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Abstract

The paper describes the design of a coloured Petri net model for a rather
complex model train system. The purpose of this system is to teach grad-
uate CS students net modelling and analysis techniques, and the systematic
concersion of non—trivial net models into fully operational real systems.

The track layout of this system currently includes three main cyclic tracks,
each subdivided into several sections, three switchyards of several sidings, and
also interconnecting tracks via which trains may change main tracks and di-
rections.

The idea is to equip each of several trains - currently up to ten - with its
own travel plan. It specifies a sequence of tracks through which the train must
be routed in the given order. Ezecution of these plans must be dynamically co-
ordinated based on locally made decisions about the allocation of track sections
to requesting trains so that essential safety and liveness properties are met.

The paper first introduces the basic net components necessary to model train
movement along track sections and across branching and merging switches,
then describes the composition of a complete track model from these compo-
nents, including the controls necessary to enforce an orderly behaviour, and
then outlines the composition of the complete system model. It also addresses
some of the as yet unsolved problems of deadlock prevention in the system.

1 Introduction

This paper relates to the organization of an orderly train traffic in a complex model
train system which serves to teach graduate students how to model, by means of
coloured Petri-Nets, the dynamic behaviour of non—trivial real life systems with
concurrent activities and how to translate these models into working control pro-
grams.

The track layout of this train system is depicted in fig. 1. It consists of

o three main circular tracks called the outer circle (labeled 0C_LN), the inner cir-
cle (labeled 1C_LN), and the kicking horse pass ! (labeled KH_LN) along which
trains may move counterclockwise, clockwise, and in both directions, respec-
tively, as indicated by the arrows;

e switchyards of three to five sidings included in each of the main tracks (the
outer circle station (labeled 0C_sT), the inner circle station (labeled 1¢_sT) and
the kicking horse pass station (labeled kKH_ST)), and also

I This name is adopted from a section of the Canadian Pacific Railways mainline in the Rocky
Mountains which includes a similarly spiral-shaped track layout to negotiate a rather steep uphill
/ downhill passage [P095].
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Figure 1: Complete track layout of the system

e interconnecting tracks, labeled oCcIc_LN and 1COC_LN, through which trains
may change main tracks and thereby also change directions without needing
to shunt engines;

Each of the tracks is subdivided into several sections (or blocks), in the figure
separated by little square—shaped dots. Light signals, symbolized as little dots
extended by short bars, visualize permission to cross section boundaries. Actual
train positions are detected by magnetic sensors placed along the tracks, and the
speed of trains is controlled by applying appropriate voltage to track sections.

Sensor data are, by a dedicated digital interface, scanned and passed on, as a
stream of 256 bytes, to a SUN-Workstation. These sensor data are translated into
a description of the current system state, from which a control program executed
by the SUN derives the control signals that effect transition to a next state and
issues them, through the same interface, as a stream of 256 bytes to the switches,
signals and the voltage supplies. This control cycle is executed in periods of a few
milliseconds to react quickly enough to critical situations, with trains moving at
most some 10 mm during that time.

The track system is laid out on an area of 4.5 * 3.5 square meters. It includes
145 meters of HO gauge tracks, subdivided into 37 sections and sidings, 28 two-way
switches and 51 signals. The inner and outer circles are configured as intertwined
loops of about 28 meters length each, running in parallel, and the kicking horse pass
includes two double spirals on which trains climb up to (and down from) about 30
centimeters above ground level on a track length of about 25 meters. It takes about
two minutes for trains to complete a single lap on the inner and outer circle, and
about two and a half minutes over the kicking horse pass.

The photograph of fig. 2 gives an areal view of the track layout, showing the
harp-like structures of the station sidings on the left, the tracks of the outer and
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Figure 2: A birds eye’s view of the system

inner circles running along the periphery, and the spirals of the kicking horse pass
in the center part.

The design of this track system was guided by the objective of providing, within
the confines of limited real estate, sufficient complexity with regard to train move-
ment - currently up to 10 trains can be operated simultaneously - so that all the
phenomena that typically occur in systems with concurrent activities can be studied
and experimented with in a real-life setting.

To this end, train movement is governed by travel plans which for each train
individually specify which (sections of) tracks it has to pass through in which order
at which speed, and at which stations it has to stop for some time. Each plan
sets out with some initial positioning of the train in a specific station siding, and
after some finite number of passages through main tracks terminates with the train
arriving at the same or some other siding 2. A typical plan for a train that passes
through all three main tracks is given in fig. 3.

The control program that receives these travel plans as input must coordinate
their execution ‘on the fly’, based on local decision making as conflicts and potential
deadlock situations arise. In doing so, it should obey first principles of an orderly
system behavior, defined in terms of essential safety and liveness properties:

e each track section must be occupied by at most one train at a time (the mutual
exclusion principle);

e a train that occupies a particular section of track, including station sidings,
must always find a way out unless it has reached its terminal position (com-
pleted its plan);

e 10 train must be unduly delayed in pursuing its travel plan: entry into some
track section must be granted eventually to all trains competing for it;

2Choosing the same siding as the starting and terminal position has the advantage that the
same plan can conveniently be repeated several times in succession (or even forever).



train "freight train #17":
operation speed 6
minimum  speed 1
priority 10

# initial position: siding #1 in the kicking horse Pass station
# initial heading: «clockwise
from KH_ST_1 CLK

# Move to Inner Circle Station and stop there for (at least) 10 seconds.
goto IC_ST stop 10 sec

# Take 3 turns on the Inner Circle without stopping. Upon
# completing the last turn, stop for 15 seconds.

loop 2
goto IC_ST
endloop
goto IC_ST stop 15 sec

# Go to the kicking horse Pass Station heading counterclockwise,
# go over the pass once, then move to the Outer Circle Station,
# stop there for 17 seconds, and finally return to the initial
# position KH_ST_1.

goto KH_ST CNTCLK

goto KH_ST CNTCLK

goto OC_ST stop 17 sec
and return

Figure 3: Travel plan for a single train

e 3 train requesting entry into a track section must be permitted to proceed
immediately if no other train competes for it.

A system which meets these essentials can usually be modelled as an ordinary
Petri—net and by proving that it satisfies certain invariance properties [GeLaTh80,
KlLa82). However, things are not that simple if, in addition to these essentials,
individual travel plans and other train—specific parameters have to be included into
the model. Such parameters may be priorities, e.g., of passenger trains over freight
trains, time tables which need to be followed (with trains falling behind getting their
priorities dynamically stepped up), or pre-specified speed profiles along the travel
routes. It takes higher—order Petri-nets [GeLa78, GeLa81, Rei85, Jen90, Jen92] to
represent trains as tokens which carry along with them inscriptions to this effect
and to have the firing of transitions in some consistent form controlled by these
parameters, and the parameters changed if necessary.

The sequel outlines the design of such a net model for the entire system, using
the Design/CPN tool version 3.0.4 of Aarhus University for coloured Petri—nets.
The design is described from the bottom—up, setting out in the next section with
basic net components which model train movement across section boundaries and
across merging and branching switch configurations. Section 3 describes in some
detail the net model for the kicking horse pass, including the station and the track
sections that lead into and out of it, and section 4 briefly explains how the complete
system model is assembled from net abstractions (substitution transitions) for the
inner and outer circle tracks and for the kicking horse pass track. Section 5 discusses
some open problems of deadlock prevention within the system, and the conclusion
summarizes some of the experiences we had with the Design/CPN tool.

Since the system model is rather complex — its full net specification requires
some 28 pages and a total of about 400 places — the paper merely attempts to



convey some basic features of its construction and its interpretation (semantics),
but it cannot be very specific on all details. In fact, the net models of the kicking
horse pass and of the complete system have been cleaned of some components which
relate to rather special control problems in order to get the underlying ideas across
more clearly.

2 The Basic Net Components

This section is to introduce the net components by which the basic building blocks
of the track system and the train movement therein can be modelled.

2.1 Track Sections and Train Descriptions

For purely organizational purposes it suffices to model each section of track by
a place with a color specifying the type of tokens it may carry. As these tokens
must represent the presence or absence of trains in the section, and a train must
be characterized by a number of attributes (or parameters), the color block descr
associated with these places must be of the general form

color block.descr = unionu_train : train_descr 4 no_train,

where the colors train_descr and no_train respectively specify the type of a train
description and the absence of a train in the section. For reasons that will become
clear when specifying the net component which controls train movement from one
section to the next it must be guaranteed that a token of either type resides in such
a place under all markings (token distributions) of the net. The color train descr,
in turn, is defined as 3;

color train descr = product t_statex* t_train_id x t_dir * t_sched
with

e color t_state = with moving | stopped distinguishing between the train
moving through or temporarily stopping in the section;

e color t_trainid = (1 .. n ) serving as indices to distinguish the n
trains moving about the tracks;

e color t.dir = with clk | co_clkdistinguishing between clockwise and coun-
terclockwise movement along the tracks;

e color t_sched = list t_dest defining the trains travel plan in terms of
switch positions of type color t_dest = with left | straight | right

Specifying travel plans as lists of switch positions which must be interpreted from
head to tail is a low—level description which suffices to route trains from start to
destination: choices among alternative routes must only be made at sections where
tracks branch into two or more, otherwise next sections are unique 4.

The color train descr is minimal, in terms of numbers and types of its com-
ponents (attributes), with respect to an orderly coordination of the train traffic
about the track system. No provisions are as yet made to specify priorities or speed
profiles.

3The prefixes t- are to distinguish the colors (types) within the type product from the variables
used in the nets to identify the components of train descriptors.

4These low-level travel plans can be readily derived from high-level specifications as exemplified
in fig. 3.
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Figure 4: Net component for unidirectional train movement between adjacent track
sections

2.2 Moving Trains from one Section to the Next

Modelling the unidirectional movement of a train along track sections requires a
net component as shown in fig. 4. It includes two places LN_¢ and LN_(i + 1) which
model the sections from where to where a train is supposed to proceed, and three
transitions which analyze the tokens in both places to take appropriate actions ® .
In particular, the transition

e MOVE is enabled if a train is in section LN_¢ and moving, and no train is in
LN_(i + 1), as indicated by the token inscriptions, in which case the transition
fires and exchanges the two tokens (i.e., the train moves on);

e STOP is enabled if a train moves through section LN_i and section LN_(¢ + 1)
is occupied by another train, in which case the state of the train in LN_¢ must
be changed to stopped.

e START returns the status of a stopped train in section LN_¢ back to moving if
the train that occupied section LN_(¢ + 1) has moved on and left.

There can be at most one of these transitions enabled as the respective markings
are mutually exclusive.

A minor extension of this net component is necessary to deal with track sections
in which trains are not allowed to stop. They include the inner and outer circle
junctions through which trains may change main tracks, but also other sections

5Three transitions are used for structural clarity here. They can, of course, be folded into
one in which the three situations that need to be taken care of are distinguished by appropriate
inscription.



with switches in them. Here it is necessary to make sure that not only the no-stop
section but also the section which the train must reach after it are free. This can
be accomplished by means of a so-called look—ahead place, denoted as LA_ ..., of
color t_la = with free | occ connected to a CTR_ ... transition which imposes
an additional condition on its firing: it is disabled if the token in this place carries
the color occ and, depending on the tokens in the places LN_i and LN_( + 1), may
be enabled if the color is free. The token that actually resides in place LA_...
is generated by some look—ahead subnet which inspects the tokens in the relevant
section places.

To model adjacent track sections along which trains may move in both directions
(as in the kicking horse pass), the transitions MOVE, STOP and START must simply
be duplicated, with one set each taking care of clockwise and counterclockwise
direction.

2.3 Controlling Train Movement Across Switches

Switches in both unidirectional main tracks (the inner and outer circles) are oper-
ated as either

e branching switches through which trains are routed from an incoming track
section to one of several outgoing track sections;

e merging switches through which trains are routed from one of several incoming
sections to one outgoing section.

Switches within the kicking horse pass are operated both ways, depending on the
direction in which trains are going. Inner and outer circle junctions are made up
from a set of merging switches followed by a set of branching switches. The switches
themselves belong to no-stop sections between the incoming and outgoing sections ¢.

In the simple setting that nothing other than the presence (or absence) of trains
matters, merging switches must be operated as follows: If there is only one train in
any of the incoming sections and both the no-stop switch section and the outgoing
section are free, then the train may move on without delay by setting the switch(es)
accordingly. If there are two or more trains in the incoming sections competing for
passage, then the conflict is resolved by arbitration. A typical example is the net
component of fig. 5 which models the merge switch through which trains leave the
sidings of the outer circle station 7. Tt consists of a place each for the three incoming
sections (the sidings) oc_sT_1, .. , 0c_sT_3, for the no-stop section 0c_sT_4, and
for the outgoing section 0C_LN_2. The transitions CTR-0C_ST_1, .. , CTR-OC_ST_3
which are to swap train tokens between the sidings and the no-stop section are
controlled by look—ahead places LA_OC_ST_I which receive control tokens from some
look—ahead subnet encapsulated in the substitution transition LA_0c_sT[123]. This
subnet monitors whether there are trains in any of the sidings and both the no-stop
section and the outgoing section are free. In this case, the look—ahead subnet injects
a free token as a selector in one of the look—ahead places which has the respective
siding occupied by a train, whereas all other look—ahead tokens remain set to occ.
This enables the selected train token to proceed to the no-stop section (whereupon
the look—ahead token is reset to occ) and, via the MOVE transition, on to the track
section OC_LN_2. The look—-ahead subnet selects competing trains based on fair
simulation in order to prevent waiting trains from being unduly delayed. As an
additional safety measure which relates to implementation details of the controls,

Sn—fold switches of either kind are technically implemented as cascades of n — 1 two—way
switches.

"In this and all the following nets the tokens are omitted since inscriptions that are readable
would take up too much space.
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Figure 5: Net model of a three-way merge switch

the firing of the look-head transition is also made dependent on the consumption
of a plain control token from the place RES_OC_ST_4, which is returned if the train
token is removed from place OC_LN_2, i.e., the train leaves the outgoing section.
This measure ensures that no train is in either the no-stop or the outgoing track
section before one of the CTR_0C_ST_i transitions can be enabled.

Branching switches come in a non—deterministic and in a deterministic version.
The former is to control entry of trains into any of the free sidings of a station where
it does not matter which one is actually chosen, the latter is to control selection of
a specific outgoing track.

Consider, as an example, the net component for the branching switch as depicted
in fig. 6 which non—deterministically controls entry of trains into the outer circle
station. It comprises a place each for the incoming track section 0C_LN_6, for the
three outgoing track sections (the sidings) oc_sT_1, .. , 0C_ST_3, and for the no-
stop switch section 0C_ST_0. The firing of the entry transition CTR_OC_LN_6 is
made dependent on a look—ahead place LA_OC_LN_6 whose marking is worked out
by some look-ahead logic inside the substitution transition LA_0C_ST_0. This logic
checks whether any of the outgoing sections and the no-stop section are free. This
being the case, it injects a free token into LA_OC_LN_6 to allow the train token to
proceed to 0C_ST_0 and from there across one of the enabled MOVE transitions to
a free siding; otherwise it is not enabled, i.e., the occ token remains in place, which
stops the train in the incoming track section.

An example for the net model of a deterministic branching switch is the one that
allows trains to either change from the track section 0C_LN_5 of the outer circle to
section KH_ST_10 of the kicking horse pass station or to continue along the outer
circle track to section OC_LN_6 (see fig. 7). Apart from different labels for places and
transitions, it basically differs from the net model for the non—deterministic branch-
ing switch in that it includes another place DEST which is fed with a selector token
left or right extracted from the train token as it enters OC_LN_5 (which is not
included in this subnet). This token enables either of the transitions CTR_SPL_left
or CTR_-OC_SPL_right to route the train token in OC_LN_5 to either KH_ST_10 or
OC_LN_6, respectively.

Deterministic switches are in the entire track system used only unidirection-
ally. Non—deterministic switches may also be used, in reverse direction, as merging
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switches, and vice versa as, for instance, at both sides of the kicking horse pass
station. All it takes to operate these switches both ways is to equip the respective
nets with the controls of both figs. 5 and 6.

3 Modelling the Kicking Horse Pass

With the net components as introduced in the preceding section, it is fairly straight-
forward to compose larger subnets which model, say, complete circular tracks, in-
cluding stations and switch configurations through which trains may change main
tracks, and the necessary controls.

The most interesting of these tracks is the kicking horse pass as it allows trains
to travel in both directions and its station, besides being connected to the pass
itself, includes entries from and exits to the other two main tracks (compare fig. 1).
Moreover, train movement over the track must be organized so that

e there are never two trains in the track that go in opposite directions (to
prevent deadlocks);

e there may be several trains moving in the same direction over the pass (each
occupying one of the six track sections);

e some measure of fairness is enforced which prevents the monopolization of the
track by trains going in one direction, while trains trying to go in the other
direction are starving.

Controls to this effect may be realized by means of ordinary Petri—nets attached to
the station model as they merely require keeping track of the number of trains that
have left the station to cross the pass in one of the two possible direction (and have
not yet returned) [K198].

Fig. 8 shows the net model of the complete pass, with the station abstracted to
a substitution transition which is connected to places modelling

e the pass sections KH_LN_1 on the left and KH_LN_6 on the right;

o the sections KH_ST_10 on the left and KH_ST_20 on the right through which
trains may move in from and out to both the inner and outer circles;

e the sections KHIC_LN and ICKH_LN to which trains may proceed past KH_ST_10
on their way out to the inner circle and from which they may enter section
KH_ST_20 on their way in from the inner circle, respectively.

The types of tokens that are actually in these places are used by the controls inside
the substitution transition to decide which of the trains in these sections or in one
of the sidings inside the station gets permission to proceed.

The track over the pass is modelled by the six places KH_LN_i representing the
six sections and by the six substitution transitions CTR_-KH_LN_i which pass train
tokens along the track in both directions.

The internal structure of the Hs-transition that substitutes for the kicking horse
station is depicted in fig. 9. It interfaces with the surrounding places through the
substitution transitions KH_ST_0 and KH_ST_9 which represent the five-way switch
configurations through which trains may enter and leave the station on both sides.
Both transitions are interconnected through four places which model various aspects
of the occupation by trains of the five sidings inside the station. In particular, the
place

e KH_ST_[12345] contains tokens inscribed with train_descriptors paired with
the indices of the sidings which they actually occupy;

10
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Figure 8: Net model of the kicking horse pass track

e RES_KH_ST_[12345] contains tokens inscribed with indices ¢ € [1...5] which
represent free sidings;

e DEST_KH_ST_[12345] contains switch selector tokens paired with siding indices
which determine in which direction trains in the particular sidings have to
leave the station (up the pass or alternatively through section KH_ST_10 on
towards the inner circle when going clockwise or through section KH_ST_20
and on towards the outer circle when going counterclockwise);

e LA_KH_ST[12345] contains look—ahead tokens generated by either of the HS-
transitions which determine the siding(s) from where train(s) may leave the
station next (with a train each being able to leave concurrently in either
direction);

Four more places RES_.KH_ST_ 0|10 | 20| 9 for plain tokens are necessary to ensure
that trains arriving from or leaving towards the inner or outer circles have free pas-
sage through the track sections KH_ST_10 and KH_ST_20 , and that incoming trains
from either of these circles find free sidings before entering these sections in order
to prevent potential deadlocks with trains trying to use them in the opposite direc-
tion. These places are also connected to controls, specifically look—ahead subnets,
for the respective parts of the inner and outer circle net models (not shown here)
with which the Hs—transitions KH_ST_0 and KH_ST_9 need to interact.

Another important part of this net model is the subnet contained in the substi-
tution transition at the bottom of fig. 9 which exercises control over the direction
in which trains are permitted to move across the pass and also enforces fairness
between trains trying to go in opposite directions.

Roughly, these controls work as follows: A conflict between trains trying to
enter the empty track in the same or opposite direction(s) is generally resolved
by arbitration. Once permission is given to a train to leave the station in one

11
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direction, a lock is set for trains waiting to go over the pass in the other direction.
A train trying to enter the empty track without competitor in either direction gets
permission to leave immediately, thereby again locking the other direction. Once a
train moves along the track, more trains may follow in the same direction, while the
other direction remains blocked. Fairness is enforced by putting an upper limit on
the number of trains which in one direction may move over the pass in succession.
If this limit is exhausted, further trains are blocked. As soon as all trains have
left the track, the direction is reversed, and trains waiting in the station to go in
the new direction are given permission to do so. Directions may also freely be
changed if the track is empty and neither of the limits is exhausted. This measure
in fact establishes a finite synchronic distance between trains going in opposite
directions [GeLaTh80, K1La82].

To this effect, the DIRECTION_AND_FAIRNESS_CONTROLLER transition is con-
nected through a place for tokens of type (color) t_dir and five places for tokens of
type t_integer with the HS—transitions that control entrance to and exit from the
sidings for trains scheduled to go over the pass. These places serve the following
purposes:

e the token in DIRECTION_OF_NEXT_LEAVING_TRAIN, as the name indicates,
specifies the direction in which the next train is permitted to move across
the pass;

e REQUESTS_ON_KHP_CLK | _CO_CLK keep track of the number of trains request-
ing entry into the track in clockwise and counterclockwise direction, respec-
tively;

e TRAINS_ON_KHP_CLK | _CO_CLK follow up on the number of trains that are
actually in the track in either direction (one of these counter values must
always be zero);

12



e COUNTER counts the trains which in succession have left the station in the di-
rection indicated by the token in place DIRECTION_OF_NEXT_LEAVING_TRAIN
(of which some may already have completed their passage over the pass, others
may still be in the track).

A control structure similar to the one that needs to be realized inside the DIREC-
TION_AND_FAIRNESS_CONTROLLER transition is, on the basis of an ordinary Petri—
net model, described in [K198].

In a larger context, the complete kicking horse pass model can be abstracted to
another substitution transition KICKINGHORSEPASS which interfaces with its sur-
roundings, the inner and outer circle net models, essentially via the places KHIC_LN,
ICKH_LN and KH_ST_10, KH_ST_20, respectively. These interfaces must, of course,
be complemented by small subnets which model the look—ahead controls for the
passage of train tokens across these places. However, as these subnets feature basi-
cally the same elements as in figs. 5, 6 and 7, they have not been included in the
nets of figs. 8 and 9 to keep them clear of details that add nothing new.

4 The Complete System Model

The net models for both the inner and outer circle tracks, including the stations, the
inner and outer circle junctions and the two tracks by which they are interconnected,
are quite similar to each other and slightly less complicated than the kicking horse
pass model since trains (train tokens) are allowed to move only in one direction in
both of them.

Fig. 10 shows, merely for illustration purposes and without further explanation,
how the net for the outer circle looks like. Of primary interest for the construction of
the full system model are the places KH_ST_10, KH_ST_20 and ICOC_LN_3, OCIC_LN_3
through which this net respectively interfaces with the kicking horse pass net and
with the net for the inner circle.

Likewise, the net for the inner circle interfaces with the kicking horse pass
through the places ICKH_LN (for trains leaving towards the pass) and KHIC_LN
(for trains arriving from the pass) and with the outer circle through the places
ICOC_LN_3 (for trains leaving) and oCIC_LN_3 (for trains arriving).

When abstracting both nets to substitution transitions OUTERCIRCLE and IN-
NERCIRCLE, and using the HS—transition KICKINGHORSEPASS, the net model of the
entire system can simply be constructed by overlapping the respective interfacing
places of these three components, as is shown in fig. 11 (the look—ahead controls
associated with the interfaces between the KICKINGHORSEPASS transition on the
one hand and the OUTERCIRCLE and INNERCIRCLE transitions on the other hand
are again omitted here).

There is some asymmetry, though, between the interfaces of the OUTERCIRCLE
and INNERCIRCLE transitions with the KICKINGHORSEPASS, which is not visible on
this level of abstraction. It relates to the chosen modus of operation for the track
sections KH_ST_10 and KH_ST_20 which get involved in all train movements between
the kicking horse station and both the inner and outer circles. Trains moving into
this station from the outer circle or leaving it towards the outer circle may be
stopped in these sections, whereas for trains that are being exchanged with the
inner circle they are operated as no-stop sections. This implies that in the former
case both sections may be allocated directly if trains demand entry and they are
free, whereas in the latter case they must be reserved by look—ahead controls which
ensure that subsequent sections are also free. The controls to this effect are in
large parts integrated into the HS transitions KH_ST_0 and KH_ST_9 which model
the five-way switches of the station (compare fig. 9).
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5 Discussion

The net model outlined in this paper was a first attempt to explore and analyze
the dynamic aspects of the train system, in which several concurrent activities -
the routing of up to ten trains as prescribed by individual travel plans - have to be
coordinated ‘on the fly’. Though not exactly a blueprint, it also served as a guideline
for the development of a prototype control program, written in C, which runs the
trains in the real system. This program builds on an internal representation, in
the form of a large data structure, of the system state in terms of travel plans,
actual train positions (sections). the acctual settings of switches and light signals,
and of speed levels (voltages). The program itself consists of a set of C—functions
which more or less directly implement the various substitution transitions. They are
called upon receiving sensor signals triggered by trains crossing section boundaries
to inspect and update the parts of the state representation actually affected and
to issue the control data necessary to set switches and light signals, and to apply
voltages to track sections.

As several people were involved in various aspects of the project (track design
and construction, development of hard- and software, net modelling), and not all of
them had a background in Petri nets, the basis for communication was the schematic
track layout given in figure 1. In the early stages of the project, the CPN model
helped to identify fairly quickly flaws in the conceptual design and potential trouble
spots by generating extreme system states (token distributions representing trains
in track sections), rather than doing these tests in the real system where critical
situations might be difficult and rather time—consuming to bring about and to
reproduce. Also, a C implementation of software that controls concurrent activities
under real-time constraints includes too many low—level details to permit an abstract
view of the (idealized) system dynamics. In contrast, translations between the CPN
model and the track layout are straightforward, i.e., problems found in the model
could be communicated using the layout, and issues unclear in the layout could be
investigated in the model.

A major issue that cannot be properly addressed using the track layout alone is
the identification of potential deadlocks (in the non-technical meaning of the term).
The layout could easily be mapped to a condition-event net, but this would fail to
account for the individual travel plans. In general, none of the trains “sees” the
complete track layout, but rather each of them has its own partial view, or its own
private net model, of the system as defined by its travel plan.

To convey the nature of the problem, consider as an example the condition-event
net of figure 12 which models just the outer and inner circles without sidings and, in
rudimentary form, the two interconnecting tracks. The token distribution depicts 6
trains on the inner circle and another 7 trains on the outer circle, and it is assumed
here that no trains can move in or out of this particular subsystem (tokens may
neither be added nor disappear).

Trains can obviously move along both tracks — though not very smoothly in
reality — as there is one free section in each of the circles. However, if the travel
plan of one of the trains on the outer circle would prescribe changing into the inner
circle but none of the travel plans of the trains already in it would prescribe changing
in the opposite direction, the last free slot in that track would be occupied, and all
trains would come to a halt. Trains could still move along the outer circle, but if
further trains would try to follow their travel plans into the — now blocked — inner
circle, the deadlock would spread out over the outer circle as well. Thus, as far
as these particular travel plans are concerned, there exists just the interconnecting
path from the outer to the inner circle through the place 0CIC_LN, but not the path
through the place ICOC_LN, i.e., the inner circle constitutes a classical structural
deadlock.
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Figure 12: Illustration of a deadlock problem

The constraints imposed on the net by the travel plans do not necessarily increase
the potential for deadlocks, even though they do decrease the available resources
in terms of usable track sections. In our example, if the travel plans of the trains
in the outer circle would not include the connection to the inner circle, the path
through the place 0CIC_LN would become invisible as well, leaving two separate and
deadlock-free circles.

A conservative approach to deadlock avoidance would limit the number of trains
on each track. With n denoting the number of sections per track, this seems to allow
for n —1 trains to move along each track at the maximum. In a worst case scenario,
however, the individual travel plans could be such that all trains try to get into the
same track at about the same time to make some turns there before leaving again.
Therefore, the restrictions would have to include those trains that just pass through
a track while following their travel plan, leaving only min{n;c,noc} — 1 trains
moving about inner and outer circle. The same consideration applies if the kicking
horse pass is included, so that the total number of trains that can be guaranteed to
move freely about the entire track system without causing deadlocks would have to
be limited to min{nrc,noc,nkm} — 1. Other circular tracks of restricted capacity
are formed by the interconnecting tracks between the inner and outer circles and
the kicking horse pass, bringing down the number of trains in the complete track
system to no more than about five trains.

With more trains, deadlock prevention requires that some restrictions be placed
on specifying individual travel plans, e.g., by allowing each of the circular tracks to
be used in at most ngrqer, — 1 of them. With ten trains to deal with, this could for
instance be accomplished by travel plans which allow three trains to use all three
main tracks in any order, while of the remaining seven trains two each could cycle
just over the kicking horse pass and just around the inner circle, and three trains
could make turns just around outer circle.

Travel plans in which all ten trains use all three main tracks in some arbitrarily
chosen sequences may or may not end up in deadlocks, depending on the order
in which trains happen to get into critical situations. Preventing these deadlocks
requires sophisticated global controls which must monitor actual distributions of
trains over track sections and next actions prescribed by travel plans to decide
which trains may proceed without getting trapped. This is still an open problem
which requires further simulation and analysis to find a satisfactory solution.

Another source of deadlocks are trains that have completed their journeys and
arrived at pre-defined terminal positions (station sidings). The simpler of these
situations may occur at stations of the inner or outer circles, along which trains
are moving in just one direction. If all three sidings in these stations are terminal
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positions and the respective trains have ended up there, no other trains still on
the move can pass through, i.e., they inevitably deadlock. The way out of this
problem consists either in using only two of the three sidings as terminal positions,
or in devising a travel plan for one of the three trains ending there which can be
expected to terminate after all others trains have passed through.

Deadlocks that involve the kicking horse station, due to trains moving in both
directions, are more difficult to prevent. There may be trains arriving in the station
scheduled to go, say, counterclockwise over the pass while other trains are actually
moving clockwise over the pass. If there are more such trains than there are sidings
left in the station, the entire pass deadlocks. The same happens if a train arriving
from the pass to end its journey in the station finds its terminal position occupied
by another train scheduled to go over the pass in the opposite direction.

These situations could be brought about quite frequently by simulating various
travel plans in the net model but also by running them in the train system itself. The
remedies found sofar are not very satisfactory from a systems design perspective as
they either require careful coordination of travel plans or putting rather conservative
restrictions on train movement which often bring to a grinding halt all but one or
two of the ten trains.

As all of this is only the prelude to the problems to be solved when designing
and implementing the control software for the real system, the reader may wonder
why the information gathered from the CPN model was not used to simplify the
track layout. The rationale for this comes from the teaching context of this project:
the system has to have rough edges for the modelling process to be interesting, and
while minor corrections were made to the initial layout, most trouble spots had to
remain, so that the students can employ their theoretical knowledge about Petri
Nets in practice to find them. We do not claim that we have consciously designed
the track system with all its problems in mind, but the current system seems to
provide just the right level of complexity. The non-local interactions between its
parts make it challenging even for good students, but a great deal can be achieved
by finding the right abstractions and by looking for modular solutions.

6 Conclusion

The entire net model was designed by two graduate students (the first two coauthors
of this paper) as a term project accompanying a graduate course on Petri—nets.
Having neither been familiar with the Design/CPN tool nor having had any prior
experience with system architecting and modelling, i.e., starting more or less from
scratch, it took them about four months of hard work to complete the model and to
run some simulations. A considerable part of this time was spent on getting used
to handling the tool rather than on the net design itself.

One problem area is editing. It takes pages after pages (and diagrams and menu
screen dumps) of a rather voluminous tutorial (which would take students the better
part of a term to digest) to explain things that should be self-explanatory with a
decently designed graphical interface; and although the manuals are available online,
there is no help functionality integrated into the tool. Another problem is the need
to switch back and forth between the editor and the simulator which takes way
too much time (even for an early and incomplete prototype of the full net model
it took some 10 minutes on a SUN-SPARC equipped with 48 MBytes of memory,
4 minutes if the memory was stepped up to 64 MBytes, and still 2 minutes on an
Ultra—SPARC with 512 MBytes of main memory). For all practical purposes, this
rules out going repeatedly through cycles of designing nets in incremental steps,
testing and modifying them until an acceptable solution is found, as one would
often wish (or need) to do it in early phases of architecting complex systems.
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Executing the simulator in a stepwise manner is equally frustrating since changes
of the token distribution are very hard to recognize on the graphical display and,
what is even worse, each step requires several seconds, sometimes even minutes, to
complete. It renders testing large nets in this way a time-consuming affair. Sur-
prisingly, most of the time is spend in the graphic updates, whereas the simulation
itself seems to be reasonably fast. As a consequence, automatic simulation has to
be used in practice instead of the animated, interactive simulation.

These deficiencies render Design/CPN in its current form a tool that can hardly
be used for teaching as students are easily turned off.

What is also (as yet ?) missing are means to verify net designs with regard to
essential safety and liveness properties. It would already help if the existence of s—
and T—-invariants could be verified by analytical methods at least on the level of plain
Petri-nets, i.e., without regard for the constraints imposed by inscriptions (which
would be partially sufficient in the case of our train system model and presumably
also in many other areas, e.g., process coordination languages [CaGe89, Ass95]).
This being a problem which, for complexity reasons, may be hard to crack if the
nets become large, one could alternatively think of simply checking whether or not
invariants pre—specified by the designer do indeed hold.

While the improvements planned for the new CPN simulator (see the respective
web page) seem to point in the right direction, doing away with at least some of
the performance problems, it is not at all clear why memory demand still remains
excessive, why compilation of complete nets still takes several minutes, and why
users are not given the choice of compiling to an SML implementation of their own.
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