
Esterel Compilation

Synchronous Languages—Lecture 9

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

28 Nov. 2016
Last compiled: November 24, 2016, 11:48 hrs

Esterel Compilation

Synchronous Languages Lecture 9 Slide 1

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation?

What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages?

Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. How does the constructive Boolean logic (intuitionistic logic)
differ from classical Boolean logic?

2. What is the relationship between 1. logical correctness, 2.
acyclicity, 3. constructiveness, 4. delay insensitivity?

3. In hw synthesis, which Esterel statements introduce registers?

4. In the context of Esterel, what is reincarnation? What is
schizophrenia?

5. How is schizophrenia dealt with in classical programming
languages? Which problems does schizophrenia cause in hw
synthesis?

Synchronous Languages Lecture 9 Slide 2

Esterel Compilation

The 5-Minute Review Session

1. In the context of Esterel, what is reincarnation?

2. What is schizophrenia?

3. What is a simple solution to the schizophrenia/reincarnation
problem?

4. What is the approach by Tardieu and de Simone?

5. How do these approaches compare?

Synchronous Languages Lecture 9 Slide 3

Esterel Compilation

The 5-Minute Review Session

1. In the context of Esterel, what is reincarnation?

2. What is schizophrenia?

3. What is a simple solution to the schizophrenia/reincarnation
problem?

4. What is the approach by Tardieu and de Simone?

5. How do these approaches compare?

Synchronous Languages Lecture 9 Slide 3

Esterel Compilation

The 5-Minute Review Session

1. In the context of Esterel, what is reincarnation?

2. What is schizophrenia?

3. What is a simple solution to the schizophrenia/reincarnation
problem?

4. What is the approach by Tardieu and de Simone?

5. How do these approaches compare?

Synchronous Languages Lecture 9 Slide 3

Esterel Compilation

The 5-Minute Review Session

1. In the context of Esterel, what is reincarnation?

2. What is schizophrenia?

3. What is a simple solution to the schizophrenia/reincarnation
problem?

4. What is the approach by Tardieu and de Simone?

5. How do these approaches compare?

Synchronous Languages Lecture 9 Slide 3

Esterel Compilation

The 5-Minute Review Session

1. In the context of Esterel, what is reincarnation?

2. What is schizophrenia?

3. What is a simple solution to the schizophrenia/reincarnation
problem?

4. What is the approach by Tardieu and de Simone?

5. How do these approaches compare?

Synchronous Languages Lecture 9 Slide 3

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Overview

Esterel Compilation
Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Synchronous Languages Lecture 9 Slide 4

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compiling Esterel

I Semantics of the language are formally defined and
deterministic

I Compiler must ensure that generated executable behaves
correctly w.r.t. the semantics

I Challenging for Esterel

The following material is adapted with kind permission from
Stephen Edwards
(http: // www1. cs. columbia. edu/ ~ sedwards/)

Synchronous Languages Lecture 9 Slide 5

http://www1.cs.columbia.edu/~sedwards/

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality
I Reincarnation (schizophrenia)

I Loop restriction generally prevents any statement from
executing more than once in a cycle

I Complex interaction between concurrency, traps, and loops can
make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality
I Reincarnation (schizophrenia)

I Loop restriction generally prevents any statement from
executing more than once in a cycle

I Complex interaction between concurrency, traps, and loops can
make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality
I Reincarnation (schizophrenia)

I Loop restriction generally prevents any statement from
executing more than once in a cycle

I Complex interaction between concurrency, traps, and loops can
make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality
I Reincarnation (schizophrenia)

I Loop restriction generally prevents any statement from
executing more than once in a cycle

I Complex interaction between concurrency, traps, and loops can
make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality

I Reincarnation (schizophrenia)
I Loop restriction generally prevents any statement from

executing more than once in a cycle
I Complex interaction between concurrency, traps, and loops can

make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Compilation Challenges

I Concurrency

I Interaction between exceptions and concurrency

I Preemption

I Resumption (pause, await, etc.)

I Checking causality
I Reincarnation (schizophrenia)

I Loop restriction generally prevents any statement from
executing more than once in a cycle

I Complex interaction between concurrency, traps, and loops can
make certain statements execute more than once

Synchronous Languages Lecture 9 Slide 6

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-based Compilation

I Given Esterel program P and an input event I , the SOS
inference rules introduced earlier produce an output event O
and a program derivative P ′

I From P ′ and subsequent input event I ′, can produce another
program derivative P ′′ and further output event O ′

I Can view this as sequence of state transitions—from state P
to state P ′ to state P ′′ etc.

I Inference rules guarantee that set of states is finite
(Finite State Machine, FSM)

I First compiler simulated an Esterel program in every possible
state and generated code for each one

Synchronous Languages Lecture 9 Slide 7

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-based Compilation

I Given Esterel program P and an input event I , the SOS
inference rules introduced earlier produce an output event O
and a program derivative P ′

I From P ′ and subsequent input event I ′, can produce another
program derivative P ′′ and further output event O ′

I Can view this as sequence of state transitions—from state P
to state P ′ to state P ′′ etc.

I Inference rules guarantee that set of states is finite
(Finite State Machine, FSM)

I First compiler simulated an Esterel program in every possible
state and generated code for each one

Synchronous Languages Lecture 9 Slide 7

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-based Compilation

I Given Esterel program P and an input event I , the SOS
inference rules introduced earlier produce an output event O
and a program derivative P ′

I From P ′ and subsequent input event I ′, can produce another
program derivative P ′′ and further output event O ′

I Can view this as sequence of state transitions—from state P
to state P ′ to state P ′′ etc.

I Inference rules guarantee that set of states is finite
(Finite State Machine, FSM)

I First compiler simulated an Esterel program in every possible
state and generated code for each one

Synchronous Languages Lecture 9 Slide 7

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata-Based Compilation

Note: Strictly speaking, the state of an Esterel program—i.e.,
what must be remembered from one tick to the next—includes the
following:

1. The set of program counter values where the program has
paused between cycles

2. Presence status of signals accessed via pre operator

3. Values of valued signals

4. Values of variables

5. Any state kept in the host language

Only the program counters are reflected in states of FSM

Synchronous Languages Lecture 9 Slide 8

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

loop

emit A;

await C;

emit B;

pause

end;

≡

void tick() {

static int state = 0;

sigtype A = B = 0;

switch (state) {

case 0:

A = 1;

state = 1;

break;

case 1:

if (C) {

B = 1;

state = 0;

}

break;

}

}

Synchronous Languages Lecture 9 Slide 9

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

loop

emit A;

await C;

emit B;

pause

end;

≡

void tick() {

static int state = 0;

sigtype A = B = 0;

switch (state) {

case 0:

A = 1;

state = 1;

break;

case 1:

if (C) {

B = 1;

state = 0;

}

break;

}

}

Synchronous Languages Lecture 9 Slide 9

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

switch (state) {

case 0:

A = 1;

B = 1;

state = 1;

break;

case 1:

if (C) {

D = 1;

if (E) B = 1;

state = 2;

}

break;

case 2:

}

First State

I A, B, emitted, go to
second state

Second state

I if C is present, emit D,
check E & emit B &
go on

I otherwise, stay in
second state

Third state

I Terminated

Synchronous Languages Lecture 9 Slide 10

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

switch (state) {

case 0:

A = 1;

B = 1;

state = 1;

break;

case 1:

if (C) {

D = 1;

if (E) B = 1;

state = 2;

}

break;

case 2:

}

First State

I A, B, emitted, go to
second state

Second state

I if C is present, emit D,
check E & emit B &
go on

I otherwise, stay in
second state

Third state

I Terminated

Synchronous Languages Lecture 9 Slide 10

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

switch (state) {

case 0:

A = 1;

B = 1;

state = 1;

break;

case 1:

if (C) {

D = 1;

if (E) B = 1;

state = 2;

}

break;

case 2:

}

First State

I A, B, emitted, go to
second state

Second state

I if C is present, emit D,
check E & emit B &
go on

I otherwise, stay in
second state

Third state

I Terminated

Synchronous Languages Lecture 9 Slide 10

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

switch (state) {

case 0:

A = 1;

B = 1;

state = 1;

break;

case 1:

if (C) {

D = 1;

if (E) B = 1;

state = 2;

}

break;

case 2:

}

First State

I A, B, emitted, go to
second state

Second state

I if C is present, emit D,
check E & emit B &
go on

I otherwise, stay in
second state

Third state

I Terminated

Synchronous Languages Lecture 9 Slide 10

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Automata Compilation

, Very fast code

, Internal signaling can be compiled away

/ Can generate a lot of code because
I Concurrency can cause exponential state growth
I n-state machine interacting with another n-state machine can

produce n2 states

I Language provides input constraints for reducing state count
I “these inputs are mutually exclusive”

relation A # B # C

I “if this input arrives, this one does, too”
relation D => E

Synchronous Languages Lecture 9 Slide 11

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Automata Compilation

, Very fast code

, Internal signaling can be compiled away

/ Can generate a lot of code because

I Concurrency can cause exponential state growth
I n-state machine interacting with another n-state machine can

produce n2 states

I Language provides input constraints for reducing state count
I “these inputs are mutually exclusive”

relation A # B # C

I “if this input arrives, this one does, too”
relation D => E

Synchronous Languages Lecture 9 Slide 11

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Automata Compilation

, Very fast code

, Internal signaling can be compiled away

/ Can generate a lot of code because
I Concurrency can cause exponential state growth
I n-state machine interacting with another n-state machine can

produce n2 states

I Language provides input constraints for reducing state count
I “these inputs are mutually exclusive”

relation A # B # C

I “if this input arrives, this one does, too”
relation D => E

Synchronous Languages Lecture 9 Slide 11

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Automata Compilation

, Very fast code

, Internal signaling can be compiled away

/ Can generate a lot of code because
I Concurrency can cause exponential state growth
I n-state machine interacting with another n-state machine can

produce n2 states

I Language provides input constraints for reducing state count
I “these inputs are mutually exclusive”

relation A # B # C

I “if this input arrives, this one does, too”
relation D => E

Synchronous Languages Lecture 9 Slide 11

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Automata Compilation

I Not practical for large programs

I Theoretically interesting, but doesn’t work for most programs
longer than 1000 lines

I All other techniques produce—in general—slower code

Synchronous Languages Lecture 9 Slide 12

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist-Based Compilation

Second key insight:

I Esterel programs can be translated into Boolean logic circuits

Netlist-based compiler:
I Translate each statement into a small number of logic gates

I A straightforward, mechanical process
I Follows circuit semantics defined earlier

I Generate code that simulates the netlist

Synchronous Languages Lecture 9 Slide 13

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist-Based Compilation

Second key insight:

I Esterel programs can be translated into Boolean logic circuits

Netlist-based compiler:
I Translate each statement into a small number of logic gates

I A straightforward, mechanical process
I Follows circuit semantics defined earlier

I Generate code that simulates the netlist

Synchronous Languages Lecture 9 Slide 13

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist-Based Compilation

Second key insight:

I Esterel programs can be translated into Boolean logic circuits

Netlist-based compiler:
I Translate each statement into a small number of logic gates

I A straightforward, mechanical process
I Follows circuit semantics defined earlier

I Generate code that simulates the netlist

Synchronous Languages Lecture 9 Slide 13

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

Entry
A

B

D

C
E

Exit

Synchronous Languages Lecture 9 Slide 14

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist Example

emit A;

emit B;

await C;

emit D;

present E then

emit B

end;

≡

Entry
A

B

D

C
E

Exit

Synchronous Languages Lecture 9 Slide 14

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Netlist Compilation

, Scales very well
I Netlist generation roughly linear in program size
I Generated code roughly linear in program size

, Good framework for analyzing causality
I Semantics of netlists straightforward
I Constructive reasoning equivalent to three-valued simulation

/ Terribly inefficient code
I Lots of time wasted computing ultimately irrelevant results
I Can be hundreds of time slower than automata
I Little use of conditionals

Synchronous Languages Lecture 9 Slide 15

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Netlist Compilation

, Scales very well
I Netlist generation roughly linear in program size
I Generated code roughly linear in program size

, Good framework for analyzing causality
I Semantics of netlists straightforward
I Constructive reasoning equivalent to three-valued simulation

/ Terribly inefficient code
I Lots of time wasted computing ultimately irrelevant results
I Can be hundreds of time slower than automata
I Little use of conditionals

Synchronous Languages Lecture 9 Slide 15

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Netlist Compilation

, Scales very well
I Netlist generation roughly linear in program size
I Generated code roughly linear in program size

, Good framework for analyzing causality
I Semantics of netlists straightforward
I Constructive reasoning equivalent to three-valued simulation

/ Terribly inefficient code
I Lots of time wasted computing ultimately irrelevant results
I Can be hundreds of time slower than automata
I Little use of conditionals

Synchronous Languages Lecture 9 Slide 15

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Netlist Compilation

I Currently the only solution for large programs that appear to
have causality problems

I Scalability attractive for industrial users

Synchronous Languages Lecture 9 Slide 16

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Control-Flow Graph-Based

I Third key insight:
I Esterel looks like a imperative language, so treat it as such

I Esterel has a fairly natural translation into a concurrent
control-flow graph

I Trick is simulating the concurrency

I Concurrent instructions in most Esterel programs can be
scheduled statically

I Use this schedule to build code with explicit context switches
in it

Synchronous Languages Lecture 9 Slide 17

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Control-Flow Graph-Based

I Third key insight:
I Esterel looks like a imperative language, so treat it as such

I Esterel has a fairly natural translation into a concurrent
control-flow graph

I Trick is simulating the concurrency

I Concurrent instructions in most Esterel programs can be
scheduled statically

I Use this schedule to build code with explicit context switches
in it

Synchronous Languages Lecture 9 Slide 17

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Control-Flow Graph-Based

I Third key insight:
I Esterel looks like a imperative language, so treat it as such

I Esterel has a fairly natural translation into a concurrent
control-flow graph

I Trick is simulating the concurrency

I Concurrent instructions in most Esterel programs can be
scheduled statically

I Use this schedule to build code with explicit context switches
in it

Synchronous Languages Lecture 9 Slide 17

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

The CFG Approach

every R do

loop

await A;

emit B;

present C then

emit D end;

pause

end

||

loop

present B then

emit C end;

pause

end

end

R

1 s 2

A

B B

C C

D

s=2 s=1

R

1 s 2

A
B

t=0 t=1

B
C

0 t 1

C
D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1;

s2 = 1;

s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Source Concurrent Sequential C code
CFG CFG

Synchronous Languages Lecture 9 Slide 18

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Step 1: Build Concurrent CFG

→every R do

loop

await A;

emit B;

present C then

emit D end;

pause

end

||

loop

present B then

emit C end;

pause

end

→end

R

Synchronous Languages Lecture 9 Slide 19

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Add Threads

every R do

loop

await A;

emit B;

present C then

emit D end;

pause

end

→||

loop

present B then

emit C end;

pause

end

end

R

Synchronous Languages Lecture 9 Slide 20

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Split at Pauses

every R do

loop

→await A;

emit B;

present C then

emit D end;

→pause

end

||

loop

present B then

emit C end;

pause

end

end

R

1 s 2

s=2 s=1

Synchronous Languages Lecture 9 Slide 21

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Add Code Between Pauses

every R do

→loop

→ await A;

→ emit B;

→ present C then

→ emit D end;

→ pause

→end

||

loop

present B then

emit C end;

pause

end

end

R

1 s 2

A

B

C
D

s=2 s=1

Synchronous Languages Lecture 9 Slide 22

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Build Right Thread

every R do

loop

await A;

emit B;

present C then

emit D end;

pause

end

||

→loop

→ present B then

→ emit C end;

→ pause

→end

end

R

1 s 2

A

B B

C C
D

s=2 s=1

Synchronous Languages Lecture 9 Slide 23

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Step 2: Schedule

every R do

loop

await A;

emit B;

present C then

emit D end;

pause

end

||

loop

present B then

emit C end;

pause

end

end

R

1 s 2

A

B B

C C
D

s=2 s=1

Synchronous Languages Lecture 9 Slide 24

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Step 3: Sequentialize

I Hardest part: Removing concurrency

I Simulate the Concurrent CFG

I Main Loop:
I For each node in scheduled order,
I Insert context switch if from different thread
I Copy node & connect predecessors

Synchronous Languages Lecture 9 Slide 25

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Run First Node

R

1 s 2

A

B B

C C
D

s=2 s=1

R

Synchronous Languages Lecture 9 Slide 26

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Run First Part of Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

Synchronous Languages Lecture 9 Slide 27

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Context switch: Save State

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

Synchronous Languages Lecture 9 Slide 28

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Run Right Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

Synchronous Languages Lecture 9 Slide 29

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Context Switch: Restore State

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1

Synchronous Languages Lecture 9 Slide 30

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Resume Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Synchronous Languages Lecture 9 Slide 31

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Step 3: Finished

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Synchronous Languages Lecture 9 Slide 32

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Control-flow Approach

, Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

/ Not an easy framework for checking causality

/ Static scheduling requirement more restrictive than netlist
compiler

I This compiler rejects some programs that others accept

I Extension: Pre-process constructive Esterel programs with
cycles into equivalent non-cyclic programs [Lukoschus/von
Hanxleden 2007]

I Extends applicability of compilation approaches such as the
CFG-based approach

Synchronous Languages Lecture 9 Slide 33

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Control-flow Approach

, Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

/ Not an easy framework for checking causality

/ Static scheduling requirement more restrictive than netlist
compiler

I This compiler rejects some programs that others accept

I Extension: Pre-process constructive Esterel programs with
cycles into equivalent non-cyclic programs [Lukoschus/von
Hanxleden 2007]

I Extends applicability of compilation approaches such as the
CFG-based approach

Synchronous Languages Lecture 9 Slide 33

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Control-flow Approach

, Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

/ Not an easy framework for checking causality

/ Static scheduling requirement more restrictive than netlist
compiler

I This compiler rejects some programs that others accept

I Extension: Pre-process constructive Esterel programs with
cycles into equivalent non-cyclic programs [Lukoschus/von
Hanxleden 2007]

I Extends applicability of compilation approaches such as the
CFG-based approach

Synchronous Languages Lecture 9 Slide 33

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Control-flow Approach

, Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

/ Not an easy framework for checking causality

/ Static scheduling requirement more restrictive than netlist
compiler

I This compiler rejects some programs that others accept

I Extension: Pre-process constructive Esterel programs with
cycles into equivalent non-cyclic programs [Lukoschus/von
Hanxleden 2007]

I Extends applicability of compilation approaches such as the
CFG-based approach

Synchronous Languages Lecture 9 Slide 33

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Assessment of Control-flow Approach

, Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

/ Not an easy framework for checking causality

/ Static scheduling requirement more restrictive than netlist
compiler

I This compiler rejects some programs that others accept

I Extension: Pre-process constructive Esterel programs with
cycles into equivalent non-cyclic programs [Lukoschus/von
Hanxleden 2007]

I Extends applicability of compilation approaches such as the
CFG-based approach

Synchronous Languages Lecture 9 Slide 33

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Existing Esterel Compilers

Edwards 2001

Synchronous Languages Lecture 9 Slide 34

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Existing Esterel Compilers

Edwards 2001

Synchronous Languages Lecture 9 Slide 35

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Existing Esterel Compilers

Edwards 2001

Synchronous Languages Lecture 9 Slide 36

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Speed of Generated Code

0,1

1

10

100

1000

100 1000 10000

Logic Gates
+ Logic Optimization
CFG
Automata

Size (source lines)

Average
cycle
time (µs)

Edwards 2001

Synchronous Languages Lecture 9 Slide 37

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Size of Generated Code

1

10

100

1000

10000

100 1000 10000

Logic Gates
+ Logic Optimization
CFG
Automata

Size (source lines)

Object
code
size (K)

Edwards 2001

Synchronous Languages Lecture 9 Slide 38

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Summary

Esterel compilation techniques:

I Automata
I Fast code
I Doesn’t scale

I Netlists
I Scales well
I Slow code
I Good for causality

I Control-flow
I Scales well
I Fast code
I Bad at causality

Synchronous Languages Lecture 9 Slide 39

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Summary

Esterel compilation techniques:
I Automata

I Fast code
I Doesn’t scale

I Netlists
I Scales well
I Slow code
I Good for causality

I Control-flow
I Scales well
I Fast code
I Bad at causality

Synchronous Languages Lecture 9 Slide 39

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Summary

Esterel compilation techniques:
I Automata

I Fast code
I Doesn’t scale

I Netlists
I Scales well
I Slow code
I Good for causality

I Control-flow
I Scales well
I Fast code
I Bad at causality

Synchronous Languages Lecture 9 Slide 39

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

Summary

Esterel compilation techniques:
I Automata

I Fast code
I Doesn’t scale

I Netlists
I Scales well
I Slow code
I Good for causality

I Control-flow
I Scales well
I Fast code
I Bad at causality

Synchronous Languages Lecture 9 Slide 39

Esterel Compilation

Automata-Based Compilation
Netlist-Based Compilation
Control-Flow Graph-Based Compilation
Experimental Comparison

To Go Further
I Stephen A. Edwards. Tutorial: Compiling Concurrent Languages for

Sequential Processors. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 8(2):141-187, April 2003.
http://www1.cs.columbia.edu/~sedwards/papers/

edwards2003compiling.pdf

I Stephen A. Edwards and Jia Zeng. Code Generation in the Columbia
Esterel Compiler. EURASIP Journal on Embedded Systems, vol. 2007,
Article ID 52651, 31 pages, 2007.
http://dx.doi.org/10.1155/2007/52651

I Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.
Compiling Esterel. Springer-Verlag, New York, 2007. ISBN
9780387706269

I Jan Lukoschus and Reinhard von Hanxleden. Removing Cycles in Esterel
Programs. EURASIP Journal on Embedded Systems, Special Issue on
Synchronous Paradigms in Embedded Systems. http:
//www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979,
2007.

Synchronous Languages Lecture 9 Slide 40

http://www1.cs.columbia.edu/~sedwards/papers/edwards2003compiling.pdf
http://www1.cs.columbia.edu/~sedwards/papers/edwards2003compiling.pdf
http://dx.doi.org/10.1155/2007/52651
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979

	Esterel Compilation
	Automata-Based Compilation
	Netlist-Based Compilation
	Control-Flow Graph-Based Compilation
	Experimental Comparison

