
SYNCHRONOUS LANGUAGES

LECTURE 14
THE BLECH PROGRAMMING LANGUAGE

16 JUNE, 2020
FRIEDRICH GRETZ

BOSCH CORPORATE RESEARCH

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Today’s speaker

Dr. Friedrich Gretz

Robert Bosch GmbH

Corporate Research in Renningen

Friedrich.Gretz@de.bosch.com

www.blech-lang.org

2

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

 Blech – as of now

 Application examples

Outlook on planned features

 Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Why is synchronous programming interesting for Bosch?
Reactive, embedded software everywhere!

4

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Abstract view of a reactive system
Where do we use a synchronous language?

continuous

hardware

discrete

software

Runtime

environment

Synchronous

program

 Environment communicates asynchronously with

physical world, drives synchronous programs

 A program is executed is steps

‒ Assume a step takes no time (happens instantaneously)

‒ No change of input data throughout computation

 A sequence of steps is called a thread of

execution

 Threads can be composed concurrently

‒ Accesses to shared data happen in a deterministic,

causal order

5

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Do we need a new synchronous language?
Available alternatives do not fulfill our requirements

Céu purely event-triggered, no causality, soft-realtime

 Esterel no longer supported, not sequentially constructive, not separately compilable

 Lustre not imperative, good for evaluating control loop equations but less intuitive for

describing step-wise, mode switching behaviour

 SCCharts automata centric view

Create a synchronous imperative language – Blech

6

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

 Blech – as of now

 Application examples

Outlook on planned features

 Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Design goals
Requirements

Clear focus

 Software

 Reactive

 Resource-constrained

 Real-time

 Scalable

Domain orientation

 Embedded

 Control intensive systems

 Computations and switching

behaviour

 Intertwined functionality

Compatibility

 Integration of legacy code

 Integration in legacy code

 Support separate compilation

Deployment

 Efficient code generation

 Safe code generation

 Integrate synchronous “execution

shell” with existing real-time OS

environments

 Deployment on multi-core platforms

Developer Orientation

 Readable

 Clear semantics

 Stateflow in controlflow

 Structured data

 Code structuring, information hiding

 Safe and modern type system

 Testing & Safety

 Deterministic, repeatable testing

 Integrate with existing simulation

frameworks

 Reduce false positives in static

code analysis

 Provide more guarantees, e.g.

through causality

8

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

Blech – as of now

 Application examples

Outlook on planned features

 Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Blech
Mode transitions as synchronous control flow

10

stop

run

init

StartStop StartStop

StartStop

Reset

Reset

Reset

Start

activity stopWatchControl (isPressedStartStop: bool,
isPressedReset: bool)
(display: Display)

when isPressedReset reset
// init
resetToZero()(display)
if not isPressedStartStop then

await isPressedStartStop
end
repeat

// run
repeat

await true
increment()(display)

until isPressedStartStop end
// stop
await false

end
end

end

await isPressedStartStop

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

/// Main Program
@[EntryPoint]
activity Main (isPressedStartStop: bool,

isPressedReset: bool)
var display: Display
cobegin // render

repeat
show(display)
await true

end
with // control

run StopWatchController(isPressedStartStop,
isPressedReset)
(display)

end
end

Blech
Concurrent composition of behaviours over time

 Execution model

 Concurrent behaviours run in

synchronised steps

Causal order

 first, update display data

 second, show display

Code generation

 sequential code

 Statically ordered by the compiler

11

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Concurrency in detail
Blech

12

cobegin [weak]

. . .

with [weak]

. . .

end

in every reaction:

“write before read!”

cobegin

run A(x)(z)

with

run B(y)(x)

end

do a step here

and

do a step there

cobegin
run A(x)(z)

with
run B(y)(z)

end

cobegin
run A(x)(z)

with
run B(z)(x)

end

write-write conflict

reject compilation

write-read cycle

reject compilation

cobegin
run A(x)(z)

with
run B(prev z)(x)

end

solution

use previous value

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Concurrency in detail
Blech

13

• Cobegin may have any fixed number of

blocks

• Cobegin is orthogonal: it can be

arbitrarily nested

• Subprograms are black boxes with

interfaces, may be compiled separately

• Interfaces tell what data types are

expected and whether data is only read

or also written

• Causal scheduling is dealt with locally

at call site

• Causality issues arise and may be

debugged and fixed within one cobegin

statement!

…

cobegin

…

with

…

cobegin

run A(x)(z)

with

…

end

…

with

run B(prev z)(x)

end

…

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Concurrency in detail
Blech

14

cobegin
run A(x)(z)

with
run B(y)(x)

end

cobegin weak
run A(x)(z)

with
run B(y)(x)

end

cobegin
run A(x)(z)

with weak
run B(y)(x)

end

cobegin weak
run A(x)(z)

with weak
run B(y)(x)

end

A and B have

finished all their

reactions

cobegin statement terminates when…

B has finished all

its reactions;

A is possibly

aborted

A has finished all

its reactions;

B is possibly

aborted

A or B has finished

all its reactions;

the other one is

possibly aborted

start: cobegin, A, B

A, B

A, B; finished: A

B; finished: B, cobegin

start: cobegin, A, B

A, B

A, B; finished: A

B; finished: B, cobegin

start: cobegin, A, B

A, B

A, B; finished: A, B, cobegin

start: cobegin, A, B

A, B

A, B; finished: A, B, cobegin

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Use case for weak branches
Blech

15

cobegin weak

run BlinkLED(...)(...) // no arguments for readability

with

run WaitForKeyStroke(...)(...) // no arguments for readability

end

runs indefinitely, unless terminated

eventually terminates (if the system is to make any progress at all)

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Blech

Gretz, Grosch | 2018-09-11

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
3

Compiling activities to sequential C functions
@[EntryPoint]
activity main()()

var a: int32
var b: int32
var c: int32
cobegin

repeat
await true
a = a + 2
c = b - a

end
with

repeat
await true
b = 2 * (a + 1)

end
end

end

a = 0

b = 0

c = 0

a = a + 2

c = b - a

b = 2 * (a+1)

new reaction new reaction

uint32_t main (int32_t *a, int32_t *b, int32_t *c, uint32_t *pc_1,
uint32_t *pc_3, uint32_t *pc_2) {

if (*pc_1 == 2) {
*a = 0; // init
*b = 0;
*c = 0;
*pc_2 = 7; // enter branches and terminate step
*pc_3 = 9;
*pc_1 = 18;

}
if (*pc_2 == 6) { // left branch
*a = (*a + 2);
*pc_2 = 12; // remember there is more to do

}
if (*pc_3 == 8) { // right branch
*b = (2 * (*a + 1));
*pc_3 = 9; // terminate right step

}
if (*pc_2 == 12) { // left branch
*c = (*b - *a);
*pc_2 = 7; // now terminate left step

}
_BLECH_SWITCH_TO_NEXTSTEP(*pc_2); // bit-shifting magic
_BLECH_SWITCH_TO_NEXTSTEP(*pc_3);
_BLECH_SWITCH_TO_NEXTSTEP(*pc_1);
return *pc_1; // 0 means no more reaction steps to do

}

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Stopping a behaviour
Blech

17

/// Keep blinking until the user presses button 1

activity Locked (pressedOne: bool) ()

when pressedOne abort

run Blink()

end

end

when a abort

. . .

await b

. . .

await c

end

when a reset

. . .

await b

. . .

await c

end

¬𝑎 ∧ 𝑏

𝑎 ∨ 𝑐

𝑎

𝑡𝑟𝑢𝑒

¬𝑎 ∧ 𝑏

¬𝑎 ∧ 𝑐

𝑡𝑟𝑢𝑒

𝑎

𝑎

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Abstract view of a reactive system
Where do we use a synchronous language?

continuous

hardware

discrete

software

Runtime

environment

Synchronous

program

18

Blech

C (usually)

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Calling Blech from a runtime
C interoperability

/* Main */

int main(int argc, const char * argv[])

{

/* Create and initialize environment. */

// …

/* Initialize blech. */

blc_blech_acc_init();

/* Sense, control, act loop */

while (1) {

/* Get and adapt sensor input from environment. */

env_input_state_t env_input_state = env_read(env);

// …

/* Run control reaction. */

blc_blech_acc_tick(output_state.otherSpeed,

&output_state.egoSpeed,

&output_state.distance);

/* Act on environment. */

int hasCrashed = env_draw(env, &output_state);

// …

/* Wait for next tick.*/

usleep(update_frequency);

}

/* Destroy environment. */

env_destroy(env);

return 0;

}

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Abstract view of a reactive system
Where do we use a synchronous language?

continuous

hardware

discrete

software

Runtime

environment

Synchronous

program

20

Blech

C (usually)

libraries

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

C interoperability
External constants

@[CConst(binding="c_name_extConstI8",

header="my_externals.h")]

extern const extConstI8: int32

21

#define c_name_extConstI8 8

C Blech

usage

function f ()
let testI8 = extConstI8
// ...

end

assumption

is constant throughout the whole runtime

c_name_extConstI8

ticks

access

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

C interoperability
External volatile read-only memory

activity B ()

@[CInput(binding="c_name_extLetArr[0]",

header="my_externals.h")]

extern let extLetI32: int32

...

end

22

int c_name_extLetArr[8];

C Blech

usage (multiple concurrent instances of B may run)

cobegin
run B ()

with
run B ()

end

assumption

is volatile

c_name_extLetArr[0]

ticks

access

local buffer extLetI32

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

C interoperability
External volatile read-write memory

activity B ()

@[COutput(binding="c_name_extVarArr[0]",

header="my_externals.h")]

extern var extVarI32: int32

...

end

23

int c_name_extVarArr[8];

C Blech

usage (B is a singleton now)

cobegin
run B ()

with
run B ()

end

assumption

is volatile

c_name_extVarArr[0]

ticks

access

local buffer extVarI32

error!

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

C interoperability
External (singleton) functions

@[CFunction(binding = "NRF24L01_spiIsReady",

header = "nrf24l01.h")]

extern singleton function spiIsReady () returns bool

24

uint8_t NRF24L01_spiIsReady (void)
{

return (HAL_SPI_GetState(nrf24l01_init.hspi)
== HAL_SPI_STATE_READY) ? 1 : 0;

}

C Blech

usage (spiIsReady is declared to be a singleton)

cobegin
await spiIsReady()

with
await spiIsReady()

end

assumption

singleton:

• function either reads a volatile value

• or has a side-effect on the environment

not singleton:

• re-entrant, side-effect free function

error!

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Blech

25

Find all details on the language as it is currently implemented at

https://www.blech-lang.org/docs/user-manual/

If you find any mistakes or lack of clarity, please do notify us via Github issues.

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

 Blech – as of now

Application examples

Outlook on planned features

 Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Application examples

27

DCF 77 signal decoding

bare metal

“Virtual lock”

FreeRTOS + Mita

Homework: ACC

Linux OS + ncurses

Controller development

MATLAB/Simulink

(S-function)

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

 Blech – as of now

 Application examples

Outlook on planned features

 Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Outlook on planned features
What else should be possible with Blech?

Mechanisms

- Parallel programming with

multiple clocks

- Event communication using

signals

Safety

- Physical dimensions

- Safe code generation

29

Software Engineering

- Module system

- Immutable references

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

_30ms

Mechanisms

10

Parallel programming with multiple clocks

Communicating tasks must have related clocks

Communication is done by sampling according to logical execution time

Deterministic, consistent, compositional, real-time capable

_10ms*

_50ms ∨ _30ms

_50ms

_50ms ∧ _30ms

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

activity Signalling()
var finished: signal

cobegin
run anActivity()
emit finished

with
repeat

...
await true

until finished end
...

end
end

Mechanisms
Communicating events with signals

Signal

 Presence flag

Optional payload

Only present in emitting time step

 Automatically absent after reaction

31

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Module system
Software engineering

32

Decompose code into separately compiled units: “modules” (do not confuse with Esterel modules!)

Modules must export types, activities or functions that should be used by their clients

(API, information hiding)

 Interfaces must take causality information into account

Module system translates names to unique C identifiers (everything is globally visible in C)

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Physical dimensions
Safety

33

 The physical dimension are part of the data type

Machine data types prevent arithmetic

operations on incompatible types

 Physical dimensions prevent arithmetic

operations which do not make sense

(cf. homework code)

unit m
unit s

var length: float32[m]
var duration: float32[s]

length = 2 * length // ok
length = 2 + length // error!

let speed = length / duration // ok
let nonsense = length + duration // error

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Safe code generation
Safety

34

let a: [7]float32 = {...}

...
let x = a[i] // ok, provided i >= 0, i <= 6

float x;
if(i >= 0 && i <= 6) {
x = a[i];

} else {
haltWithDebugInfo();

}

float x;
if(i >= 0) {
if (i <= 6) {
x = a[i];

} else {
x = a[6];

}
} else {
x = a[0];

}

Debug code generation Release code generation

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Overview

 Today’s speaker

Why is synchronous programming interesting for Bosch?

Design goals

 Blech – as of now

 Application examples

Outlook on planned features

Additional remarks

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Adaptive Cruise Control
Homework

36

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Extraction of mode diagrams from Blech
Bachelor / Master Thesis

37

⇒

activity StopWatchController (startStop: bool, resetLap: bool)
(display: Display)

var totalTime: int32
var lastLap: int32
repeat

totalTime = 0 // State init
lastLap = 0
writeTicksToDisplay(totalTime)(display)
await startStop // Transition init -> run

repeat
cobegin weak

await startStop
with weak

run Measurement(resetLap)
(totalTime, lastLap, display)

end
// State stop, show total time and wait
writeTicksToDisplay(totalTime)(display)
await startStop or resetLap
// Run again if only startStop was pressed

until resetLap end // Back to init if
end // resetLap was pressed

end

Get in touch with Prof. von Hanxleden

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
38

Where do I get Blech?
or how do I participate?

Blech is open source! Driven by Bosch CR.

Try Blech right now, start with tutorials and

other examples. Why not write a blog post

about your experience?

Participate in discussions and give feedback on

language design

Actively shape Blech by contributing to the

compiler, tooling or documentation

Let’s collaborate on product software, an

evaluation prototype, a student thesis or

internship

We happily give a talk for your developers or

managers or organise a hands-on tutorial

The Blech team is open for ideas and

discussions

All info is available at www.blech-lang.org

F. Gretz | 2020-06-15

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
39

Where do I get Blech?
or how do I participate?

Get in touch with us:

Friedrich.Gretz@de.bosch.com

Franz-Josef.Grosch@de.bosch.com

