
About this Class
Introduction to System Design

Synchronous Languages—Lecture 01

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

24 Oct 2016
Last compiled: October 24, 2016, 9:29 hrs

Introduction

Synchronous Languages Lecture 01 Slide 1



About this Class
Introduction to System Design

Overview

About this Class
About this class and related classes
Practicalities
Literature

Introduction to System Design
Embedded and reactive systems
Advanced design languages

Synchronous Languages Lecture 01 Slide 2



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Aim of this Lecture

After this lecture, you should
have an idea on . . .

I . . . what this class and
related classes are about

I . . . whether this class is for
you

I . . . what is expected of you
should you decide to
participate

Synchronous Languages Lecture 01 Slide 3



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Aim of this Lecture

After this lecture, you should
have an idea on . . .

I . . . what this class and
related classes are about

I . . . whether this class is for
you

I . . . what is expected of you
should you decide to
participate

Synchronous Languages Lecture 01 Slide 3



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Aim of this Lecture

After this lecture, you should
have an idea on . . .

I . . . what this class and
related classes are about

I . . . whether this class is for
you

I . . . what is expected of you
should you decide to
participate

Synchronous Languages Lecture 01 Slide 3



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

What this class will be about

I Synchronous Languages and the Synchrony Hypothesis:
Separate design of control from timing constraints

I Esterel: a textual, synchronous language
I Formal semantics
I Code and hardware synthesis for Esterel programs
I Analysis, constructiveness
I Reactive processing (Kiel Esterel Processor)

I Other synchronous languages:
I Lustre
I Scade
I SC: SyncCharts in C
I SCL: Sequentially Constructive Language
I Statecharts, expecially SyncCharts (the graphical counterpart

to Esterel) and SCCharts (Sequentially Constructive Charts)

I Optionally: further concurrent models of computation

Synchronous Languages Lecture 01 Slide 4



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Related classes

I Embedded RT Systems (WS 15/16, WS 17/18)
I Modeling dynamic behaviors
I Design of Embedded Systems
I Analysis and verification
I Lego Mindstorms

I Graph Drawing (SS 16, SS 18)
I Explains algorithms behind, e. g., SCCharts browser
I Force-directed approaches
I Layer-based / Sugiyama
I Tree drawing

Synchronous Languages Lecture 01 Slide 5



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Related classes

I Embedded RT Systems (WS 15/16, WS 17/18)
I Modeling dynamic behaviors
I Design of Embedded Systems
I Analysis and verification
I Lego Mindstorms

I Graph Drawing (SS 16, SS 18)
I Explains algorithms behind, e. g., SCCharts browser
I Force-directed approaches
I Layer-based / Sugiyama
I Tree drawing

Synchronous Languages Lecture 01 Slide 5



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

What you should learn in this course

1. You should know what synchronous
languages are

2. You should know about their
theoretical foundation of synchronous
languages

3. You should have a detailed knowledge
about Esterel and SCCharts, including
their semantics

4. You should be aware of possibilities
and problems in code/hardware
generation from synchronous
languages

Synchronous Languages Lecture 01 Slide 6



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

What you should learn in this course

1. You should know what synchronous
languages are

2. You should know about their
theoretical foundation of synchronous
languages

3. You should have a detailed knowledge
about Esterel and SCCharts, including
their semantics

4. You should be aware of possibilities
and problems in code/hardware
generation from synchronous
languages

Synchronous Languages Lecture 01 Slide 6



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

What you should learn in this course

1. You should know what synchronous
languages are

2. You should know about their
theoretical foundation of synchronous
languages

3. You should have a detailed knowledge
about Esterel and SCCharts, including
their semantics

4. You should be aware of possibilities
and problems in code/hardware
generation from synchronous
languages

Synchronous Languages Lecture 01 Slide 6



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

What you should learn in this course

1. You should know what synchronous
languages are

2. You should know about their
theoretical foundation of synchronous
languages

3. You should have a detailed knowledge
about Esterel and SCCharts, including
their semantics

4. You should be aware of possibilities
and problems in code/hardware
generation from synchronous
languages

Synchronous Languages Lecture 01 Slide 6



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

People

Lectures:
Reinhard von Hanxleden
rvh@... Tel.: 880-7281

Recitations (Übungen):
Alexander Schulz-Rosengarten
als@... Tel.: 880-7526

Corrections:
Lars Peiler
lpe@...

I Office hours: by appointment—or just contact us after class

Synchronous Languages Lecture 01 Slide 7



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

The Class Homepage

I https://ilearn.ps.informatik.uni-kiel.de/public/

courses/112

I Contents:
I Link to register for this class
I Link to register for the mailing list
I Lecture slides (with/without notes, with/without animation)
I Homework assignments
I Current information
I Further links

Synchronous Languages Lecture 01 Slide 8

https://ilearn.ps.informatik.uni-kiel.de/public/courses/112
https://ilearn.ps.informatik.uni-kiel.de/public/courses/112


About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Notation

The markups (the “secondary notation”) used on these slides
follows (mostly) the following scheme:

I Definitions, first use of a term

I Text structuring

I Examples

I Normal text

I Code, keywords, identifiers

I paths, executables

I URLs

I MathematicalSymbols

I General emphasis

I Reeeally important stuff

Synchronous Languages Lecture 01 Slide 9

URLs


About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Notation

The markups (the “secondary notation”) used on these slides
follows (mostly) the following scheme:

I Definitions, first use of a term

I Text structuring

I Examples

I Normal text

I Code, keywords, identifiers

I paths, executables

I URLs

I MathematicalSymbols

I General emphasis

I Reeeally important stuff

Synchronous Languages Lecture 01 Slide 9

URLs


About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Homeworks

I Homeworks
I generally given at Tuesday,
I due by following Tuesday (23:59 hrs),
I should be submitted via iLearn (see class homepage)
I discussed following Friday recitation
I First recitation: Nov. 4.

I Homeworks shall be submitted by groups
I Ideal group size: 2 students
I Each group member should be able to present

submissions

I Questions
I may be asked at any time, on anything . . .
I . . . however, questions on the homework are better asked

before the deadline and before submitting the homework!

Synchronous Languages Lecture 01 Slide 10



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Homeworks

I Homeworks
I generally given at Tuesday,
I due by following Tuesday (23:59 hrs),
I should be submitted via iLearn (see class homepage)
I discussed following Friday recitation
I First recitation: Nov. 4.

I Homeworks shall be submitted by groups
I Ideal group size: 2 students
I Each group member should be able to present

submissions

I Questions
I may be asked at any time, on anything . . .
I . . . however, questions on the homework are better asked

before the deadline and before submitting the homework!

Synchronous Languages Lecture 01 Slide 10



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Homeworks

I Homeworks
I generally given at Tuesday,
I due by following Tuesday (23:59 hrs),
I should be submitted via iLearn (see class homepage)
I discussed following Friday recitation
I First recitation: Nov. 4.

I Homeworks shall be submitted by groups
I Ideal group size: 2 students
I Each group member should be able to present

submissions

I Questions
I may be asked at any time, on anything . . .
I . . . however, questions on the homework are better asked

before the deadline and before submitting the homework!

Synchronous Languages Lecture 01 Slide 10



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Grading (Scheinkriterien)

I Can get bonus points for outstanding solutions

I Can also get point deductions for late submissions, multiple
submissions, etc.

I Will receive regular feedback on accumulated score

I For all participants, there will be one final exam

Synchronous Languages Lecture 01 Slide 11



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Final Exam

I Tentative date: Thu, Feb. 9 (Must be within Feb. 7 – 20)

I Need at least 50% to pass

I In borderline cases, also consider participation in class

I Results in exercises can improve grade, if 85% exam + 15%
exercises are better than exam score

Admitted to final exam if:

I Received at least 50% of homework assignment points

I Missed at most two recitation classes

Synchronous Languages Lecture 01 Slide 12



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Priorities

Your grade depends on

I Final exam

I Homework submissions

I Participation in class (in borderline cases)

Advice: make up your mind on whether you want to participate in
this class or not rather soon (within the next two weeks)

I Should participate 0% or 100% :-)

Synchronous Languages Lecture 01 Slide 13



About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Literature: Synchronous Languages

I [Halbwachs 1998]
Nicolas Halbwachs, Synchronous programming of reactive systems,
a tutorial and commented bibliography,
Tenth International Conference on Computer-Aided Verification,
CAV’98 Vancouver (B.C.),
LNCS 1427, Springer Verlag, June 1998,
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.

1.40.8306

I [Benveniste+ 2003]
Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Simone.
The Synchronous Languages Twelve Years Later
IEEE, Special Issue on Embedded Systems, 2003
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.

1.96.1117

Synchronous Languages Lecture 01 Slide 14

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8306
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8306
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117


About this Class
Introduction to System Design

About this class and related classes
Practicalities
Literature

Literature: Esterel

I [Berry 2000]
Gérard Berry, The Foundations of Esterel,
Proof, Language and Interaction: Essays in Honour of Robin Milner,
G. Plotkin, C. Stirling and M. Tofte, editors,
MIT Press, Foundations of Computing Series, 2000,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.53.6221

I [Berry 1999]
Gérard Berry, The Constructive Semantics of Esterel,
Draft book, current version 3.0, Dec. 2002
http://www-sop.inria.fr/members/Gerard.Berry/Papers/

EsterelConstructiveBook.zip

I [Esterel Primer]
Gérard Berry, The Esterel v5 Language Primer, Version v5 91, 2000
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.15.8212

Synchronous Languages Lecture 01 Slide 15

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6221
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6221
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.zip
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.zip
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.8212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.8212


About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Overview

About this Class
About this class and related classes
Practicalities
Literature

Introduction to System Design
Embedded and reactive systems
Advanced design languages

Synchronous Languages Lecture 01 Slide 16



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Definition of Embedded Systems

I Embedded systems were designed for dedicated applications
inside a surrounding system

I Embedded systems normally consist of hard- and software

I In addition to standard microprocessors, sometimes special
hardware is used e. g. for MPEG-decoding

I Often many embedded systems form a distributed system

I Often many processes run in parallel on one microprocessor

I Do we need an operating system for process management?

Synchronous Languages Lecture 01 Slide 17



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

A Definition:

Embedded System:
A computer that is not perceived as such

Synchronous Languages Lecture 01 Slide 18



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

A Definition:

Embedded System:
A computer that is not perceived as such

Synchronous Languages Lecture 01 Slide 18



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Arguments for Embedded Systems

Increase of comfort: simplifies usage
Decrease of physical size: important for mobile devices
Increase of functionality: allows decentralized computations

Increase of safety: autopilot in aircrafts, brake-by-wire in cars
Decrease of production costs: electronic systems often cheaper
Increase of maintainability: by diagnosis devices
Optimization of control: e. g. dynamic control of fuel injection
Personalization: systems can be adapted for different users
Decrease of power consumption: important for mobile devices
Protection of intellectual property: difficult to copy by competitors

Thanks to Klaus Schneider (Kaiserslautern) for providing part of
this material

Synchronous Languages Lecture 01 Slide 19



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Arguments for Embedded Systems

Increase of comfort: simplifies usage
Decrease of physical size: important for mobile devices
Increase of functionality: allows decentralized computations
Increase of safety: autopilot in aircrafts, brake-by-wire in cars
Decrease of production costs: electronic systems often cheaper
Increase of maintainability: by diagnosis devices

Optimization of control: e. g. dynamic control of fuel injection
Personalization: systems can be adapted for different users
Decrease of power consumption: important for mobile devices
Protection of intellectual property: difficult to copy by competitors

Thanks to Klaus Schneider (Kaiserslautern) for providing part of
this material

Synchronous Languages Lecture 01 Slide 19



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Arguments for Embedded Systems

Increase of comfort: simplifies usage
Decrease of physical size: important for mobile devices
Increase of functionality: allows decentralized computations
Increase of safety: autopilot in aircrafts, brake-by-wire in cars
Decrease of production costs: electronic systems often cheaper
Increase of maintainability: by diagnosis devices
Optimization of control: e. g. dynamic control of fuel injection
Personalization: systems can be adapted for different users
Decrease of power consumption: important for mobile devices
Protection of intellectual property: difficult to copy by competitors

Thanks to Klaus Schneider (Kaiserslautern) for providing part of
this material

Synchronous Languages Lecture 01 Slide 19



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Design of Embedded Systems
Embedded systems (ES) are built for years.
What are the new challenges in their design?

I More ESs are included in one system

I ESs are more and more responsible for economic success

I ESs are more and more responsible for design costs

I Product differentiation more and more by embedded systems

I Supervision of safety-critical systems

Example application: cars

I Supervise and correct driving actions of driver

I Detect other cars and object in the environment

I Predict unavoidable collisions, and initiate driving actions to
decrease damage

I Post-crash behavior: notify hospital and send GPS coordinates

Synchronous Languages Lecture 01 Slide 20



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Design of Embedded Systems
Embedded systems (ES) are built for years.
What are the new challenges in their design?

I More ESs are included in one system

I ESs are more and more responsible for economic success

I ESs are more and more responsible for design costs

I Product differentiation more and more by embedded systems

I Supervision of safety-critical systems

Example application: cars

I Supervise and correct driving actions of driver

I Detect other cars and object in the environment

I Predict unavoidable collisions, and initiate driving actions to
decrease damage

I Post-crash behavior: notify hospital and send GPS coordinates

Synchronous Languages Lecture 01 Slide 20



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Problems with Embedded Systems

Are there any disadvantages?

Of course:
Many systems like cars are used for 20 years, while computer
systems have much shorter lifetimes

I Problem: supply with parts for many years

I Problem: lifetime of ESs must be long enough

Safety-critical applications are controlled by ESs

I Problem: computer systems do also have errors

I Problem: complex systems have many errors

I Problem: unfriendly environment (e. g. high/low temperature)

I Is there really a gain in safety?

Synchronous Languages Lecture 01 Slide 21



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Problems with Embedded Systems

Are there any disadvantages? Of course:
Many systems like cars are used for 20 years, while computer
systems have much shorter lifetimes

I Problem: supply with parts for many years

I Problem: lifetime of ESs must be long enough

Safety-critical applications are controlled by ESs

I Problem: computer systems do also have errors

I Problem: complex systems have many errors

I Problem: unfriendly environment (e. g. high/low temperature)

I Is there really a gain in safety?

Synchronous Languages Lecture 01 Slide 21



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Problems with Embedded Systems

Are there any disadvantages? Of course:
Many systems like cars are used for 20 years, while computer
systems have much shorter lifetimes

I Problem: supply with parts for many years

I Problem: lifetime of ESs must be long enough

Safety-critical applications are controlled by ESs

I Problem: computer systems do also have errors

I Problem: complex systems have many errors

I Problem: unfriendly environment (e. g. high/low temperature)

I Is there really a gain in safety?

Synchronous Languages Lecture 01 Slide 21



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Design Problems: Design Exploration

I Due to manual design, there is no time to evaluate different
design variants

I In particular, the HW/SW partitioning phase cannot be
repeated

; Trend towards ‘overdesign’, i. e., the systems are more
expensive and more powerful than necessary

; Realization independent design necessary, i. e., early design
phases should not fix on HW or SW solutions

I Problem: which languages to use for these descriptions?

; One of the motivations for synchronous languages

Synchronous Languages Lecture 01 Slide 22



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Different Kinds of Systems

Input Output

Input Output

Input Output

Transformational Systems

t=t0 t=t1

Interactive/Reactive Systems

System

System

State 1

State 2

System

Synchronous Languages Lecture 01 Slide 23



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Interactive vs. Reactive Systems
Transformational systems:

I read inputs, compute outputs and terminate
I Example: compiler

Interactive systems:

I nonterminating
I continuous interaction
I pace is controlled by system
I Example: on-line reservation system

Reactive systems:

I nonterminating
I continuous interaction
I pace is controlled by environment
I Example: engine controller

⇒ Reactive systems are real-time systems!

Synchronous Languages Lecture 01 Slide 24



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Interactive vs. Reactive Systems
Transformational systems:

I read inputs, compute outputs and terminate
I Example: compiler

Interactive systems:

I nonterminating
I continuous interaction
I pace is controlled by system
I Example: on-line reservation system

Reactive systems:

I nonterminating
I continuous interaction
I pace is controlled by environment
I Example: engine controller

⇒ Reactive systems are real-time systems!

Synchronous Languages Lecture 01 Slide 24



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Interactive vs. Reactive Systems
Transformational systems:

I read inputs, compute outputs and terminate
I Example: compiler

Interactive systems:

I nonterminating
I continuous interaction
I pace is controlled by system
I Example: on-line reservation system

Reactive systems:

I nonterminating
I continuous interaction
I pace is controlled by environment
I Example: engine controller

⇒ Reactive systems are real-time systems!
Synchronous Languages Lecture 01 Slide 24



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Interactive vs. Reactive Systems

I Interactions with user/environment are basic computation
steps of reactive systems

I Logical time: counts only number of interactions

I Interactions consist of micro steps (smaller computations)

I Interactions are often called macro steps

I Remark: inputs are read only once per macro step,
hence, they are assumed to be constant for a macro step

I Question: when are outputs produced?

I Answer: perfect synchrony has the view that outputs are
generated in zero time for a macro step

Synchronous Languages Lecture 01 Slide 25



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Embedded Systems as Reactive Systems

General Schema:

analog
hardware

analog
hardware

surrounding system (mechanic, electronic, pneumatic,...)

software

digitale hardware(actors) (sensors)

Embedded systems interact directly with surrounding system and
are thus often reactive systems

Synchronous Languages Lecture 01 Slide 26



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Reactive Control Flow
Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional languages and reactive
control flow patterns

I Non-determinism, e. g. due to scheduler and interrupt handler

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Synchronous Languages Lecture 01 Slide 27



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Reactive Control Flow
Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional languages and reactive
control flow patterns

I Non-determinism, e. g. due to scheduler and interrupt handler

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Synchronous Languages Lecture 01 Slide 27



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Reactive Control Flow
Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional languages and reactive
control flow patterns

I Non-determinism, e. g. due to scheduler and interrupt handler

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Synchronous Languages Lecture 01 Slide 27



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Advanced Design Flows

verification

partitioning

compilation

simulation

Software

Hardware

Software

Hardware
FPGA, ASIC

machine code

microcontroller

VHDL, Verilog

C, C++, Java

Specification
Statecharts, SystemC,... realisation

independent
descriptionEsterel etc.

synthesis

Synchronous Languages Lecture 01 Slide 28



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Advanced Design Flows

I Early cost estimation

I Simulation of design variants

I Formal verification in early design phases

I Guarantee of real-time constraints

I Support for distributed systems (also multi-processor systems)

I Modeling of the environment, also of analog and mechanical
parts

Synchronous Languages Lecture 01 Slide 29



About this Class
Introduction to System Design

Embedded and reactive systems
Advanced design languages

Summary

I Embedded systems are ubiquitous today

I Distinguish transformational, interactive, reactive systems
I Synchronous languages

I are domain independent (can describe HW and SW) and allow
to work at high abstraction level

I support reactive control flow (including concurrency and
preemption)

I have deterministic, formally founded semantics
I support modular design due to perfect synchrony

I This class will explore the family of synchronous languages in
depth

Synchronous Languages Lecture 01 Slide 30


	About this Class
	About this class and related classes
	Practicalities
	Literature

	Introduction to System Design
	Embedded and reactive systems
	Advanced design languages


