
Examples
Interfacing with the Environment

Synchronous Languages—Lecture 03

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

29 April 2015
Last compiled: November 7, 2016, 7:34 hrs

Esterel II—Pragmatics

Synchronous Languages Lecture 03 Slide 1

Examples
Interfacing with the Environment

The 5-Minute Review Session

1. What is the difference between
transformational/interactive/reactive systems?

2. What is perfect synchrony? What is the synchronous model of
computation?

3. What is the motivation for the Esterel language?

4. What is the multiform notion of time?

5. What does it mean for an Esterel statement to be
instantaneous? Name some instantaneous and
non-instantaneous statements.

Synchronous Languages Lecture 03 Slide 2

Examples
Interfacing with the Environment

The 5-Minute Review Session

1. What is a signal in Esterel?

2. What are the signal coherence rules?

3. What are the differences between signals and variables?

4. What is the WTO principle?

5. What control flow constructs does Esterel have?

Synchronous Languages Lecture 03 Slide 3

Examples
Interfacing with the Environment

The 5-Minute Review Session

1. What is a signal resolution function? What are its
requirements?

2. What is the difference between immediate and non-immediate
abort?

3. What is the difference between strong and weak abort?

4. What is the difference between strong and weak suspend?

5. What is the difference between traps and weak aborts?

Synchronous Languages Lecture 03 Slide 4

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Overview

Examples
People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Interfacing with the Environment

Synchronous Languages Lecture 03 Slide 5

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

People Counter Example

Construct an Esterel program that counts the number of people in
a room.

I People enter the room from one door with a photocell that
changes from 0 to 1 when the light is interrupted, and leave
from a second door with a similar photocell. These inputs
may be true for more than one clock cycle. The two photocell
inputs are called ENTER and LEAVE.

I There are two outputs: EMPTY and FULL, which are present
when the room is empty and contains three people
respectively.

Source: Mano, Digital Design, 1984, p. 336

Thanks to Stephen Edwards (Columbia U) for providing this and the following

examples

Synchronous Languages Lecture 03 Slide 6

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Overall Structure

ENTER

LEAVE

Conditioner

Conditioner
Counter

EMPTY

FULL

ADD

SUB

Conditioner detects rising edges of signal from photocell.
Counter tracks number of people in the room.

Synchronous Languages Lecture 03 Slide 7

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Implementing & Testing the Conditioner

module CONDITIONER:

input A;

output Y;

loop

await A; emit Y;

await [not A];

end

end module

% esterel -simul cond.strl

% gcc -o cond cond.c -lcsimul # may need -L

% ./cond

CONDITIONER> ;

--- Output:

CONDITIONER> A; # Rising edge

--- Output: Y

CONDITIONER> A; # Doesn’t generate a pulse

--- Output:

CONDITIONER> ; # Doesn’t generate a pulse

--- Output:

CONDITIONER> ; # Sensitive to A again

--- Output:

CONDITIONER> A; # Another rising edge

--- Output: Y

CONDITIONER> ;

--- Output:

CONDITIONER> A;

--- Output: Y

Synchronous Languages Lecture 03 Slide 8

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Implementing & Testing the Counter: First Try

module COUNTER:

input ADD, SUB;

output FULL, EMPTY;

var count := 0 : integer in

loop

present ADD then if count < 3 then

count := count + 1 end end;

present SUB then if count > 0 then

count := count - 1 end end;

if count = 0 then emit EMPTY end;

if count = 3 then emit FULL end;

pause

end

end

end module

COUNTER> ;

--- Output: EMPTY

COUNTER> ADD SUB;

--- Output: EMPTY

COUNTER> ADD;

--- Output:

COUNTER> SUB;

--- Output: EMPTY

COUNTER> ADD;

--- Output:

COUNTER> ADD;

--- Output:

COUNTER> ADD;

--- Output: FULL

COUNTER> ADD SUB;

--- Output: # Oops!

Synchronous Languages Lecture 03 Slide 9

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Implementing & Testing the Counter: Second Try
module COUNTER:

input ADD, SUB;

output FULL, EMPTY;

var c := 0 : integer in

loop

present ADD then

present SUB else

if c < 3 then c := c + 1 end end

else

present SUB then

if c > 0 then c := c - 1 end end;

end;

if c = 0 then emit EMPTY end;

if c = 3 then emit FULL end;

pause

end

end

end module

COUNTER> ;

--- Output: EMPTY

COUNTER> ADD SUB;

--- Output: EMPTY

COUNTER> ADD SUB;

--- Output: EMPTY

COUNTER> ADD;

--- Output:

COUNTER> ADD;

--- Output:

COUNTER> ADD;

--- Output: FULL

COUNTER> ADD SUB;

--- Output: FULL # Working

COUNTER> ADD SUB;

--- Output: FULL

COUNTER> SUB;

--- Output:

COUNTER> SUB;

--- Output:

COUNTER> SUB;

--- Output: EMPTY

COUNTER> SUB;

--- Output: EMPTY

Synchronous Languages Lecture 03 Slide 10

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Assembling the People Counter

module PEOPLECOUNTER:

input ENTER, LEAVE;

output EMPTY, FULL;

signal ADD, SUB in

run CONDITIONER[signal ENTER / A, ADD / Y]

||

run CONDITIONER[signal LEAVE / A, SUB / Y]

||

run COUNTER

end

end module

Synchronous Languages Lecture 03 Slide 11

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Vending Machine Example

Design a vending machine controller that dispenses gum once.

I Two inputs, N and D, are present when a nickel and dime have
been inserted.

N = D =

I A single output, GUM, should be present for a single cycle
when the machine has been given fifteen cents.

GUM =

I No change is returned.

Source: Katz, Contemporary Logic Design, 1994, p. 389

Synchronous Languages Lecture 03 Slide 12

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Vending Machine Solution

module VENDING:

input N, D;

output GUM;

loop

var m := 0 : integer in

trap WAIT in

loop

present N then m := m + 5; end;

present D then m := m + 10; end;

if m >= 15 then exit WAIT end;

pause

end

end;

emit GUM; pause

end

end

end module

Synchronous Languages Lecture 03 Slide 13

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Alternative Solution

loop

await

case immediate N do await

case N do await

case N do nothing

case immediate D do nothing

end

case immediate D do nothing

end

case immediate D do await

case immediate N do nothing

case D do nothing

end

end;

emit GUM; pause

end

Synchronous Languages Lecture 03 Slide 14

Note that in this example, the last immediate is not needed, as
the case of an immediate N at this point is already handled in the
first case. However, as this logic is somewhat intricate, this
redundant immediate, which does not hurt, is probably the more
obvious and preferred solution.

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Tail Lights Example

Construct an Esterel program that controls the turn signals of a
1965 Ford Thunderbird.

Source: Wakerly, Digital Design Principles & Practices, 2ed, 1994, p. 550

Synchronous Languages Lecture 03 Slide 15

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Tail Light Behavior

Synchronous Languages Lecture 03 Slide 16

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Tail Lights

I There are three inputs, which initiate the sequences: LEFT,
RIGHT, and HAZ

I Six outputs: LA, LB, LC, RA, RB, and RC

I The flashing sequence is

LC LB LA step RA RB RC

1

2

3

4

Synchronous Languages Lecture 03 Slide 17

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

A Single Tail Light

module LIGHTS:

output A, B, C;

loop

pause;

emit A; pause;

emit A; emit B; pause;

emit A; emit B; emit C; pause

end

end module

Synchronous Languages Lecture 03 Slide 18

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

The T-Bird Controller Interface

module THUNDERBIRD :

input LEFT, RIGHT, HAZ;

output LA, LB, LC, RA, RB, RC;

...

end module

Synchronous Languages Lecture 03 Slide 19

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

The T-Bird Controller Body

loop

await

case immediate HAZ do

abort

run LIGHTS[signal LA/A, LB/B, LC/C]

||

run LIGHTS[signal RA/A, RB/B, RC/C]

when [not HAZ]

case immediate LEFT do

abort

run LIGHTS[signal LA/A, LB/B, LC/C]

when [not LEFT]

case immediate RIGHT do

abort

run Lights[signal RA/A, RB/B, RC/C]

when [not RIGHT]

end

end

Synchronous Languages Lecture 03 Slide 20

I Note: In the above code, the signal HAZ is only reacted to if
we are not already blinking left or right

I To change this, the abort condition for the LEFT case should
be changed from not LEFT to (not LEFT) or HAZ, and
similarly for the RIGHT case

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Comments on the T-Bird

I This solution uses Esterel’s innate ability to control the
execution of processes, producing succinct easy-to-understand
source but a somewhat larger executable.

I An alternative: Use signals to control the execution of two
processes, one for the left lights, one for the right.

I A challenge: Synchronizing hazards.

I Most communication signals can be either level- or
edge-sensitive.

I Control can be done explicitly, or implicitly through signals.

Synchronous Languages Lecture 03 Slide 21

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

Traffic-Light Controller Example

C

C Control a traffic light at the intersection of
a busy highway and a farm road.
Source: Mead and Conway, Introduction to VLSI

Systems, 1980, p. 85.

I Normally, the highway light is green
I If a sensor detects a car on the farm road:

I The highway light turns yellow then red.
I The farm road light then turns green until there are no cars or

after a long timeout.
I Then, the farm road light turns yellow then red, and the

highway light returns to green.

I Inputs: The car sensor C, a short timeout signal S, and a long
timeout signal L.

I Outputs: A timer start signal R, and the colors of the highway
and farm road lights HG, HY, HR, FG, FY, and FR.

Synchronous Languages Lecture 03 Slide 22

Examples
Interfacing with the Environment

People Counter Example
Vending Machine Example
Tail Lights Example
Traffic-Light Controller Example

The Traffic Light Controller

module TLC:

input C, SEC;

output HG, HY, HR,

FG, FY, FR;

signal R, L, S in

run TIMER

||

run FSM

end

end module

module TIMER:

input R, SEC;

output L, S;

loop

weak abort

await 3 SEC;

[

sustain S

||

await 5 SEC;

sustain L

]

when R;

end

end module

module FSM:

input C, L, S;

output R, HG, HY, HR,

FG, FY, FR;

loop

emit HG; emit FR; emit R;

await [C and L];

emit HY; emit R;

await S;

emit HR; emit FG; emit R;

await [(not C) or L];

emit FY; emit R;

await S;

end

end module

Synchronous Languages Lecture 03 Slide 23

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Overview

Examples

Interfacing with the Environment
Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Synchronous Languages Lecture 03 Slide 24

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Interfacing with the Environment

I At some point, our reactive system must control real-world
entities

I There are usually different options for the interface—differing
in

I Ease of use
I Ease of making mistakes!

I Example: External device that can be ON or OFF
I Options:

1. Single pure signal
2. Two pure signals
3. Boolean valued signal

Synchronous Languages Lecture 03 Slide 25

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Different Modes of Motor Control

Option 1: Single pure signal

I Motor is running in every instant
which has the MOTOR signal present

input BUMPER;

output MOTOR;

abort

sustain MOTOR

when BUMPER

Pro:

I Minimal number of signals

Con:

I High number of signal emissions (signal is emitted in every
instant where the motor is on)—may be unnecessary run-time
overhead

I Somewhat heavy/unintuitive representation

Synchronous Languages Lecture 03 Slide 26

This is a possible interface between such a level-sensitive signal at
the Esterel-level and an edge-sensitive interface at the
BrickOS-level (Thanks to Christoph Jobmann/U Göttingen):

int motor_on = 0; /* Global Variables */

int prev_motor_on = 0;

[...]

void MOTOR_O_MOTOR() {

if(!prev_motor_on) /* Motor was off? -> Switch it on! */

switch_motor_on();

motor_on = 1;

}

int main(void){

[...]

while (1) {

initialize_inputs(); /* Test M_I_BUMBER etc. */

prev_motor_on = motor_on; /* Buffer value of motor_on */

motor_on = 0; /* Re-initialize motor_on */

MOTOR(); /* Execute Automaton */

if (prev_motor_on && !motor_on) /* Switch motor off */

switch_motor_off();

}

[...]

}

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Different Modes of Motor Control

Option 2: Two pure signals

I Motor is switched on with signal
MOTOR ON present

I Motor is switched off with signal
MOTOR OFF present

I If neither MOTOR ON or MOTOR OFF is
present, motor keeps its previous state

input BUMPER;

output MOTOR_ON,

MOTOR_OFF;

emit MOTOR_ON;

await BUMPER;

emit MOTOR_OFF;

Pro:

I Signal emissions truly indicate significant change of external state

I Simple representation in Esterel

Con:

I No way to control inconsistent outputs

I No memory

Synchronous Languages Lecture 03 Slide 27

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Inconsistent Outputs

I Problem with MOTOR ON and MOTOR OFF: undefined behavior
with both signals present

I Can address this at host-language level

I Can (and should) also address this at Esterel-level:

[

present BUMPER else

emit MOTOR_ON;

await BUMPER

end present;

emit MOTOR_OFF

]

||

[

await immediate MOTOR_ON and MOTOR_OFF;

exit INTERNAL_ERROR

]

Synchronous Languages Lecture 03 Slide 28

I In this example, trap INTERNAL ERROR is emitted if signals
MOTOR ON and MOTOR OFF are emitted in one instant

I Note that also with Option 1 (single pure signal), it may be
the case that different components of our reactive system are
in conflict with regard to the state of the Motor. In this case,
we cannot even detect this (one component issues the signal,
the other doesn’t). On the other hand, we have a clear
resolution of this conflict—the component that emits the
signal wins.

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Valued Signal for Motor Control

Option 3: Boolean valued signal

I Merge pure signals MOTOR ON and MOTOR OFF into one valued
signal MOTOR

I Motor is switched on if every emit-statement in that instant
emits true

input BUMPER;

output MOTOR combine BOOLEAN with and;

emit MOTOR(true);

await immediate BUMPER;

emit MOTOR(false);

I Here: In case of conflicting outputs, motor stays switched off

Synchronous Languages Lecture 03 Slide 29

I Note that we could also have decided that in case of
conflicting outputs, the motor should be switched on (by
using or as combination operator)

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Valued Signal for Motor Control
Option 3 contd.
Pro:

I Again only one signal for motor control

I Explicit control of behavior for inconsistent outputs

I Valued signal has memory—can be polled in later instances,
after emission

I Easy extension to finer speed control

Con:

I Inconsistent outputs are handled deterministically—but are
not any more detected and made explicit

I For certain classes of analyses/formal methods that we may
wish to apply, valued signals are more difficult to handle than
pure signals

Synchronous Languages Lecture 03 Slide 30

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Events vs. State
I Excessive signal emissions

I make the behavior difficult to understand
I cause overhead if fed to the external environment

I State:
I “Robot is turning left”
I “Motor is on”
I Esterel:

I waiting for some signal
I terminated thread
I value of valued signal

I Event:
I Change of State
I “Turn motor on”
I Esterel:

I emit pure signal
I change value of signal

Synchronous Languages Lecture 03 Slide 31

Examples
Interfacing with the Environment

Available Alternatives
Handling Inconsistent Outputs
Events vs. State

Summary

I Esterel allows to specify precisely what happens if inputs
arrive in combinations—but must consider this from
application perspective as well

I Can memorize state in signal/variable values or as program
state

I Several choices when interfacing with environment—must
consider simplicity, robustness

Synchronous Languages Lecture 03 Slide 32

