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Abstract

We provide the calculus of relations as a data type im-
plemented in an object-oriented Java-library, Kure. We
demonstrate how to employ Kure in a CASE tool for
the relation-algebraic analysis of Petri nets. Relation al-
gebra has already been applied to condition/event nets.
We extend this approach to place/transition systems in
general and thereby provide a novel relation-algebraic in-
terface to Petri net analysis. Kure is usable in any tool
modelling with relations. In this paper we address in gen-
eral how CASE tools are equipped with the calculus of re-
lations and demonstrate in particular how reachability
analysis of Petri nets benefits from this formal method.

1. Introduction

Relations are a well-known data structure in com-
puter science. The formal apparatus of relation alge-
bra is well understood and mathematically well estab-
lished. For its mechanization, there exists a couple of
tools for the computer-aided manipulation of relations
and relation-algebraic formulae, as well as for relation-
algebraic theorem proving. Having a look at the abun-
dance of literature (see e.g., the references in [15, 5]),
however, it seems that in the last decades relation al-
gebra and the respective tools have rarely been used
in practical software engineering; apart from some ex-
ceptions, their employment was of purely academic na-
ture. For instance, in the domain of programming and
software development, scientists investigated seman-
tics, data structures, and algorithm development. Top-
ics which nowadays are of great importance in prac-
tical software engineering are, for example, the formal
description of graphical design languages, or, for reengi-
neering purposes, the detection of design patterns, the

comprehension of the code structure of large object-
oriented programs, and software refactoring.

We addressed the relation-algebraic detection of de-
sign patterns [11] and also contributed to the descrip-
tion of the syntax and semantics of a three-dimensional
graphical design language [10]. But, as far as we know,
formal graphical design languages (amongst them Petri
nets in the widest sense) are not or scarcely treated
with relation algebra.

This calculus has has already been applied in the
context of condition/event nets [3]. We investigate
place/transition systems in general and provide a novel
approach to Petri net analysis using relation alge-
bra. We recently implemented the calculus of rela-
tions as a data type provided in an object-oriented
Java-library, Kure, usable in any tool modelling with
relations. It is accessible for download under http:
//cvs.informatik.uni-kiel.de/~KURE/. Kure ex-
tracts the core functionality of the tool RelView [1],
a software system for calculating with relations and
for relation-algebraic programming developed at the
Christian-Albrechts University of Kiel, Germany. We
developed Kure in a diploma thesis at the Univer-
sity of Dortmund in cooperation with the RelView-
group. The library allows to easily employ the calculus
of relations in any CASE tool modelling with relations.
With this benefit, these relations need no longer be cre-
ated manually in the RelView system; nor need they
be encoded as an adjacency matrix by a proprietary
tool, then imported into RelView in order to calcu-
late with these relations, and results eventually reim-
ported into one’s own tool for further use. A developer
simply needs to deduce relations from the data struc-
ture used in his proprietary CASE tool and can then
seamlessly use the calculus of relations therein.

We have recently been developing such a CASE tool,
PetRA, based on a framework for the development of
graphical editors [14]. PetRA can both model Petri nets



interactively on the screen and analyze them by rela-
tional algorithms. Results of running a relational pro-
gram are drawn into the Petri net displayed on the
screen. This allows the user to visually compare re-
sults and check their correctness within the modelled
net, or simulate the net relation-algebraically.

Our approach is based on a relational transcription
of Petri nets. As its main advantage, it deduces rela-
tional programs immediately from net theoretic formu-
lae. Since this is done by rigorous transformation rules,
these programs are correct by construction. Kure al-
lows to execute them without further implementation-
technical considerations and thus makes Petri net anal-
ysis less error-prone.

In this paper, we focus on reachability con-
cerns in place/transition systems. In the sense of
relational program development, we provide an in-
terface to the relation-algebraic analysis of Petri
nets for use in any CASE tool. With the Kure li-
brary at hand, relational algebra can fruitfully be
integrated into object-oriented engineering-based soft-
ware development. Thereby, both software engineering
methods and tools are enriched by relation alge-
bra and the integration of formal methods and tools
applying them is pushed further.

The paper is organized as follows. Section 2 briefly
provides basic knowledge about relation algebra, the
RelView programming language, and the Kure li-
brary. Section 3 equips the reader with both a
relation-algebraic formalization and an implementa-
tion of reachability in place/transition systems. Section
4 discusses related work. The paper ends with a con-
clusion in Section 5.

2. Preliminaries

Readers not familiar with relation algebra are re-
ferred to [15]. We equip the reader with some relation-
algebraic concepts and their notation as far as used
throughout this paper (Sect. 2.1). The Kure program-
ming language and the library are briefly described in
Sect. 2.2.

2.1. Relation algebra

We assume a heterogeneous abstract relation alge-
bra to be defined as in [15, Def. A.2.1].

A relation R between two sets X and Y is a subset
of the cartesian product X×Y . We denote such a (het-
erogeneous) relation by R : X ↔ Y and write [X ↔ Y ]
for the set of all relations over the cartesian product
X × Y . We always consider the sets X and Y to be
non-empty and finite. Let #X and #Y be the cardi-

nality of X and Y , resp. A relation R is represented as
a Boolean matrix with #X rows and #Y columns. We
write Rxy instead of 〈x, y〉 ∈ R; in this case, the en-
try (x, y) in the matrix representing R is 1.

Given two relations R and S, R∪S, R∩S, and R ⊆ S
denote the union, the intersection, and the inclusion of
relations R and S, respectively. We denote the converse
of R by RT, its negation by R, and the relational mul-
tiplication by R;S (or RS). The empty relation is de-
noted by O, the universal relation by L, and the iden-
tity relation by I . Note that these relations are rep-
resented by Boolean matrices with 0-entries only, with
1-entries only, and with 1-entries on the diagonal only,
resp. These relations are families of relations indexed
with sets X and Y which we omit for better readabil-
ity, since they become clear by the context.

For each relation R, the domain of R is defined as
RL, the co-domain as RTL.

A relation R is univalent, if RTR ⊆ I holds. It is
total, if I ⊆ RRT holds, and is called a mapping, if
it is both univalent and total. For a mapping R with
Rx,y we write R(x) to refer to y as usual for functions.
If R is total, RL = L holds. A relation R is injective if
RRT ⊆ I holds, and surjective if I ⊆ RTR holds.

Let 1 := {�} be a singleton set containing exactly
one element. A relation v : X ↔ 1 is thus represented
as a matrix consisting of exactly one column, i.e. as
a Boolean (column) vector satisfying v = vL. Such a
vector describes the subset {x ∈ X | vx}. We omit �
in expressions of the form vx� or v�x. If the domain
of v equals N ⊆ X, vx is equivalent to (v ;L)x,N for
L : 1 ↔ 2X . Each relation R : X ↔ Y can be trans-
formed into a vector of type [X × Y ↔ 1] by calculat-
ing (π1R ∩ π2)L where π1 and π2 denote the respec-
tive natural projections on X × Y where πT

1 ;π2 = L

holds. Natural projections are surjective mappings.
Vice versa, each vector can be transformed into a re-
lation by calculating πT

1 (π2 ∩ vL). Vectors form a sub-
lattice of relations.

A vector v is a point if it is injective and surjec-
tive. Points are the atoms in the lattice of vectors and
can thus model singleton sets and therefore elements
of (ordinary) sets.

A bipartite graph on sets X and Y is defined as a tu-
ple G = (X, Y,R, S) with X 6= ∅ 6= Y , X ∩ Y = ∅,
R : X ↔ Y and S : Y ↔ X. For any relation
Q : X ∪ Y ↔ X ∪ Y and a point ν : X ∪ Y ↔ 1 mod-
elling a vertex v ∈ X∪Y , the relations Qν : X ∪ Y ↔ 1

and QTν : X ∪ Y ↔ 1 model the set of predecessors
and successors of v, respectively.

There exist exactly two relations of type [1↔ 1],
namely O : 1 ↔ 1 and L : 1 ↔ 1, which are used to
model the Boolean truth values false and true, resp.
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Membership on sets, i.e. the relation ∈, is modelled
by a relation ε : X ↔ 2X on X and its powerset, such
that εx,S : ⇐⇒ x ∈ S for any set S.

We need residuals which model the greatest solu-
tions of relational inclusions. For the inclusion RQ ⊆ S,
Q is called the right residual of S over R, R\S for
short, if it is the greatest relation satisfying the in-
clusion, and is computed by RTS . For the inclusion
QR ⊆ S, Q is called the left residual of S over
R, R/ S for short, if it is the greatest relation sat-
isfying the inclusion, and is computed by SRT. The
right residual is left-distributive with intersection, i.e.
R\ (P ∩ T ) = (R\P )∩(R\T ). The following equations
hold: ∀xRx,y ⇐⇒ (L\R)y ⇐⇒ (R\O)y.

The symmetric quotient of two relations R and S,
syQ(R,S) for short, is the greatest relation Q satisfy-
ing both residual inclusions. It is defined as (R\S) ∩
(ST/RT). The following equivalence holds: ∀xRx,y ↔
Sx,y′ ⇐⇒ syQ(R,S )y,y′ . For each vector R : X ↔ 1,
syQ(ε, R) denotes the point in the powerset 2X repre-
senting R.

Ri+1 denotes RRi for i ≥ 0 with R0 = I . The re-
lation R+ :=

⋃
i≥1 Ri is called the transitive closure of

R, and R∗ :=
⋃

i≥0 Ri = R+ ∪ I the reflexive transi-
tive closure of R. A relation R is acyclic if and only if
R+ ⊆ I holds.

2.2. The Kure Programming Language

In Kure, the user may manipulate and analyze re-
lations by pre-defined operations and tests, relational
functions and programs. The pre-defined basic opera-
tions of relation algebra are denoted by | (union), &
(intersection), * (composition), ^ (transposition), and
- (negation). Tests include, e.g., incl, eq, and empty
for testing inclusion, equality, and emptiness of rela-
tions, respectively.

A relational function F is a clause of the form
F(X1,...,Xn) = t., where F is the function name,
the Xi, 1 ≤ i ≤ n, are the formal parameters represent-
ing relations, and t is a relation-algebraic term over the
relations accessible in the system’s workspace. t con-
tains the formal parameters and is terminated by a dot.
A relational program in Kure is a while-program based
on the data type of relations. Its structure reads as fol-
lows (keywords underlined):

<NAME>”(”<PARAMETERLIST>”)”
DECL <DECLARATIONS>
BEG <STATEMENTS>

RETURN <TERM>
END.

Each program starts with a head line containing the
program’s name and a list of formal parameters sep-

arated by colons. Then the declaration part follows
which consists of the optional declaration of local vari-
ables, local relational functions, and local relational do-
main constructions (direct products, sums). The third
part of a relational program is its body containing a se-
quence of statements separated by semicolons and ter-
minated by a mandatory return-clause over a relational
term. The set of statements includes a while-loop and
an if-clause.

O(R) and L(R) deliver an empty relation and a uni-
versal relation with the same dimensions as R, resp.;
L1n(R) delivers a row vector with the same column
number as R, and Ln1(R) delivers a column vector with
the same row number as R (O1n(R) and On1(R) anal-
ogously); I(R) delivers the identity relation with the
same dimensions as R; dom(R) and ran(R) calculate the
domain and the co-domain of R as vectors, respectively.
point(v) selects a point included in a non-empty vec-
tor v. epsi(v) calculates a membership relation of a
set into its powerset; the set is determined by the do-
main of the vector v, and its cardinality is given by the
row number of v. PROD(R,S) defines the product do-
main over the domains of two homogeneous relations R
and S, p-1 projects into its first component, p-2 into its
second one. trans(R) and refl(R) calculate the tran-
sitive and reflexive closures of a relation R, resp.

We represent natural numbers through a lin-
early ordered set N together with an injective map-
ping, i.e. the successor relation succ : N ↔ N ,
and a point zero : N ↔ 1 representing the num-
ber zero. On N , the following additional axiom needs
to hold: (succT)∗; zero = L, i.e. each n ∈ N can be
reached from zero via the successor relation. The or-
derings ≤ and ≥ are constructed using trans and
refl applied to succ by le=refl(trans(succ)) and
ge=refl(trans(succ^)), resp. A relational program
calculating the addition-relation add : N ×N ↔ N
can be found at http://www.informatik.uni-kiel.
de/~progsys/relview/Misc (sub works analogously).

Kure is an extraction of the core functionality
of RelView mechanizing the calculus of relations as
an object-oriented JAVA-library. Therein, relations are
treated as objects the entries of which can be set and
queried by simple object-oriented methods. Relations
are handled within a so called relation manager which
reflects the system’s workspace, administrates terms
and programs, and allows to evaluate them. A CASE
tool can simply use Kure by creating the required re-
lations from, for example, a Petri net under considera-
tion. The relational programs for analyzing Petri nets
are derived from net theoretical formulae by rigorous
transformation rules. They are then given as parame-
ters to the respective evaluation method defined in the
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relation manager. A small documented example may il-
lustrate how Kure works:

RelManager rM = createRelManager(”PNMan”);
// initializes a relation manager named ”PNMan”

Relation PN = rM.createRelation(”PTNet”, 2, 3);
// creates a 2×3 relation named ”PTNet”

Object p1 = ”p1”; // two places
Object p2 = ”p2”;
Object t1 = ”t1”; // three transitions
Object t2 = ”t2”;
Object t3 = ”t3”;

PN.setObjects(new Object[]{p1,p2},
new Object[]{t1,t2,t3});

// defines a flow relation from places to transitions

PN.setBit(p1, t1, true); // sets flow from p1 to t1
PN.setBit(p1, t2, true);
PN.setBit(p2, t1, true);
PN.setBit(p2, t3, true);

rM.createFunction(”injective(R)=incl(R∗Rˆ,I(R∗Rˆ)).”);
// defines ”injective”

Relation check = rM.evaluateTerm(”injective(PTNet)”);
// calls ”injective” on PN and returns a boolean

if (check.isTrue())
throw new Exception(”Flow relation is injective .”);

// handle result

rM.loadProgram(new URL(”SelectPlaces.prog”));
// loads external relational program ”SelectPlaces.prog”

Relation places = rM.evaluateTerm(”SelectPlaces(PTNet)”);
// calls SelectPlaces on relation PN

Terms are created via the createFunction-method
and can then be evaluated after replacing for-
mal through actual parameters. They may also be
saved on disk using their name as file name. Like pro-
grams, they are then loaded by passing this name
to the loadProgram-method. A program is used like
a term and is thus evaluated by the evaluateTerm-
method as well.

3. Petri net analysis based on relation
algebra

We assume the reader to be familiar with basic Petri
net notation and theory as, e.g., found in [16]. Here, we
provide their relation algebraic transcription.

3.1. Basic definitions and propositions

Definition 1 A net (or net graph)N is defined as a bi-
partite directed graph represented by N = (P, T,R, S)
with P ∩ T = ∅, R : P ↔ T , and S : T ↔ P .

Let the sets P and T be places and transitions, resp.,
as usual. In the usual definition for Petri nets the flow
relation F equals R ∪ S.

Rp,t means both p is in the preset •t of t and t is
in the postset p• of p, and St,p means both t ∈ •p and
p ∈ t•. In Petri net notation it is usual to have •V
and V • for a subset V ⊆ P ∪ T defined as

⋃
v∈V •v

and
⋃

v∈V v•, resp. In terms of relational algebra, for
a vector v : P ↔ 1 modelling P ′ ⊆ P and a vec-
tor w : T ↔ 1 modelling T ′ ⊆ T , we define •P ′ :=
S; v, P ′• := RT; v, •T ′ := R;w, T ′• := ST;w. The same
definitions apply if v and w are points and thus de-
scribe a single place and transition, resp.

A net system, or P/T-system, introduces (anony-
mous) token into a net graph. These token form a
marking of the net.

Definition 2 A P/T-system NM is represented as a
tupleNM = (P, T,R, S,C, W •t,W t•,M0) with

1. (P, T,R, S) is a net graph,

2. C : P ↔ (N ∪ {∞}) a mapping from the set of
places to the natural numbers or infinity, indicat-
ing the capacity of places,

3. W •t : P × T ↔ N and W t• : T × P ↔ N map-
pings from the set of edges in R and in S, resp., to
the natural numbers, indicating the weight of edges,

4. M0 : P ↔ N0 a mapping from the set of places to the
natural numbers including zero, indicating an ini-
tial marking of places, such that ∀p : M0(p) ≤ C(p)
holds.

Remark 3 In addition to this definition, we assume
that weights and capacities correlate in the following way
to ensure reasonable nets: ∀p, t : C(p) ≥ W (p, t) ∧
C(p) ≥ W (t, p). That is, the weight of an edge is never
greater than the capacities of its incident places.

3.2. Reachability in place/transition sys-
tems

Reachability studies the properties of a reflexive and
transitive relation reach : [P ↔ N ] ↔ [P ↔ N ] over
markings where reachMN holds if a marking N is reach-
able from a marking M . It is for example interesting
to know which markings are reachable from a given
one, whether a specific marking is reachable at all or
whether it can never be reached, or if reach contains
cycles. We address these questions in the remainder of
this section. The set of all markings of a net N is de-
noted by [MN > as usual.
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3.2.1. Concession
Transitions need to be activated under a marking in
order to fire. They are then said to have concession.

Definition 4 A transition t has concession under a
marking M if the following conditions hold:

1. ∀p ∈ •t : M(p) ≥ W •t(p, t)

2. ∀p ∈ t• : M(p) ≤ C(p)−W t•(t, p)

We construct the set of transitions activated under
a given marking as a vector over the set T .

Proposition 5 The set of all transitions of a netN with
concession under a marking M ∈ [MN > is given by the
following vector CN (N ) of type [T ↔ 1]:

L\ ( (R ∪ (M ;≥;W •tT ∩ πT); ρ)

∩ (ST ∪ ((M ;≤; subT ∩ C;σT); τ ;W t•T ∩ βT);α))

Remark 6 The proof requires the natural projections
π : P × T ↔ P , ρ : P × T ↔ T , α : T × P ↔ T ,
β : T × P ↔ P , σ : N ×N ↔ N , and τ : N ×N ↔ N .

PROOF. The first condition in Def. 4 is equivalent to
∀pRp,t → M(p) ≥ W •t(p, t), the second one is equiv-
alent to ∀pSt,p → M(p) ≤ C(p)−W t•(t, p). Hence:

∀pRp,t → M(p) ≥ W •t(p, t)
⇐⇒ ∀pRp,t → ≥M(p),W•t(p,t)

⇐⇒ ∀pRp,t → ∃nMp,n ∧ ≥n,W•t(p,t)

⇐⇒ ∀pRp,t → (M ;≥)p,W•t(p,t)

⇐⇒ ∀pRp,t → ∃mW •t
<p,t>,m ∧ (M ;≥)p,m

⇐⇒ ∀pRp,t → (M ;≥;W •tT)p,<p,t>

⇐⇒ ∀pRp,t → ∃q (M ;≥;W •tT)p,q ∧ πq,p ∧ ρq,t

⇐⇒ ∀pRp,t → ∃q (M ;≥;W •tT ∩ πT)p,q ∧ ρp,t

⇐⇒ ∀pRp,t → ((M ;≥;W •tT ∩ πT); ρ)p,t

⇐⇒ ∀pRp,t ∨ ((M ;≥;W •tT ∩ πT); ρ)p,t

⇐⇒ ∀p (R ∪ (M ;≥;W •tT ∩ πT); ρ)p,t

⇐⇒ (L\ (R ∪ (M ;≥;W •tT ∩ πT); ρ))t

and

∀pSt,p → M(p) ≤ C(p)−W t•(t, p) ⇐⇒
(L\ (ST ∪ ((M ;≤; subT ∩ C ;σT); τ ;W t•T ∩ βT);α))t

is proven analogously. Put together, we characterize the
set of all transitions with concession under M through

(L\ (R ∪ (M ;≥;W •tT ∩ πT); ρ))

∩(L\ (ST ∪ ((M ;≤; subT ∩ C;σT); τ ;W t•T ∩ βT);α))

which yields the following component-free specification
CN (N ) of type [T ↔ 1]:

L\ ( (R ∪ (M ;≥;W •tT ∩ πT); ρ)

∩ (ST ∪ ((M ;≤; subT ∩ C;σT); τ ;W t•T ∩ βT);α))

2

Calculating CN (N ) for a given marking is done by
the following Kure program CN parameterized with the
relations R and S, the capacity relation C,the weight re-
lations W t : P ↔ T and Wt : T ↔ P , and a marking M.
The projections are introduced in the declaration part
by defining the product domains P × T , T × P , and
N ×N . CN returns a vector modelling the desired tran-
sitions. It corresponds immediately to Prop. 5. For ef-
ficiency reasons, we use Q\O instead of L\Q in the
return-clause, with Q calculated in hlp.

CN(R, S, C, W_t, Wt_, M)
DECL PTdom = PROD(R*S, S*R);

TPdom = PROD(S*R, R*S);
NNdom = PROD(M^*M, M^*M);
pi, rho, alpha, beta, sigma, tau, hlp

BEG
pi = p-1(PTdom);
rho = p-2(PTdom);
alpha = p-1(TPdom);
beta = p-2(TPdom);
sigma = p-1(NNdom);
tau = p-2(NNdom);
hlp = (-R | (M*ge*W_t^ & pi^)*rho)

&
(-S^ | ((M*le*sub^ & C*sigma^)

*tau*Wt_^ & beta^) *alpha)
RETURN -hlp \ On1(R)

END.

3.2.2. Immediately reachable markings
For technical reasons, we define a domain restriction.

Definition 7 Let R : X ↔ Y be a relation and S :
X ↔ 1 a vector modelling a subset of X. The domain
restriction of R by S, R|S : X ↔ Y for short, is de-
fined as S;L ∩R.

Remark 8 1. R|S contains the pair (x, y) if and only
if (x, y) is in R and x is in S:

(S ;L ∩ R)x,y ⇐⇒ (S ;L)x,y ∧ Rx,y

⇐⇒ Sx ∧ Rx,y

2. The domain restriction is realized as a relational
function DOMRES(R, S) = S*L1n(R) & R.

Firing a transition t with concession under a mark-
ing M results in a new marking M ′, M [t > M ′ for
short, which is called immediately reachable from M .
The usual firing rule for P/T-systems reads as follows:

5



Definition 9 Let t be a transition with concession un-
der a marking M . Firing t results in an immediately
reachable marking M ′ which is defined as follows:

M ′(p)

:=


M(p)−W •t(p, t), if p ∈ •t \ t•
M(p) + W t•(t, p), if p ∈ t • \ • t

M(p)−W •t(p, t) + W t•(t, p), if p ∈ •t ∩ t•
M(p), if p /∈ •t ∪ t•

Immediately reachable markings form a relation
iReach : [P ↔ N ] ↔ [P ↔ N ] such that iReacht

MM ′

holds for each transition t with concession under M
if M ′(p) evolves from M(p) by the firing rule. This re-
quires to describe the ”update” of a pair (p, n) to (p, n′)
with n′ = M ′(p) as in Def. 9. Therefore, we follow a
constructive approach and define iReacht

M,M ′ to hold
if and only if M ′ is derived from M in the following
way:

Algorithm 10 For each transition tmodelled as a point
t : T ↔ 1 with concession under M , i.e. for each
t ∈ CN (N ) (see Prop. 5) do the following:

1. Build a relation updatet : P ↔ N such that for each
pair (p, n) ∈ updatet one of the following conditions
holds:

(a) p ∈ •t \ t• and n = M(p)−W •t(p, t),
(b) p ∈ t • \ • t and n = M(p) + W t•(t, p),
(c) p ∈ •t ∩ t• and n = M(p) − W •t(p, t) +

W t•(t, p).

updatet models the first three cases of the firing rule.

2. Build a relation N ⊂ M such that N only contains
pairs (p, n) ∈ M with p /∈ •t ∪ t•, i.e. N models the
fourth case of the firing rule.

3. Let M ′ be defined as updatet∪N, t ∈ CN (N ). Then,
M ′ is the marking immediately reachable from M by
firing t.

The algorithm translates the firing rule. Step 1 per-
forms the update of M(p) taking the weights of arcs in-
cident to p into account. Step 2 extracts all places the
markings of which do not change by firing t, and step
3 conjoins the first two steps. Next, we formulate these
steps relation-algebraically.

Remark 11 Since we treat transitions as points, it is
technically mandatory to rewrite the relation W •t :
P × T ↔ N as w•t : P ↔ N (W t• : T × P ↔ N
analogously). It is easy to see that these relations are de-
fined through (R; ρT ∩ πT);W •t and (ST;αT ∩ βT);W t•,
resp., with π, ρ, α, and β as in Rem. 6.

Proposition 12 1. Case (1a) corresponds
to the domain restriction of the relation
(M ;σT ∩ w•t; τT); sub by R; t ∩ ST; t.

2. Case (1b) corresponds to the domain restriction of
the relation (M ;σT ∩ wt•; τT); add by ST; t ∩ R; t.

3. Case (1c) corresponds to the domain restric-
tion of the relation ((M ;σT ∩ w•t; τT); sub;σT ∩
wt•; τT); add by R; t ∩ ST; t.

4. Case (2) corresponds to the domain restric-
tion of M by R; t ∪ ST; t implemented as a func-
tion UNCHANGED(R, S, t, M) = DOMRES(M,
-(R*t | S^*t)).

5. With M ′ := updatet∪M|
R;t∪ST;t

, iReacht is univa-
lent and iReacht(M) defines the immediately reach-
able marking from M by firing a transition t with
concession under M , i.e. iReacht(M) models M [t>
M ′.

PROOF. For (1) we get:

p ∈ •t \ t • and n = M(p)− w•t(p)
⇐⇒ (R; t ∩ ST; t)p ∧ sub<M(p),w•t(p)>,n

⇐⇒ (R; t ∩ ST; t)p ∧ ∃q subq,n ∧ σq,M(p) ∧ τq,w•t(p)

⇐⇒ (R; t ∩ ST; t)p ∧ ∃q subq,n ∧ ∃mMp,m ∧ σq,m

∧ ∃nw•t
p,n ∧ τq,n

⇐⇒ (R; t ∩ ST; t)p ∧ ∃q subq,n ∧ (M ;σT)p,q

∧ (w•t ; τT)p,q

⇐⇒ (R; t ∩ ST; t)p ∧ ∃q subq,n ∧ (M ;σT ∩ w•t ; τT)p,q

⇐⇒ (R; t ∩ ST; t)p ∧ ((M ;σT ∩ w•t ; τT); sub)p,n

⇐⇒ ((R; t ∩ ST; t);L)p,n ∧ ((M ;σT ∩ w•t ; τT); sub)p,n

⇐⇒ ((R; t ∩ ST; t);L ∩ ((M ;σT ∩ w•t ; τT); sub))p,n

(2) and (3) are shown analogously. The correspon-
dence in (4) is easy to follow since p /∈ •t ∪ t• equals
R; t ∪ ST; t . For (5) it remains to show that M ′ is a
marking, i.e. a total and univalent relation of type
[P ↔ N ] with M ′(p) ≤ C(p) for all p ∈ P , which is
trivially given by construction. 2

The marking M ′ is obtained by the following rela-
tional program IRM which is a syntactical translation of
the results given in Prop. 12 into a Kure program, and
which conjoins the steps of Alg. 10 in the return-clause.
It uses the functions w t, wt , and UNCHANGED as de-
fined above.

UNCHANGED(R, S, t, M) = DOMRES(M, -(R*t | S^*t)).

IRM(R, S, W_t, Wt_, M, t)
DECL NNdom = PROD(M^*M, M^*M);

PTdom = PROD(R*S, S*R);
TPdom = PROD(S*R, R*S);
w_t, wt_,

6



pi, rho, alpha, beta, sigma , tau,
updt_, upd_t, upd_t_, hlp

BEG
sigma = p-1(NNdom);
tau = p-2(NNdom);
pi = p-1(PTdom);
rho = p-2(PTdom);
alpha = p-1(TPdom);
beta = p-2(TPdom);
w_t = (R*rho^ & pi^)*W_t;
wt_ = (S^*alpha^ & beta^)*Wt_;
upd_t =

DOMRES((M*sigma^ & w_t*tau^)*sub, R*t &-(S^*t));
updt_ =

DOMRES((M*sigma^ & wt_*tau^)*add, S^*t & -(R*t));
hlp =

((M*sigma^ & w_t*tau^)*sub*sigma^ & wt_*tau^)*add;
upd_t_ = DOMRES(hlp, R*t & S^*t)
RETURN updt_ | upd_t | upd_t_

| UNCHANGED(R, S, t, M)
END.

Remark 13 The programs CN and IRM are used to simu-
late a net system: CN delivers the set of all activated tran-
sitions t such that t passed to IRM delivers M [t>M ′.

For each net N and each marking M ∈ [MN > , the
relation of immediately reachable markings, iReach :
[P ↔ N ] ↔ [P ↔ N ], is now refinable as follows:

iReachM,M ′ : ⇐⇒ ∃t ∈ CN (N ) : M ′ = iReacht(M)

The following implementation of iReach constructs
the set of all pairs of immediately reachable markings
depth-first (see IREACH and IRMARKS below).

We create an empty relation allMarks : 2P×N ↔
2P×N (line 6). Therefore, let m̃ : P ×N ↔ 1 with
m̃ := (π1M ∩ π2)L denote the vector representing
M . Together with ε : P ×N ↔ 2P×N , the member-
ship relation of markings in their powerset, the relation
syQ(ε, m̃) : 2P×N ↔ 1 models the point in the power-
set of markings which represents M (lines 4 and 5). The
relation iReachT; syQ(ε, m̃) then models all markings
immediately reachable from M (cf. [3]). IREACH calls
IRMARKS (line 7) parameterized with the marking M, its
corresponding point in 2P×N mpoint for efficiency rea-
sons, and the empty relation allMarks. This program
recursively calculates the relation of pairwise reachable
markings as follows. Each time it is called, the mark-
ing passed is marked as reached and thus recorded in
allMarks as an entry in its diagonal (line 13) (say-
ing that each marking is immediately reachable from
itself). We calculate the set of activated transitions,
cnc (line 14), and stepwise determine for each point t
in cnc (lines 15, 16, and 24) the marking irm immedi-
ately reachable from M under t (line 17). A correspond-
ing entry is set in allMarks to express that irm is im-
mediately reachable from M (lines 18 to 20). If irm has
not yet been visited, i.e. if its corresponding point is not

included in the diagonal of allMarks (line 21), we re-
cursively call IRMARKS for the marking irm (line 22).

1IREACH(R, S, C, W_t, Wt_, M)
2DECL mvec, mpoint, allMarks
3BEG
4 mvec = RelToVec(M);
5 mpoint = syq(epsi(mvec), mvec);
6 allMarks = O(mpoint * mpoint^)
7 RETURN IRMARKS(M, mpoint, allMarks)
8END.
9

10IRMARKS(M, mpoint, AM)
11DECL allMarks, cnc, t, irm, irmvec, irmpoint
12BEG
13 allMarks = AM | mpoint * mpoint^;
14 cnc = CN(R, S, C, W_t, Wt_, M);
15 WHILE -empty(cnc) DO
16 t = point(cnc);
17 irm = IRM(R, S, W_t, Wt_, M, t);
18 irmvec = RelToVec(irm);
19 irmpoint = syq(epsi(irmvec), irmvec);
20 allMarks = allMarks | mpoint * irmpoint^;
21 IF -incl(irmpoint * irmpoint^, allMarks) THEN
22 allMarks = IRMARKS(irm, irmpoint, allMarks)
23 FI;
24 cnc = cnc & -t
25 OD
26 RETURN allMarks
27END.

iReach is reflexive by construction (line 13). Mark-
ings not reachable in N do not occur in iReach. The
domain of iReach thus provides the set of all mark-
ings reachable from M . To calculate the entire reacha-
bility relation, reach, it is thus sufficient to determine
the transitive closure of iReach.

3.2.3. Reachable Markings
The transitive closure of iReach,

reach(N ) : = iReach(N )+ =
⋃
i≥1

iReach(N )i
,

is calculated using fixedpoint theory as usual. The set
of all relations over markings, [2P×N ↔ 2P×N ], to-
gether with meet and join forms a complete lattice by
definition of a relation algebra. The transitive closure of
iReach is then the least fixedpoint µ of the monotonous
upward continuous function f(X) := iReach;X which
can iteratively be computed by ai+1 := f(ai), i ≥ 0
with a0 := iReach such that a∞ is a lower bound for
µf (cf. [15, App. A.3]). This construction results in the
following algorithm for reach regarding f as defined
above:

result ← O

iterator ← iReach
while result 6= iterator do

result ← iterator
iterator ← iReach; iterator

return result

Kure uses this approach to calculate R+ and prede-
fines a function trans such that trans(IREACH(R, S,
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C, W t, Wt , M)) delivers the reachability relation of
a net system NM with initial marking M.

3.3. Benefits for Reachability Analysis

Before we discuss a small example applying these
algorithms in the next section, we sum up the most
significant aspects of our approach. The reachability
problem is generally NP-complete, and polynomial for
some specific net classes [7]. Our approach works for
arbitrary predicate/transition nets. It is exponential,
since in IRMARKS each marking needs to be checked
for inclusion in allMarks. As soon as the reachabil-
ity graph is constructed, however, each test can be de-
duced from a net theoretic formula and implemented in
Kure without further considerations. With this bene-
fit, problems which are of particular interest in reach-
ability analysis, e.g. finding a pair of markings such
that two places are marked simultaneously, or finding
home states, i.e. markings that are reachable form ev-
ery reachable marking, can be treated in analogy to the
following reachability tests (cf. [3]).

The set of all markings reachable from M ,
reachable(N ,M ) for short, is the set of succes-
sors of M modelled as a vector of type [2P×N ↔ 1]
with respect to the reachability relation reach:

reachable(N , m̃) := reach(N )T; syQ(ε, m̃) .

The program REACHABLE returns this set as a vector
over [2P×N ↔ 1]:

REACHABLE(R, S, C, W_t, Wt_, M)
DECL mvec
BEG

mvec = RelToVec(M)
RETURN trans(IREACH(R, S, C, W_t, Wt_, M))^

* syq(epsi(mvec), mvec)
END.

To test whether a marking N is reachable from
M , we check whether the pair (M,N) is contained in
reach(N ). Let ñ and m̃ be their vector representations,
resp. Then,

syQ(ε, m̃); syQ(ε, ñ)T ⊆ reach(N )

trivially delivers the desired test and is implemented as
the following relational program:

isREACHABLE(R, S, C, Wt_, W_t, M, N)
DECL mvec, nvec
BEG

mvec = RelToVec(M);
nvec = RelToVec(N)
RETURN incl(syq(epsi(mvec), mvec)

* syq(epsi(nvec), nvec)^,
trans(IREACH(R, S, C, W_t, Wt, M)))

END.

Testing whether reach does not contain cycles, i.e.
no marking can be reproduced, is straightforward by
the usual relation algebraic formula R+ ⊆ I the imple-
mentation of which reads as incl(trans(IREACH(R,
S, C, W t, Wt , M)), -I). The markings lying on a
cycle are given by (R+∩ I );L. Relational tests thus al-
low to check a property and may simultaneously deliver
the candidates that fail to pass the test.

3.4. A small example

We model a crossroad with traffic-light regulation
as a Petri net by means of mutual exclusion and ana-
lyze its behavior by reachable markings. The crossing
consists of four lanes, one from north to south (ns),
one from south to north (sn), one from east to west
(ew), and one from west to east (we), and may only
be passed by cars on opposite lanes simultaneously. For
simplicity, we neglect left- and right-turn vehicles. Each
lane is modelled as a simple process which uses tokens
as cars and requests the crossing center as resource
(place sem). We model this situation as usual with the
Petri net shown in Fig. 1. To ensure that only opposite
cars may pass the crossing, sem is incident to two out-
going arcs with weight 2 (all other flows have weight
1). Of course, this crossroad is not fair but this is not
our concern here. We extended the usual semaphore
model by a second pair of concurrent processes to in-
crease the number of reachable markings combinatori-
ally and thus to aggravate the calculation of reach.

Figure 1. A Petri net modelling a crossroad

We modified the program IREACH in such a way
we could check for each marking M calculated during
the execution of IREACH whether the predicate E :=
(P xor Q ∨ ¬(P ∨Q)) holds with P ⇐⇒ (M(cr1) +
M(cr2) ≥ 1) and Q ⇐⇒ (M(cr3) + M(cr4) ≥ 1).
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That is, either ns or sn are in their respective critical
section and neither ew nor we are (and vice versa), or
no process is in its critical section. To perform this test,
we simply need to develop its relation-algebraic corre-
spondence and use it in a Kure program without fur-
ther implementation-technical considerations. That is,
no other data structures than relations are need to ana-
lyze the crossroad. This makes the development of pro-
grams for Petri net analysis less error-prone and pro-
vides a development process based on sheer mathemat-
ical considerations.

The relation-algebraic correspondence of P is
(σ;M T;NS ∩ τ ;M T;NS ∩ add ;≥; succT; zero)T;L
where the relation NS : S ↔ 1 models the set
{cr1, cr2} (Q analogously for {cr3, cr4}). The expres-
sion E delivers a Boolean value. We did not find a vi-
olation of the above predicate. Hence, the crossroad
is safe. It is also 2-bounded, i.e. there is no mark-
ing M ′ ∈ [MN > with M ′(s) > 2, s ∈ S. Again,
we simply transform this net theoretic formula into
a relation-algebraic term and use it in a Kure pro-
gram. The respective relation-algebraic test reads as
M ;≤; succT; succT; zero = L.

Using a maximum capacity of 10 token for each
place, the relation allMarks as established in IREACH
is of size 1.96E56 × 1.96E56, since for 17 places and
a capacity of 10 token, the powerset 2P×(N+1) con-
tains 2187 elements. The above net consists of 184 dif-
ferent markings. allMarks contains 704 pairs of imme-
diately reachable markings, and reach contains 33856
pairs. On a Pentium 4 with 2.66 GHz and 512 MB
RAM, it took about 1.5 minutes to calculate this re-
lation by a tuned version of IREACH. It took 0.06 sec-
onds for only two lanes (transforming a marking into a
point is costly), only 0.0009 seconds to check the above
safety and boundedness properties for a given mark-
ing, and 5.0 and 1.7 seconds to check them for all 184
markings, resp.; testing whether a marking is reach-
able and determining the set of all markings reachable
from a given one is both done in approximately 0.002
seconds. As soon as the entire reachability graph is cal-
culated, checking its properties performs well.

4. Related work

Reachability analysis is usually based on linear pro-
gramming and considers the incidence matrix C of a
Petri net. A marking N is reachable from M if the
marking equation C ∗ x = N −M has a solution for x.
This equation is not sufficient to characterize the set
of all reachable markings such that other techniques
to construct the reachability graph need to be consid-
ered. Our approach both constructs the entire reach-

ability graph and allows to analyze it by simple and
efficient relational constructions. No other data struc-
tures than relations are needed. With the embedding
into an imperative programming language, developing
algorithms for Petri net analysis is both easy and close
to net theory since net theoretic formulae can be trans-
formed into relation-algebraic expressions by rigorous
transformation rules. Our programs are thus correct by
construction.

In [8], a graph theoretic algorithm is provided for
testing reachability of partial markings in 1-safe nets.
It is based on an unfolding technique and corresponds
to the clique problem. The algorithm is based on im-
perative concepts and does not respect the advantages
of relational programming. The clique problem is effi-
ciently solved with relation algebra [2]. It might be in-
teresting to capture the unfolding technique relation-
algebraically, which is furthermore shown to work for
LTL model checking [6]. Relation algebra is based on
set theory and boolean logic; model checking based on
temporal logics is feasible with relation algebra (see e.g.
[13]) but is not a concern in our approach.

In [3], condition/event nets are investigated with re-
lation algebra. On the static side, relational programs
are developed that test whether a net is a free choice
net, a synchronization graph, or a state machine. It is
shown how deadlocks and traps can be located. On the
dynamic side, reachability, liveness, concurrency, con-
flicts, and contact are discussed. These results, how-
ever, require further considerations to be carried over
to general place/transition systems.

In [12], relation-algebraic graph traversal algorithms
are developed. They are considered for homogeneous
graphs but not for bipartite ones and hence exclude
Petri nets.

The tool GROK [9] has been tailored for the use of
relation algebra in software architecture and mainte-
nance and uses a very simple data structure for the rep-
resentation of relations. If non-relational constructs like
loops are frequently needed within a GROK-program,
manipulations are executed slowly in the case of very
large relations which easily occur in the Petri net con-
text. In order to make Kure work on large data – a
significant feature for Petri net analysis – it uses an effi-
cient implementation of relations based on reduced or-
dered binary decision diagrams (ROBDDs) [4].

The tool CROCOPAT was recently equipped with a
programming language based on ROBDDs. Although
the idea seems to be taken from RelView, it is not
clear to us whether these programs can be developed
by rigorous transformation rules, and whether they are
thus correct by construction. As far as we know, there
does not exist a library usable within other CASE tools.
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5. Conclusion

We proposed a novel relation-algebraic interface to
reachability analysis of Petri nets. Based on an object-
oriented JAVA-library, Kure, we realized a mechaniza-
tion for the calculus of relations such that it can be used
in any CASE tool modelling with relations. We demon-
strated both the benefit of relation algebra in Petri net
analysis and the employment of Kure. We use it in our
own CASE tool, PetRA. Kure allows to combine rela-
tion algebra with arbitrary visualizations and thereby
offers a flexible way to graphically create relations and
illustrate the results a relational program delivers.

Figure 2. The Petri net CASE tool PetRA

We are planning to re-implementing the RelView
system as a plug-in for the development environment
Eclipse using the Kure library. Thereby, we offer pro-
fessional support in relational program development.
Furthermore, other tools used in practice profit from
integrating Kure into the Eclipse environment: With
Kure, the calculus of relations and tools for practi-
cal purposes can easily be joined such that both soft-
ware engineering methods and tools are enriched by
relation algebra. This contributes to the integration of
formal methods and the tools applying them.

Acknowledgements. Thanks to O. Szymanski,
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trategien. PhD thesis, Universität Kiel, 2002.

[13] B. Konikowska and E. Orlowska. A relational for-
malisation of a generic many-valued modal logic. In
Relational methods for computer science applications.
Physica-Verlag, 2001.
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