iff

I 6 ∃ Sequence of micro steps (C ,M)�µs (C ′,M ′)
such that n1 and n2 are conflicting in (C ′,M ′)

Observations III

I Confluence n1 ∼(C ,M) n2 requires conflict-freeness for all
configurations (C ′,M ′) reachable from (C ,M) by arbitrary
micro-sequences under free scheduling

I Will use this notion of confluence to define the restricted set
of SC-admissible macro ticks

I Since compiler will ensure SC-admissibility of the execution
schedule,
one might be tempted to define confluence relative to these
SC-admissible schedules;
however, this would result in a logical cycle
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Notes on Confluence
(From definition:) n1 ∼(C ,M) n2 iff

I 6 ∃ Sequence of micro steps (C ,M)�µs (C ′,M ′)
such that n1 and n2 are conflicting in (C ′,M ′)

Observations IV
I This relative view of confluence keeps the scheduling

constraints on SC-admissible macro ticks sufficiently weak
I Note: two nodes confluent in some configuration are still

confluent in every later configuration reached through an
arbitrary sequence of micro steps

I However, more nodes may become confluent in later
configurations, because some conflicting configurations are no
longer reachable

I Exploit this in following definition of confluence of node
instances by making confluence of node instances within a
macro tick relative to the index position at which they occur
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Confluence of Node Instances [Def. 4.5]

Given:

I Macro tick R

I (Ci ,Mi ) for 0 ≤ i ≤ len(R), the configurations of R

I Node instances ni1 = (n1, i1) and ni2 = (n2, i2) in R, i. e.,
1 ≤ i1, i2 ≤ len(R), n1 = R(i1), n2 = R(i2)

Call node instances confluent in R, written ni1 ∼R ni2, iff

I for i = min(i1, i2)− 1

I n1 ∼(Ci ,Mi ) n2
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InEffective2 Revisited

1 module InEffective2
2 output bool x = false;
3 int y;
4 {
5 fork
6 if (!x) {
7 y = 1;
8 x = x xor true
9 }

10 else
11 y = 0
12 par
13 x = x xor true;
14 join
15 }

Recall sequence L6; L7; L8; L13:

I Q: Is L13 ineffective relative to L6?

I A: Yes!

I L13 is out-of-order . . .

I but writes x = false, which is what
L6 read!

I Q: Are L6 and L13 confluent?

I A: No!

I L6 and L13 conflict at point of
execution of L6

→ Def. of SC-admissibility – specifically, the underlying scheduling
relations – uses confluence condition
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Scheduling Relations [Def 4.6]

Given:

I Macro tick R with

I Node instances ni1,2 = (n1,2, i1,2), i. e., 1 ≤ i1,2 ≤ len(R) and
n1,2 = R(i1,2)

I ni1,2 concurrent in R, i. e., ni1 |R ni2
I ni1,2 not confluent in R, i. e., ni1 6∼R ni2

Then:

I ni1 →R
α ni2 iff n1 →α n2 for some α ∈ αiur

I ni1 →R ni2 iff i1 < i2; i. e., ni1 happens before ni2 in R.
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Sequential Admissibility [Def. 4.7]

A macro tick R is SC-admissible iff

I for all node instances ni1,2 = (n1,2, i1,2) in R, with
1 ≤ i1,2 ≤ len(R) and n1,2 = R(i1,2),

I for all α ∈ αiur

the scheduling condition SCα holds:
if ni1 →R

α ni2 then ni1 →R ni2.

A run for an SCG is SC-admissible if all macro ticks R in this run
are SC-admissible.
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SC-admissibility vs. Determinacy

1 module NonDet
2 output bool x = false, y = false;
3 {
4 fork { // Thread CheckX
5 if (!x)
6 y = true;
7 }
8 par { // Thread CheckY
9 if (!y)

10 x = true
11 }
12 join
13 }

I Admissible runs? Yes, multiple

I Determinate? No

CheckX CheckY

entry

x = false; y = false

exit

if !x

y = true

true

if !y
1

wr
x = true

true1wr

Thus: SC-admissibility 6⇒ Determinacy
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SC-admissibility vs. Determinacy

1 module Fail
2 output bool z = false;
3 {
4 fork {
5 if (!z)
6 z = true;
7 }
8 par {
9 if (z)

10 z = true
11 }
12 join
13 }

I Admissible runs? No

I Determinate? Yes

Thus: Determinacy 6⇒ SC-admissibility
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Sequential Constructiveness [Def. 4.8]

Definition: A program P is sequentially constructive (SC) iff for
each initial configuration and input sequence:

1. There exists an SC-admissible run (P is reactive)

2. Every SC-admissible run generates the same determinate
sequence of macro responses (P is determinate)
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Formalizing Sequential Constructiveness (SC)
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Synchronous Program Classes
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Summary

Underlying idea of sequential constructiveness rather simple

I Prescriptive instead of descriptive sequentiality

I Thus circumventing “spurious” causality problems

I Initialize-update-read protocol

However, precise definition of SC MoC not trivial

I Challenging to ensure conservativeness relative to
Berry-constructiveness

I Plain initialize-update-read protocol does not accomodate,
e. g., signal re-emissions

I Restricting attention to concurrent, non-confluent node
instances is key
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Conclusions

I Clocked, synchronous model of execution for imperative,
shared-memory multi-threading

I Conservatively extends synchronous programming (Esterel) by
standard sequential control flow (Java, C)

I =⇒ Deterministic concurrency with synchronous
foundations, but without synchronous restrictions

I , Expressive and intuitive sequential paradigm
I , Predictable concurrent threads
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Future Work

Plenty of extensions/adaptations possible . . .

I Alternative notions of sequential constructiveness:
I A truly “constructive” approach that sharpens SC admissibility

to determinate schedules
I Extension of iur-protocol, e. g., to model ForeC

I Improved synthesis & analysis — see also next lecture
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