
PAKCS 1.10.1

The Portland Aachen Kiel Curry System

User Manual

Version of 05/10/12

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Ramin Sadre8

Frank Steiner9

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de

(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de

(4) University of Kiel, Germany, men@informatik.uni-kiel.de

(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de

(7) RWTH Aachen, Germany, philipp@navigium.de

(8) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de

(9) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 5

1 Overview of PAKCS 6

1.1 General Use . 6

1.2 Restrictions on Curry Programs . 6

1.3 Modules in PAKCS . 7

2 PAKCS: An Interactive Curry Development System 8

2.1 How to Use PAKCS . 8

2.2 Command Line Editing . 13

2.3 Customization . 13

2.4 Emacs Interface . 13

3 Extensions 14

3.1 Recursive Variable Bindings . 14

3.2 Functional Patterns . 14

3.3 Records . 15

3.3.1 Record Type Declaration . 15

3.3.2 Record Construction . 16

3.3.3 Field Selection . 17

3.3.4 Field Update . 17

3.3.5 Records in Pattern Matching . 17

3.3.6 Export of Records . 18

3.3.7 Restrictions in the Usage of Records . 18

4 CurryDoc: A Documentation Generator for Curry Programs 20

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 23

6 CurryTest: A Tool for Testing Curry Programs 25

7 ERD2Curry: A Tool to Generate Programs from ER Specifications 27

8 UI: Declarative Programming of User Interfaces 28

9 Preprocessing FlatCurry Files 29

10 Technical Problems 31

Bibliography 32

A Libraries of the PAKCS Distribution 34

A.1 Constraints, Ports, Meta-Programming . 34

A.1.1 Arithmetic Constraints . 34

A.1.2 Finite Domain Constraints . 35

1

A.1.3 Ports: Distributed Programming in Curry . 37

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 38

A.2 General Libraries . 39

A.2.1 Library AllSolutions . 39

A.2.2 Library Assertion . 40

A.2.3 Library Char . 42

A.2.4 Library CLPFD . 43

A.2.5 Library CLPR . 48

A.2.6 Library CLPB . 49

A.2.7 Library Combinatorial . 50

A.2.8 Library Constraint . 51

A.2.9 Library CSV . 52

A.2.10 Library Database . 53

A.2.11 Library DaVinci . 56

A.2.12 Library Directory . 59

A.2.13 Library Dynamic . 60

A.2.14 Library FileGoodies . 62

A.2.15 Library Float . 63

A.2.16 Library Global . 64

A.2.17 Library GlobalVariable . 65

A.2.18 Library GUI . 66

A.2.19 Library Integer . 78

A.2.20 Library IO . 80

A.2.21 Library IOExts . 83

A.2.22 Library JavaScript . 84

A.2.23 Library KeyDatabase . 87

A.2.24 Library KeyDatabaseSQLite . 88

A.2.25 Library KeyDB . 93

A.2.26 Library List . 94

A.2.27 Library Maybe . 97

A.2.28 Library NamedSocket . 98

A.2.29 Library Parser . 100

A.2.30 Library Ports . 101

A.2.31 Library Pretty . 103

A.2.32 Library Profile . 111

A.2.33 Library PropertyFile . 113

A.2.34 Library Read . 114

A.2.35 Library ReadNumeric . 114

A.2.36 Library ReadShowTerm . 115

A.2.37 Library SetFunctions . 117

A.2.38 Library Socket . 119

A.2.39 Library System . 120

A.2.40 Library Time . 121

A.2.41 Library Unsafe . 124

2

A.3 Data Structures and Algorithms . 126

A.3.1 Library Array . 126

A.3.2 Library Dequeue . 127

A.3.3 Library FiniteMap . 128

A.3.4 Library GraphInductive . 131

A.3.5 Library Random . 137

A.3.6 Library RedBlackTree . 138

A.3.7 Library SetRBT . 139

A.3.8 Library Sort . 140

A.3.9 Library TableRBT . 141

A.3.10 Library Traversal . 142

A.4 Libraries for Web Applications . 144

A.4.1 Library CategorizedHtmlList . 144

A.4.2 Library HTML . 145

A.4.3 Library HtmlParser . 157

A.4.4 Library Mail . 157

A.4.5 Library Markdown . 158

A.4.6 Library WUI . 160

A.4.7 Library URL . 167

A.4.8 Library XML . 167

A.4.9 Library XmlConv . 170

A.5 Libraries for Meta-Programming . 176

A.5.1 Library AbstractCurry . 176

A.5.2 Library AbstractCurryPrinter . 183

A.5.3 Library CompactFlatCurry . 183

A.5.4 Library CurryStringClassifier . 185

A.5.5 Library FlatCurry . 187

A.5.6 Library FlatCurryGoodies . 195

A.5.7 Library FlatCurryRead . 207

A.5.8 Library FlatCurryShow . 207

A.5.9 Library FlatCurryTools . 208

A.5.10 Library FlatCurryXML . 208

A.5.11 Library FlexRigid . 209

A.5.12 Library PrettyAbstract . 209

B Markdown Syntax 211

B.1 Paragraphs and Basic Formatting . 211

B.2 Lists and Block Formatting . 212

B.3 Headers . 214

C Overview of the PAKCS Distribution 215

D Auxiliary Files 217

E Changing the Prelude or System Modules 218

3

F External Functions 219

Index 222

4

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-

paradigm language Curry, jointly developed at the University of Kiel, the Technical University

of Aachen and Portland State University. Curry is a universal programming language aiming at

the amalgamation of the most important declarative programming paradigms, namely functional

programming and logic programming. Curry combines in a seamless way features from functional

programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-

ical variables, partial data structures, built-in search), and concurrent programming (concurrent

evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-

plementation of Curry also supports the high-level implementation of distributed applications,

graphical user interfaces, and web services (as described in more detail in [10, 11, 12]).

We assume familiarity with the ideas and features of Curry as described in the Curry language

definition [17]. Therefore, this document only explains the use of the different components of

PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language

Curry (Version 0.8.3).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants

CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the

DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,

to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,

Parissa Sadeghi.

5

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,

it should be also executable on other platforms on which a Prolog system like SICStus-Prolog or

SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the

necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in

the directory pakcshome/bin (where pakcshome is the installation directory of the complete

PAKCS installation). You should add this directory to your path (e.g., by the bash command

“export PATH=pakcshome/bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”. They are

automatically converted into corresponding “.curry” files by deleting all lines not starting with

“>” and removing the prefix “> ” of the remaining lines.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section D

for details), you need write permission in the directory where you have stored your Curry programs.

The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The

command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions on Curry Programs

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• fcase expressions are not yet supported.

• The left-hand sides of program rules must be linear, i.e., multiple occurrences of a variable

in a pattern are not allowed.

• Singleton pattern variables, i.e., variables that occur only once in a pattern of the rule, should

be denoted as an anonymous variable “_”, otherwise the parser will print a warning since this

is a typical source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments

(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various

run-time systems, the definition of functions with local declarations look different from their

original definition (in order to see the result of this transformation, you can use the Curry-

Browser, see Section 5).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,

17, 25, 33, and so on.

6

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,

threads corresponding to leftmost constraints are executed with higher priority).

• Encapsulated search: In order to allow the integration of non-deterministic computations in

programs performing I/O at the top-level, PAKCS supports the search operators findall

and findfirst. In contrast to the general definition of encapsulated search [16], the current

implementation suspends the evaluation of findall and findfirst until the argument does

not contain unbound global variables. Moreover, the evaluation of findall is strict, i.e., it

computes all solutions before returning the complete list of solutions. It is recommended to

use the system module AllSolutions for encapsulating search.

• There is currently no general connection to external constraint solvers. However, the PAKCS

compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-

pendix A).

1.3 Modules in PAKCS

The current implementation of PAKCS supports only flat module names, i.e., the notation

Dir.Mod.f is not supported. In order to allow the structuring of modules in different directories,

PAKCS searches for imported modules in various directories. By default, imported modules are

searched in the directory of the main program and the system module directories “pakcshome/lib”

and “pakcshome/lib/meta”. This search path can be extended by setting the environment variable

CURRYPATH (which can be also set in a PAKCS session by the command “:set path”, see below)

to a list of directory names separated by colons (“:”). In addition, a local standard search path

can be defined in the “.pakcsrc” file (see Section 2.3). Thus, modules to be loaded are searched

in the following directories (in this order, i.e., the first occurrence of a module file in this search

path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory

“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directories “pakcshome/lib” and “pakcshome/lib/meta”.

Note that the standard prelude (pakcshome/lib/Prelude.curry) will be always implicitly im-

ported to all modules if a module does not contain an explicit import declaration for the module

Prelude.

7

2 PAKCS: An Interactive Curry Development System

PAKCS, in the following just called “PAKCS”, is an interactive system to develop applications

written in Curry. It is implemented in Prolog and compiles Curry programs into Prolog programs. It

contains various tools, a source-level debugger, solvers for arithmetic constraints over real numbers

and finite domain constraints, etc. The compilation process and the execution of compiled programs

is fairly efficient if a good Prolog implementation like SICStus-Prolog is used.

2.1 How to Use PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome/bin

where pakcshome is the installation directory of PAKCS). When the system is ready, the prelude

(pakcshome/lib/Prelude.curry) is already loaded, i.e., all definitions in the prelude are accessi-

ble. Now you can type in various commands. The most important commands are (it is sufficient

to type a unique prefix of a command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported

modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and

compiles from this intermediate representation. If the file prog.fcy does not exists, too, the

system looks for a file prog_flat.xml containing a FlatCurry program in XML representation

(compare command “:xml”), translates this into a FlatCurry file prog.fcy and compiles from

this intermediate representation.

:reload Recompile all currently loaded modules.

:add m Add module m to the set of currently loaded modules so that its exported entities are

available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. Since the

PAKCS compiles Curry programs into Prolog programs, non-deterministic computations are

implemented by backtracking. Therefore, computed results are shown one after the other.

After each computed result, you will be asked whether you want to see the next alternative

result or all alternative results. The default answer value for this question can be defined in

the “.pakcsrc” file (see Section 2.3).

Free variables in initial expressions must be declared as in Curry programs (if the free

variable mode is not turned on, see option “+free” below), i.e., either by a “let...free in”

or by a “where...free” declaration. For instance, one can write

let xs,ys free in xs++ys =:= [1,2]

or

xs++ys =:= [1,2] where xs,ys free

Without these declarations, an error is reported in order to avoid the unintended introduction

of free variables in initial expressions by typos.

Note that lambda abstractions, lets and list comprehensions in top-level expressions are not

yet supported in initial expressions typed in the top-level of PAKCS.

8

let x = expr Define the identifier x as an abbreviation for the expression expr which can be used

in subsequent expressions. The identifier x is visible until the next load or reload command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:analyze Analyze the currently loaded program for some properties. Currently, there are the

following analysis options:

functions Check properties of all functions defined in the currently loaded Curry program

(i.e., without the functions defined in the prelude and imported modules). Currently,

the following properties are checked:

1. Which functions are defined by overlapping left-hand sides?

2. Which functions are indeterministic, i.e., contains an indirect/implicit call to a send

constraint on ports (see Appendix A.1.3, which includes an implicit committed

choice)?

icalls Show all calls to imported functions in the currently loaded module. This might be

useful to see which import declarations are really necessary.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its

imported modules (see Section 5 for more details).

:edit Load the source code of the current main module into a text editor. If the environment

variable “EDITOR” is set, the value of this environment variable is used as the editor program,

otherwise a default editor (e.g., “vi”) is used.

:edit file Load file file into a text editor which is defined as in the command “:edit”.

:interface Show the interface of the currently loaded module, i.e., show the names of all im-

ported modules, the fixity declarations of all exported operators, the exported datatypes

declarations and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”.

If this module does not exist, this command looks in the system library directory of PAKCS for

a module with this name, e.g., the command “:interface FlatCurry” shows the interface

of the system module FlatCurry for meta-programming (see Appendix A.1.4).

:modules Show the list of all currently loaded modules.

:programs Show the list of all Curry programs that are available in the load path.

:set option Set or turn on/off a specific option of the PAKCS environment. Options are turned

on by the prefix “+” and off by the prefix “-”. Options that can only be set (e.g., printdepth)

must not contain a prefix. The following options are currently supported:

9

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression,

setting spy points (break points) etc. (see the commands for the debug mode described

below).

+/-free Free variable mode. If the free variable mode is off (default), then free variables

occurring in initial expressions entered in the PAKCS environment must always be de-

clared by a “let...free in” or “where...free” declaration (as in Curry programs).

This avoids the introduction of free variables in initial expressions by typos (which might

lead to the exploration of infinite search spaces). If the free variable mode is on, each

undefined symbol in an initial expression is considered as a free variable.

+/-printfail Print failures. If this option is set, failures occurring during evaluation

(i.e., non-reducible demanded subexpressions) are printed. This is useful to see failed

reductions due to partially defined functions or failed unifications. Inside encapsulated

search (e.g., inside evaluations of findall and findfirst), failures are not printed

(since they are a typical programming technique there). Note that this option causes

some overhead in execution time and memory so that it could not be used in larger

applications.

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures

of enclosing functions that fail due to the failure of an argument evaluation) are printed if

the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible

subexpression) is printed.

+/-consfail Print constructor failures. If this option is set, failures due to application

of functions with non-exhaustive pattern matching or failures during unification (ap-

plication of “=:=”) are shown. Inside encapsulated search (e.g., inside evaluations of

findall and findfirst), failures are not printed (since they are a typical programming

technique there). In contrast to the option printfail, this option creates only a small

overhead in execution time and memory use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just

failed) function calls from the main function to the failed function are shown.

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in

the file f . This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an inter-

active mode for exploring the fail trace is started (see help information in this interactive

mode). When the interactive mode is finished, the program execution proceeds with a

failure.

+/-compact Reduce the size of target programs by using the parser option “--compact”

(see Section 9 for details about this option).

+/-profile Profile mode. If the profile mode is on, then information about the number

of calls, failures, exits etc. are collected for each function during the debug mode (see

above) and shown after the complete execution (additionaly, the result is stored in the

file prog.profile where prog is the current main program). The profile mode has no

effect outside the debug mode.

10

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended

expressions (if there are any) are shown (in their internal representation) at the end of

a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the

computation is always printed together with the result of an evaluation.

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial ex-

pression of a computation (together with its type) is printed before this expression is

evaluated.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will

print warnings about variables that occur only once in a program rule (see Section 1.2)

or locally declared names that shadow the definition of globally declared names. If the

parser warnings are switched off, these warnings are not printed during the reading of a

Curry program.

path path Set the additional search path for loading modules to path. Note that this

search path is only used for loading modules inside this invocation of PAKCS, i.e., the

environment variable “CURRYPATH” (see also Section 1.3) is set to path in this invocation

of PAKCS.

printdepth n Set the depth for printing terms to the value n (initially: 10). In this case

subterms with a depth greater than n are abbreviated by dots when they are printed

as a result of a computation or during debugging. A value of 0 means infinite depth so

that the complete terms are printed.

:set Show a help text on the “:set option” command together with the current values of all

options.

:show Show the source text of the currently loaded Curry program. If the environment variable

PAGER is defined, use its value to show the program, other use the command “more”. If the

source text is not available (since the program has been directly compiled from a FlatCurry

or XML file), the loaded program is decompiled and the decompiled Curry program text is

shown.

:show m Show the source text of module m which must be accessible via the current load path.

:show f Show the source code of function f (provided that the name f is different from a module

accessilbe via the current load path) in a separate window.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the current state of the system (together with the compiled program prog.curry) in

the file prog.state, i.e., you can later start the program again by typing “prog.state” as a

Unix command.

11

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)

will be executed after restoring the state and the execution of the restored state terminates

when the evaluation of the expression expr terminates.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent

process which runs in parallel to the current PAKCS process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry

programs (see Appendix A.1.3) where one can start a new server process by this command.

The new process will be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of

Curry programs. This commands starts a graphical user interface to show the observation

results and adds to the load path the directory containing the modules that must be imported

in order to annotate a program with observation points. Details about the use of COOSy can

be found in the COOSy interface (under the “Info” button), and details about the general

idea of observation debugging and the implementation of COOSy can be found in [7].

:xml Translate the currently loaded program module into an XML representation according to the

format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this

yields an implementation-independent representation of the corresponding FlatCurry program

(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently

loaded program, the XML representation will be written into the file “prog_flat.xml”.

:peval Translate the currently loaded program module into an equivalent program where some

subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-

ficiently executed. An expression e to be partially evaluated must be marked in the source

program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that

it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated pro-

gram in intermediate representation stored in prog_pe.fcy. The latter program is implicitly

loaded by the peval command so that the partially evaluated program is directly available.

The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all

programs) based on the ideas described in [1, 2, 3, 4].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by

setting the debug option with the command “:set +debug”. In order to switch back to normal

evaluation of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options for the “:set” com-

mand:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an

expression is stopped after each step and the user is asked how to proceed (see the options

there).

12

http://www.informatik.uni-kiel.de/~curry/flat/

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate ex-

pressions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from

spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automat-

ically activated when a spy point is reached.

2.2 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS (as

often supported by the readline library), you should have the Unix command rlwrap installed

on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it

should not be used (e.g., because it is executed in an editor with readline functionality), one can

call PAKCS with the parameter “--noreadline”.

2.3 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file

which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard

version of this configuration file is copied with the name “.pakcsrc” into your home directory.

The file contains definitions of various settings, e.g., about showing warnings, progress messages

etc. After you have started PAKCS for the first time, look into this file and adapt it to your own

preferences.

2.4 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available

for many platforms (see http://www.emacs.org or http://www.xemacs.org). The distribution of

PAKCS contains also a special Curry mode that supports the development of Curry programs in the

(X)Emacs environment. This mode includes support for syntax highlighting, finding declarations

in the current buffer, and loading Curry programs into the PAKCS compiler system in an Emacs

shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation

is described in the file README in directory “pakcshome/tools/emacs” which also contains the

sources of the Curry mode and a short description about the use of this mode.

13

http://www.emacs.org
http://www.xemacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of

Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.

For instance, the declaration

ones5 = let ones = 1 : ones

in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list

of 1’s. Similarly, the definition

onetwo n = take n one2

where

one2 = 1 : two1

two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to code operations in a more readable way. Fur-

thermore, defining operations with functional patterns avoids problems caused by strict equality

(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the

prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the

list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is

a function call at a pattern position. With functional patterns, we can define the operation last

as follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:

since a functional pattern is considered as an abbreviation for the set of constructor terms obtained

by all evaluations of the functional pattern to normal form (see [6] for an exact definition), the

previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

...

which shows that the evaluation of the list elements is not demanded by the functional pattern.

14

In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a functional pattern if

f is not a visible constructor but a defined function that is visible in the scope of the pattern.

Optimization of programs containing functional patterns. Since functions patterns can

evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences

of variables which are, if present, replaced by equality constraints so that the constructor term is

always linear (see [6] for details). Since these dynamic checks are costly and not necessary for func-

tional patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional

patterns that checks for occurrences of functional patterns that evaluate always to linear construc-

tor terms and replace such occurrences with a more efficient implementation. This optimizer can

be enabled by the following possibilities:

• Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell

command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in

PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a

comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}
then the functional pattern optimization is applied if this program is compiled and loaded in

PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a

function f defined with functional patterns that recursively depend on f).

3.3 Records

A record is a data structure for bundling several data of various types. It consists of typed data

fields where each field is associated with a unique label. These labels can be used to construct,

select or update fields in a record.

Unlike labeled data fields in Haskell, records are not syntactic sugar but a real extension of the

language1. The basic concept is described in [19] but the current version does not yet provide all

features mentioned there. The restrictions are explained in Section 3.3.7.

3.3.1 Record Type Declaration

It is necessary to declare a record type before a record can be constructed or used. The declaration

has the following form:

type R α1 ... αn = { l1 :: τ1, ..., lm :: τm }
1The current version allows to transform records into abstract data types. Future extensions may not have this

facility.

15

It introduces a new n-ary record type R which represents a record consisting of m fields. Each field

has a unique label li representing a value of the type τi. Labels are identifiers which refer to the

corresponding fields. The following examples define some record types:

type Person = {name :: String, age :: Int}
type Address = {person :: Person, street :: String, city :: String}
type Branch a b = {left :: a, right :: b}

It is possible to summarize different labels which have the same type. For instance, the record

Address can also be declared as follows:

type Address = {person :: Person, street,city :: String}
The fields can occur in an arbitrary order. The example above can also be written as

type Address = {street,city :: String, person :: Person}
The record type can be used in every type expression to represent the corresponding record, e.g.

data BiTree = Node (Branch BiTree BiTree) | Leaf Int

getName :: Person -> String

getName ...

Labels can only be used in the context of records. They do not share the name space with

functions/constructors/variables or type constructors/type variables. For instance it is possible to

use the same identifier for a label and a function at the same time. Label identifiers cannot be

shadowed by other identifiers.

Like in type synonym declarations, recursive or mutually dependent record declarations are not

allowed. Records can only be declared at the top level. Further restrictions are described in section

3.3.7.

3.3.2 Record Construction

The record construction generates a record with initial values for each data field. It has the following

form:

{ l1 = v1, ..., lm = vm }
It generates a record where each label li refers to the value vi. The type of the record results from

the record type declaration where the labels li are defined. A mix of labels from different record

types is not allowed. All labels must be specified with exactly one assignment. Examples for record

constructions are

{name = "Johnson", age = 30} -- generates a record of type ’Person’

{left = True, right = 20} -- generates a record of type ’Branch’

Assignments to labels can occur in an arbitrary order. For instance a record of type Person can

also be generated as follows:

{age = 30, name = "Johnson"} -- generates a record of type ’Person’

Unlike labeled fields in record type declarations, record constructions can be used in expressions

without any restrictions (as well as all kinds of record expressions). For instance the following

expression is valid:

{person = {name = "Smith", age = 20}, -- generates a record of

16

street = "Main Street", -- type ’Address’

city = "Springfield"}

3.3.3 Field Selection

The field selection is used to extract data from records. It has the following form:

r -> l

It returns the value to which the label l refers to from the record expression r. The label must

occur in the declaration of the record type of r. An example for a field selection is:

pers -> name

This returns the value of the label name from the record pers (which has the type Person). Se-

quential application of field selections are also possible:

(addr -> person) -> age

The value of the label age is extracted from a record which itself is the value of the label person

in the record addr (which has the type Address). When a field selection is used in expressions, it

has to be parenthesized.

3.3.4 Field Update

Records can be updated by reassigning a new value to a label:

{l1 := v1, ..., lk := vk | r}
The label li is associated with the new value vi which replaces the current value in the record r.

The labels must occur in the declaration of the record type of r. In contrast to record constructions,

it is not necessary to specify all labels of a record. Assignments can occur in an arbitrary order.

It is not allowed to specify more than one assignment for a label in a record update. Examples for

record updates are:

{name := "Scott", age := 25 | pers}
{person := {name := "Scott", age := 25 | pers} | addr}

In these examples pers is a record of type Person and addr is a record of type Address.

3.3.5 Records in Pattern Matching

It is possible to apply pattern matching to records (e.g., in functions, let expressions or case

branches). Two kinds of record patterns are available:

{l1 = p1, ..., ln = pn}
{l1 = p1, ..., lk = pk | _}

In both cases each label li is specified with a pattern pi. All labels must occur only once in the

record pattern. The first case is used to match the whole record. Thus, all labels of the record must

occur in the pattern. The second case is used to match only a part of the record. Here it is not

necessary to specify all labels. This case is represented by a vertical bar followed by the underscore

(anonymous variable). It is not allowed to use a pattern term instead of the underscore.

When trying to match a record against a record pattern, the patterns of the specified labels

are matched against the corresponding values in the record expression. On success, all pattern

17

variables occurring in the patterns are replaced by their actual expression. If none of the patterns

matches, the computation fails.

Here are some examples of pattern matching with records:

isSmith30 :: Person -> Bool

isSmith30 {name = "Smith", age = 30} = True

startsWith :: Char -> Person -> Bool

startsWith c {name = (d:_) | _} = c == d

getPerson :: Address -> Person

getPerson {person = p | _} = p

As shown in the last example, a field selection can also be obtained by pattern matching.

3.3.6 Export of Records

Exporting record types and labels is very similar to exporting data types and constructors. There

are three ways to specify an export:

• module M (..., R, ...) where

exports the record R without any of its labels.

• module M (..., R(..), ...) where

exports the record R together with all its labels.

• module M (..., R(l1,...,lk), ...) where

exports the record R together with the labels l1, . . . , lk.

Note that imported labels cannot be overwritten in record declarations of the importing module.

It is also not possible to import equal labels from different modules.

3.3.7 Restrictions in the Usage of Records

In contrast to the basic concept in [19], PAKCS/Curry provides a simpler version of records. Some

of the features described there are currently not supported or even restricted.

• Labels must be unique within the whole scope of the program. In particular, it is not allowed

to define the same label within different records, not even when they are imported from other

modules. However, it is possible to use equal identifiers for other entities without restrictions,

since labels have an independent name space.

• The record type representation with labeled fields can only be used as the right-hand-side of

a record type declaration. It is not allowed to use it in any other type annotation.

• Records are not extensible or reducible. The structure of a record is specified in its record

declaration and cannot be modified at the runtime of the program.

• Empty records are not allowed.

• It is not allowed to use a pattern term at the right side of the vertical bar in a record pattern

except for the underscore (anonymous pattern variable).

18

• Labels cannot be sequentially associated with multiple values (record fields do not behave

like stacks).

19

4 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry

program (i.e., the main module and all its imported modules) in HTML format. The generated

HTML pages contain information about all data types and functions exported by a module as well

as links between the different entities. Furthermore, some information about the definitional status

of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and

combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate

programs!). All documentation comments immediately before a definition of a datatype or (top-

level) function are kept together.2 The documentation comments for the complete module occur

before the first “module” or “import” line in the module. The comments can also contain several

special tags. These tags must be the first thing on its line (in the documentation comment) and

continues until the next tag is encountered or until the end of the comment. The following tags

are recognized:

@author comment

Specifies the author of a module (only reasonable in module comments).

@version comment

Specifies the version of a module (only reasonable in module comments).

@cons id comment

A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment

A comment for function parameter id (only reasonable in function comments). Due to pattern

matching, this need not be the name of a parameter given in the declaration of the function

but all parameters for this functions must be commented in left-to-right order (if they are

commented at all).

@return comment

A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-

ported set of elements is described in detail in the appendix). For instance, it can contain Markdown

annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code

elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed

by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines

prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”.

If the Markdown syntax should not be used, one could run CurryDoc with the parameter

“--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<”

must be quoted (e.g., “<”). However, header tags like <h1> should not be used since the

2The documentation tool recognizes this association from the first identifier in a program line. If one wants to

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition, otherwise the documentation comment is not recognized.

20

http://en.wikipedia.org/wiki/Markdown

structuring is generated by CurryDoc. In addition to Markdown or HTML markups, one can also

mark references to names of operations or data types in Curry programs which are translated into

links inside the generated HTML documentation. Such references have to be enclosed in single

quotes. For instance, the text ’conc’ refers to the Curry operation conc inside the current module

whereas the text ’Prelude.reverse’ refers to the operation reverse of the module Prelude.

If one wants to write single quotes without this specific meaning, one can escape them with a

backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single

words, i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted,

as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an

--- example module.

--- @author Michael Hanus

--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.

--- @param xs - the first list

--- @param ys - the second list

--- @return a list containing all elements of ‘xs‘ and ‘ys‘

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.

--- It is based on the operation ’conc’ to concatenate two lists.

--- @param xs - the given input list

--- @return last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

--- @cons Leaf - a leaf of the tree

--- @cons Node - an inner node of the tree

data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc Example

(currydoc is a command usually stored in pakcshome/bin where pakcshome is the installation

directory of PAKCS; see Section 1.1). This command creates the directory DOC_Example (if it does

21

not exist) and puts all HTML documentation files for the main program module Example and all

its imported modules in this directory together with a main index file index.html. If one prefers

another directory for the documentation files, one can also execute the command

currydoc docdir Example

where docdir is the directory for the documentation files.

In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call currydoc with the following options:

currydoc --noindexhtml docdir Mod : This command generates the documentation for module

Mod in the directory docdir without the index pages (i.e., main index page and index pages

for all functions and constructors defined in Mod and its imported modules).

currydoc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the in-

dex pages (i.e., a main index page and index pages for all functions and constructors defined

in the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

22

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show

them in various formats, and analyze their properties.3 Moreover, it is constructed in a way so

that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas

behind this tool can be found in [13, 14].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

• In the command shell via the command: pakcshome/bin/currybrowser mod

• In the PAKCS environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser

loads the interfaces of the main module and all imported modules before a GUI is created for

interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a

particular application (here: the implementation of CurryBrowser). The upper list box in the

left column shows the modules and their imports in order to browse through the modules of an

application. Similarly to directory browsers, the list of imported modules of a module can be opened

or closed by clicking. After selecting a module in the list of modules, its source code, interface, or

various other formats of the module can be shown in the main (right) text area. For instance, one

can show pretty-printed versions of the intermediate flat programs (see below) in order to see how

local function definitions are translated by lambda lifting [18] or pattern matching is translated

into case expressions [9, 20]. Since Curry is a language with parametric polymorphism and type

inference, programmers often omit the type signatures when defining functions. Therefore, one can

also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze

all functions of the currently selected module at once. This is useful to spot some functions of a

module that could be problematic in some application contexts, like functions that are impure (i.e.,

the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground

terms). If such an analysis is selected, the names of all functions are shown in the lower list box

of the left column (the “function list”) with prefixes indicating the properties of the individual

functions.

The function list box can be also filled with functions via the menu “Select functions”. For

instance, all functions or only the exported functions defined in the currently selected module can

be shown there, or all functions from different modules that are directly or indirectly called from a

currently selected function. This list box is central to focus on a function in the source code of some

module or to analyze some function, i.e., showing their properties. In order to focus on a function,

it is sufficient to check the “focus on code” button. To analyze an individually selected function,

one can select an analysis from the list of available program analyses (through the menu “Select

analysis”). In this case, the analysis results are either shown in the text box below the main text

area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

3Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

23

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they

consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends

on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into

CurryBrowser, for instance, to visualize the import relation between all modules as a dependency

graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the

“Help” menu of CurryBrowser.

24

6 CurryTest: A Tool for Testing Curry Programs

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. CurryTest

simplifies the task of writing test cases for a module and executing them. The tool is easy to

use. Assume one has implemented a module MyMod and wants to write some test cases to test its

functionality, making regression tests in future versions, etc. For this purpose, there is a system

library Assertion (Section A.2.2) which contains the necessary definitions for writing tests. In

particular, it exports an abstract polymorphic type “Assertion a” together with the following

operations:

assertTrue :: String -> Bool -> Assertion ()

assertEqual :: String -> a -> a -> Assertion a

assertValues :: String -> a -> [a] -> Assertion a

assertSolutions :: String -> (a->Success) -> [a] -> Assertion a

assertIO :: String -> IO a -> a -> Assertion a

assertEqualIO :: String -> IO a -> IO a -> Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value

True. Similarly, the expression “assertEqual s e1 e2” asserts that the expressions e1 and e2 must

be equal (i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the mul-

tiset of all values of e, and the expression “assertSolutions s c vs” asserts that the constraint

abstraction c has the multiset of solutions vs. Furthermore, the expression “assertIO s a v”

asserts that the I/O action a yields the value v whenever it is executed, and the expression

“assertEqualIO s a1 a2” asserts that the I/O actions a1 and a2 yields equal values. The name s

provided as a first argument in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module

Assertion and defining top-level functions of type Assertion in this module (which must also

be exported). As an example, consider the following program that can be used to test some list

processing functions:

import List

import Assertion

test1 = assertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = assertTrue "all" (all (<5) [1,2,3,4])

test3 = assertSolutions "prefix" (\x -> let y free in x ++ y =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal

to [1,2,3,4].

We can execute a test suite by the command

currytest testList

(currytest is a program stored in pakcshome/bin where pakcshome is the installation directory

of PAKCS; see Section 1.1). In our example, “testList.curry” is the program containing the def-

inition of all assertions. This has the effect that all exported top-level functions of type Assertion

are tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are re-

25

Figure 2: Snapshot of CurryTest’s graphical interface

ported together with the name of each assertion. For our example above, we obtain the following

successful protocol:

==

Testing module "testList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely.4 In order to start this

interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

currytest --window testList

or

currytest -w testList

A snapshot of the interface is shown in Figure 2.

4Due to a bug in older versions of SICStus-Prolog, it works only with SICStus-Prolog version 3.8.5 (or newer).

26

7 ERD2Curry: A Tool to Generate Programs from ER Specifica-

tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored from

entity relationship diagrams. The idea of this tool is described in detail in [8]. Thus, we describe

only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has

to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.

This description can be compiled into a Curry program by the command

erd2curry myerd.xmi

(erd2curry is a program stored in pakcshome/bin where pakcshome is the installation direc-

tory of PAKCS; see Section 1.1). If MyData is the name of the ERD, the Curry program file

“MyData.curry” is generated containing all the necessary database access code as described in [8].

If one does not want to use the Umbrello UML Modeller, one can also create a textual de-

scription of the ERD as a Curry term of type ERD (w.r.t. the type definition given in module

pakcshome/tools/erd2curry/ERD.curry) and store it in some file, e.g., “myerd.term”. This

description can be compiled into a Curry program by the command

erd2curry -t myerd.term

There is also the possibility to visualize an ERD term as a graph with the graph visualization

program dotty (for this purpose, it might be necessary to adapt the definition of the operation

dotCmd in pakcshome/tools/erd2curry/ERD2Graph.curry according to your local environment).

This can be done by the command

erd2curry -v myerd.term

Inclusion in the Curry application: To compile the generated database code, ei-

ther include the directory pakcshome/tools/erd2curry into your Curry load path (e.g.,

by setting the environment variable “CURRYPATH”, see also Section 1.3) or copy the file

pakcshome/tools/erd2curry/ERDGeneric.curry into the directory of the generated database

code.

27

8 UI: Declarative Programming of User Interfaces

The PAKCS distribution contains a collection of libraries to implement graphical user interfaces

as well as web-based user interfaces from declarative descriptions. Exploiting these libraries, it is

possible to define the structure and functionality of a user interface independent from the concrete

technology. Thus, a graphical user interface or a web-based user interface can be generated from

the same description by simply changing the imported libraries. This programming technique is

described in detail in [15].

The libraries implementing these user interfaces are contained in the directory

pakcshome/tools/ui

Thus, in order to compile programs containing such user interface specifications, one has to include

the directory pakcshome/tools/ui into the Curry load path (e.g., by setting the environment

variable “CURRYPATH”, see also Section 1.3). The directory

pakcshome/tools/ui/examples

contains a few examples for such user interface specifications.

28

9 Preprocessing FlatCurry Files

The current parser allows to apply transformations on the intermediate FlatCurry files after they

are generated from the corresponding Curry source file. Currently, only the FlatCurry file corre-

sponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/parsecurry:

--fpopt Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry

for details).

--compact Apply code compactification after parsing, i.e., transform the main module and

all its imported into one module and delete all non-accessible functions.

--compactexport Similar to --compact but delete all functions that are not accessible from

the exported functions of the main module.

--compactmain:f Similar to --compact but delete all functions that are not accessible from

the function “f” of the main module.

--fcypp cmd Apply command cmd to the main module after parsing. This is useful to

integrate your own transformation into the compilation process. Note that the command

“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it

replaces the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:

For instance, setting FCYPP by

export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the

PAKCS programming environment.

3. Putting options into the source code:

If the source code contains a line with a comment of the form (the comment must start at

the beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}
then the transformations specified by <options> are applied after translating the source

code into FlatCurry code. For instance, the functional pattern optimization can be set by

the comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}
in the source code. Note that this comment must be in a single line of the source program.

If there are multiple lines containing such comments, only the first one will be considered.

Multiple options: Note that an arbitrary number of transformations can be specified by the

methods described above. If several specifications for preprocessing FlatCurry files are used, they

are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

29

2. all transformations specified as command line options of parsecurry (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

30

10 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it

might be possible that some technical problems arise due to the use of sockets for implementing

these features. Therefore, this section gives some information about the technical requirements of

PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic

names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the

machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot

be used.

If these features do not work, you can try to find out whether this port is in use by the shell

command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests

about registering a new symbolic name for a Curry port or asking the physical port number of a

Curry port. The demon will be automatically started for the first time on a machine when a user

compiles a program using Curry ports. It can also be manually started and terminated by the

scripts pakcshome/cpns/start and pakcshome/cpns/stop. If the demon is already running, the

command pakcshome/cpns/start does nothing (so it can be always executed before invoking a

Curry program using ports).

If you detect any further technical problem, please write to

mh@informatik.uni-kiel.de

31

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry

programs. In Proc. of the 6th International Conference on Logic for Programming and Auto-

mated Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional

logic programs. In Proc. of the 7th International Conference on Logic for Programming and

Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-

ative language. In Proc. of the 5th International Symposium on Functional and Logic Pro-

gramming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-

ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.

International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.

Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’05). Springer LNCS (to appear), 2005.

[7] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In

Proc. of the Sixth International Symposium on Practical Aspects of Declarative Languages

(PADL’04), pages 193–208. Springer LNCS 3057, 2004.

[8] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of

the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),

pages 316–332. Springer LNCS 4902, 2008.

[9] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the

24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[10] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the

International Conference on Principles and Practice of Declarative Programming (PPDP’99),

pages 376–395. Springer LNCS 1702, 1999.

[11] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-

national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.

Springer LNCS 1753, 2000.

[12] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International

Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer

LNCS 1990, 2001.

32

[13] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-

PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages

43–48. ACM Press, 2005.

[14] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of

the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages

61–74, 2006.

[15] M. Hanus and C. Kluß. Declarative programming of user interfaces. In Proc. of the 11th

International Symposium on Practical Aspects of Declarative Languages (PADL’09), pages

16–30. Springer LNCS 5418, 2009.

[16] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-

ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.

Springer LNCS 1490, 1998.

[17] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Available at

http://www.informatik.uni-kiel.de/~curry, 2012.

[18] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional

Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[19] D. Leijen. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on

Trends in Functional Programming (TFP’05), 2005.

[20] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The

Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

33

A Libraries of the PAKCS Distribution

The PAKCS compiler system provides an extensive collection of libraries for application program-

ming. The libraries for arithmetic constraints over real numbers, finite domain constraints, ports

for concurrent and distributed programming, and meta-programming by representing Curry pro-

grams in Curry are described in the following subsection in more detail. The complete set of

libraries with all exported types and functions are described in the further subsections. For a more

detailed online documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.

de/~pakcs/lib/index.html.

A.1 Constraints, Ports, Meta-Programming

A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in PAKCS via arithmetic constraints, i.e., the equational

constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the evalu-

ation of the addition, as in corresponding constraints on integers like “3+x=:=5”). All operations

related to floating point numbers are suffixed by “.”. The following functions and constraints on

floating point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than or equal” relation.

i2f :: Int -> Float

Converting an integer number into a floating point number.

34

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the

mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding

balance at the end of the lifetime b. The financial calculations can be defined by the following two

rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 & t <=. 1.0 --lifetime not more than 1 month?

= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?

= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a

monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.

Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-

linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of

possible values. For simplicity, the domain of finite domain variables are identified with a subset

of the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related

to finite domain variables are suffixed by “#”. The following functions and constraints for finite

domain constraint solving are currently supported in PAKCS:5

domain :: [Int] -> Int -> Int -> Success

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the

interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Success

Equality of finite domain values.

5Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see

Appendix F), it is relatively easy to provide the complete functionality.

35

(/=#) :: Int -> Int -> Success

Disequality of finite domain values.

(<#) :: Int -> Int -> Success

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Success

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Success

“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Success

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · ·+xn op x is satisfied, where

op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 +

· · ·+ cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is

the number of the xi that are equal to k and op is one of the above finite domain constraint

relations.

all_different :: [Int] -> Success

The constraint “all_different [x1, . . . , xn]” is satisfied if all xi have pairwise different

values.

labeling :: [LabelingOption] -> [Int] -> Success

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the

values of their domain according to the options os (see the module documentation for further

details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the

program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be

replaced by a different digit such that this equation is valid and there are no leading zeros. The

usual way to solve finite domain constraint problems is to specify the domain of the involved

variables followed by a specification of the constraints and the labeling of the constraint variables

in order to start the search for solutions. Thus, the “send+more=money” problem can be solved as

follows:

36

import CLPFD

smm l =

l =:= [s,e,n,d,m,o,r,y] &

domain l 0 9 &

s ># 0 &

m ># 0 &

all_different l &

1000 *# s +# 100 *# e +# 10 *# n +# d

+# 1000 *# m +# 100 *# o +# 10 *# r +# e

=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &

labeling [FirstFail] l

where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields

the unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal

and external ports as described in [10]. Since [10] contains a detailed description of this concept

together with various programming examples, we only summarize here the functions and constraints

supported for ports in PAKCS.

The basic datatypes, functions, and constraints for ports are defined in the system module Ports

(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Success

The constraint “openPort p s” establishes a new internal port p with an associated message

stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a

runtime error).

send :: a -> Port a -> Success

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will

be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and

returns the associated stream of messages.

37

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the

form “portname@machine) to which one can send messages by the send constraint. Currently,

no dynamic type checking is done for external ports, i.e., sending messages of the wrong type

to a port might lead to a failure of the receiver.

Restrictions: Every expression, possibly containing logical variables, can be sent to a port.

However, as discussed in [10], port communication is strict, i.e., the expression is evaluated to

normal form before sending it by the constraint send. Furthermore, if messages containing logical

variables are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this

logical variable only if it is bound to a ground term, i.e., as long as the binding contains

logical variables, the sender is not informed about the binding and, therefore, the sender

waits.

External ports on local machines: The implementation of external ports assumes that the

host machine running the application is connected to the Internet (i.e., it uses the standard IP

address of the host machine for message sending). If this is not the case and the application should

be tested by using external ports only on the local host without a connection to the Internet, the

environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS system is started.

In this case, the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the

local machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets

to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action

openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the

port communication. Usually, a free socket is selected by the operating system. If the socket

number should be fixed in an application (e.g., because of the use of firewalls that allow only

communication over particular sockets), then one can set the environment variable “PAKCS_SOCKET”

to a distinguished socket number before the PAKCS system is started. This has the effect that

PAKCS uses only this socket number for communication (even for several external ports used in

the same application program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to

external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable

is set to “yes” before the PAKCS system is started, then all connections to external ports and all

messages sent and received on external ports are printed on the standard error stream.

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are sys-

tem modules FlatCurry and AbstractCurry (stored in the directory “pakcshome/lib/meta”)

38

which define datatypes for the representation of Curry programs. AbstractCurry is a more direct

representation of a Curry program, whereas FlatCurry is a simplified representation where local

function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and

pattern matching is translated into explicit case/or expressions. Thus, FlatCurry can be used for

more back-end oriented program manipulations (or, for writing new back ends for Curry), whereas

AbstractCurry is intended for manipulations of programs that are more oriented towards the

source program.

Both modules contain predefined I/O actions to read programs in the AbstractCurry (readCurry)

or FlatCurry (readFlatCurry) format. These actions parse the corresponding source program

and return a data term representing this program (according to the definitions in the modules

AbstractCurry and FlatCurry).

Since all datatypes are explained in detail in these modules, we refer to the online documentation6

of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.readFlatCurry "test") returns the following term:

(Prog "test"

["Prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])

(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 0)

[Branch (Pattern ("Prelude","[]") [])

(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [1,2])

(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 2],

Comb ConsCall ("Prelude",":")

[Var 1,Comb ConsCall ("Prelude","[]") []]

])

]))]

[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These

6http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html and http://www.informatik.

uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

39

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

operations are useful to encapsulate non-deterministic operations between I/O actions in order to

connects the worlds of logic and functional programming and to avoid non-determinism failures on

the I/O level.

In contrast the ”old” concept of encapsulated search (which could be applied to any subexpression

in a computation), the operations to encapsulate search in this module are I/O actions in order to

avoid some anomalities in the old concept.

Exported types:

data SearchTree

A search tree for representing search structures.

Exported constructors:

• SearchBranch :: [(b,SearchTree a b)] → SearchTree a b

• Solutions :: [a] → SearchTree a b

Exported functions:

getAllSolutions :: (a → Success) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right

strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,

the evaluation of the constraint does not share any results. Moreover, this evaluation

suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getOneSolution :: (a → Success) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Success) → IO [a]

Returns a list of values that do not satisfy a given constraint.

getSearchTree :: [a] → (b → Success) → IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level

of the tree. For each element in the list of the first argument, the search tree contains

a branch node with a child tree for each value of this element. Moreover, evaluations of

elements in the branch list are shared within corresponding subtrees.

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

40

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.

==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of

e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Success) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has

the multiset of solutions vs. The solutions of c are compared with the elements in vs

w.r.t. ==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield

equal (w.r.t. ==) results.

41

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the

currytest tool.

writeAssertResult :: (String,Bool) → IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.

Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest

tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the

currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

42

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

A.2.4 Library CLPFD

Library for finite domain constraint solving.

The general structure of a specification of an FD problem is as follows:

domainconstraint & fdconstraint & labeling

where:

domain constraint specifies the possible range of the FD variables (see constraint domain)

fd constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,

allDifferent, etc below)

labeling is a labeling function to search for a concrete solution.

Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement

the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for

external functions, it is relatively easy to provide the complete functionality.

43

Exported types:

data Constraint

A datatype to represent reifyable constraints.

Exported constructors:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the

enumeration constraint labeling.

Exported constructors:

• LeftMost :: LabelingOption

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: LabelingOption

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-

ciple)

• FirstFailConstrained :: LabelingOption

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: LabelingOption

Min

– The leftmost variable with the smalled lower bound is selected.

• Max :: LabelingOption

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: LabelingOption

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the

lower or upper bound of x (default).

• Enum :: LabelingOption

Enum

44

– Make a multiple choice for the selected variable for all the values in its domain.

• Bisect :: LabelingOption

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where m is

the midpoint of the domain x (also known as domain splitting).

• Up :: LabelingOption

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: LabelingOption

Down

– The domain is explored for instantiation in descending order.

• All :: LabelingOption

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → LabelingOption

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-

rithm).

• Maximize :: Int → LabelingOption

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-

rithm).

• Assumptions :: Int → LabelingOption

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration

strategy when a solution is found.

Exported functions:

domain :: [Int] → Int → Int → Success

Constraint to specify the domain of all finite domain variables.

(+#) :: Int → Int → Int

45

Addition of FD variables.

(-#) :: Int → Int → Int

Subtraction of FD variables.

(*#) :: Int → Int → Int

Multiplication of FD variables.

(=#) :: Int → Int → Success

Equality of FD variables.

(/=#) :: Int → Int → Success

Disequality of FD variables.

(<#) :: Int → Int → Success

”Less than” constraint on FD variables.

(<=#) :: Int → Int → Success

”Less than or equal” constraint on FD variables.

(>#) :: Int → Int → Success

”Greater than” constraint on FD variables.

(>=#) :: Int → Int → Success

”Greater than or equal” constraint on FD variables.

(#=#) :: Int → Int → Constraint

Reifyable equality constraint on FD variables.

(#/=#) :: Int → Int → Constraint

Reifyable inequality constraint on FD variables.

(#<#) :: Int → Int → Constraint

Reifyable ”less than” constraint on FD variables.

(#<=#) :: Int → Int → Constraint

Reifyable ”less than or equal” constraint on FD variables.

(#>#) :: Int → Int → Constraint

Reifyable ”greater than” constraint on FD variables.

(#>=#) :: Int → Int → Constraint

46

Reifyable ”greater than or equal” constraint on FD variables.

neg :: Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#/\#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#\/#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if the first argument constraint do not hold or both

argument constraints are satisfied.

(#<=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraint are either satisfied and

do not hold.

solve :: Constraint → Success

Solves a reified constraint.

sum :: [Int] → (Int → Int → Success) → Int → Success

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [Int] → [Int] → (Int → Int → Success) → Int → Success

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first

argument must be a list of integers. The other arguments are as in sum.

count :: Int → [Int] → (Int → Int → Success) → Int → Success

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements in the

list of FD variables vs that are equal to v, is satisfied. The first argument must be an

integer. The other arguments are as in sum.

allDifferent :: [Int] → Success

”All different” constraint on FD variables.

all different :: [Int] → Success

For backward compatibility. Use allDifferent.

indomain :: Int → Success

Instantiate a single FD variable to its values in the specified domain.

labeling :: [LabelingOption] → [Int] → Success

Instantiate FD variables to their values in the specified domain.

47

A.2.5 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats in arithmetic constraints.

(-.) :: Float → Float → Float

Subtraction on floats in arithmetic constraints.

(*.) :: Float → Float → Float

Multiplication on floats in arithmetic constraints.

(/.) :: Float → Float → Float

Division on floats in arithmetic constraints.

(<.) :: Float → Float → Success

”Less than” constraint on floats.

(>.) :: Float → Float → Success

”Greater than” constraint on floats.

(<=.) :: Float → Float → Success

”Less than or equal” constraint on floats.

(>=.) :: Float → Float → Success

”Greater than or equal” constraint on floats.

i2f :: Int → Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends

until the first argument is ground.

minimumFor :: (a → Success) → (a → Float) → a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates

to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value

does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a → Success) → (a → Float) → a → Success

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is

minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a → Success) → (a → Float) → a

48

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates

to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value

does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a → Success) → (a → Float) → a → Success

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is

maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.6 Library CLPB

This library provides a Boolean Constraint Solver based on BDDs.

Exported types:

data Boolean

Exported constructors:

Exported functions:

true :: Boolean

The always satisfied constraint

false :: Boolean

The never satisfied constraint

neg :: Boolean → Boolean

Result is true iff argument is false.

(.&&) :: Boolean → Boolean → Boolean

Result is true iff both arguments are true.

(.||) :: Boolean → Boolean → Boolean

Result is true iff at least one argument is true.

(./=) :: Boolean → Boolean → Boolean

Result is true iff exactly one argument is true.

(.==) :: Boolean → Boolean → Boolean

Result is true iff both arguments are equal.

(.<=) :: Boolean → Boolean → Boolean

Result is true iff the first argument implies the second.

49

(.>=) :: Boolean → Boolean → Boolean

Result is true iff the second argument implies the first.

(.<) :: Boolean → Boolean → Boolean

Result is true iff the first argument is false and the second is true.

(.>) :: Boolean → Boolean → Boolean

Result is true iff the first argument is true and the second is false.

count :: [Boolean] → [Int] → Boolean

Result is true iff the count of valid constraints in the first list is an element of the second

list.

exists :: Boolean → Boolean → Boolean

Result is true, if the first argument is a variable which can be instantiated such that

the second argument is true.

satisfied :: Boolean → Success

Checks the consistency of the constraint with regard to the accumulated constraints,

and, if the check succeeds, tells the constraint.

check :: Boolean → Bool

Asks whether the argument (or its negation) is now entailed by the accumulated con-

straints. Fails if it is not.

bound :: [Boolean] → Success

Instantiates given variables with regard to the accumulated constraints.

simplify :: Boolean → Boolean

Simplifies the argument with regard to the accumulated constraints.

evaluate :: Boolean → Bool

Evaluates the argument with regard to the accumulated constraints.

A.2.7 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are

intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-

sented as lists. Ideally these lists contains no duplicate elements and the order of their elements

cannot be observed. In practice, these conditions are not enforced.

50

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list

in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],

[1,3], [1], [2,3], [2], [3], or [].

splitSet :: [a] → ([a],[a])

Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the

result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their

concatenation is a permutation of the input list. No guarantee is made on the order of

the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]

gives [[1,2,3]], [[2,3],[1]], [[1,3],[2]], [[3],[1,2]], or [[3],[2],[1]].

A.2.8 Library Constraint

Some useful operations for constraint programming.

Exported functions:

(<:) :: a → a → Success

Less-than on ground data terms as a constraint.

(>:) :: a → a → Success

Greater-than on ground data terms as a constraint.

(<=:) :: a → a → Success

Less-or-equal on ground data terms as a constraint.

(>=:) :: a → a → Success

Greater-or-equal on ground data terms as a constraint.

andC :: [Success] → Success

Evaluates the conjunction of a list of constraints.

51

orC :: [Success] → Success

Evaluates the disjunction of a list of constraints.

allC :: (a → Success) → [a] → Success

Is a given constraint abstraction satisfied by all elements in a list?

anyC :: (a → Success) → [a] → Success

Is there an element in a list satisfying a given constraint?

A.2.9 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format

can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

52

A.2.10 Library Database

Library for accessing and storing data in databases. The contents of a database is represented in

this library as dynamic predicates that are defined by facts than can change over time and can

be persistently stored. All functions in this library distinguishes between queries that access the

database and transactions that manipulates data in the database. Transactions have a monadic

structure. Both queries and transactions can be executed as I/O actions. However, arbitrary I/O

actions cannot be embedded in transactions.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be

declared by:

p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Exported types:

data Query

Abstract datatype to represent database queries.

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

53

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

data Transaction

Abstract datatype for representing transactions.

Exported constructors:

Exported functions:

queryAll :: (a → Dynamic) → Query [a]

A database query that returns all answers to an abstraction on a dynamic expression.

queryOne :: (a → Dynamic) → Query (Maybe a)

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It returns Nothing if no answer exists.

queryOneWithDefault :: a → (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It returns the first argument if no answer exists.

queryJustOne :: (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It fails if no answer exists.

dynamicExists :: Dynamic → Query Bool

A database query that returns True if there exists the argument facts (without free

variables!) and False, otherwise.

transformQ :: (a → b) → Query a → Query b

Transforms a database query from one result type to another according to a given

mapping.

runQ :: Query a → IO a

Executes a database query on the current state of dynamic predicates. If other processes

made changes to persistent predicates, these changes are read and made visible to the

currently running program.

showTError :: TError → String

Transforms a transaction error into a string.

addDB :: Dynamic → Transaction ()

54

Adds new facts (without free variables!) about dynamic predicates. Conditional dy-

namics are added only if the condition holds.

deleteDB :: Dynamic → Transaction ()

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics

are deleted only if the condition holds.

getDB :: Query a → Transaction a

Returns the result of a database query in a transaction.

returnT :: a → Transaction a

The empty transaction that directly returns its argument.

doneT :: Transaction ()

The empty transaction that returns nothing.

errorT :: TError → Transaction a

Abort a transaction with a specific transaction error.

failT :: String → Transaction a

Abort a transaction with a general error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Sequential composition of transactions.

(|>>) :: Transaction a → Transaction b → Transaction b

Sequential composition of transactions.

sequenceT :: [Transaction a] → Transaction [a]

Executes a sequence of transactions and collects all results in a list.

sequenceT :: [Transaction a] → Transaction ()

Executes a sequence of transactions and ignores the results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Maps a transaction function on a list of elements. The results of all transactions are

collected in a list.

mapT :: (a → Transaction b) → [a] → Transaction ()

Maps a transaction function on a list of elements. The results of all transactions are

ignored.

runT :: Transaction a → IO (Either a TError)

55

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,

no other process can perform a transaction in parallel). After the successful transac-

tion, the access is unlocked so that the updates performed in this transaction become

persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort

of the transaction), the changes of the transaction to persistent predicates are ignored

and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should be

handled (execept for an explicit failT that leads to an abort of the transaction). If a

transaction is externally interrupted (e.g., by killing the process), some locks might never

be removed. However, they can be explicitly removed by deleting the corresponding

lock files reported at startup time.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similarly to runT but a run-time error is raised if the execution

of the transaction fails.

runTNA :: Transaction a → IO (Either a TError)

Executes a possibly composed transaction as a Non-Atomic(!) sequence of its individual

database updates. Thus, the argument is not executed as a single transaction in contrast

to runT, i.e., no predicates are locked and individual updates are not undone in case of

a transaction error. This operation could be applied to execute a composed transaction

without the overhead caused by (the current implementation of) transactions if one is

sure that locking is not necessary (e.g., if the transaction contains only database reads

and transaction error raising).

A.2.11 Library DaVinci

Binding for the daVinci graph visualization tool.

This library supports the visualization of graphs by the daVinci graph drawing tool through the

following features:

• Graphs are displayed by the main functions dvDisplay or dvDisplayInit

• Graphs to be displayed are constructed by the functions:

dvNewGraph: takes a list of nodes to construct a graph

dvSimpleNode: a node without outgoing edges

dvNodeWithEdges: a node with a list of outgoing edges

dvSimpleEdge: an edge to a particular node

The constructors dvSimpleNode/dvNodeWithEdges/dvSimpleEdge have a graph identifier

(type DvId) as a first argument. This identifier is a free variable (since type DvId is abstract)

and can be used in other functions to refer to this node or edge.

56

http://www.tzi.de/daVinci/

• The constructor functions for graph entities take an event handler (of type ”DvWindow ->

Success”) as the last argument. This event handler is executed whenever the user clicks on

the corresponding graph entity.

• There are a number of predefined event handlers to manipulate existing graphs (see func-

tions dvSetNodeColor, dvAddNode, dvSetEdgeColor, dvAddEdge, dvDelEdge, dvSetClick-

Handler). dvEmptyH is the ”empty handler” which does nothing.

For a correct installation of this library, the constant dvStartCmd defined below must be correctly

set to start your local installation of DaVinci.

Exported types:

type DvWindow = Port DvScheduleMsg

data DvId

The abstract datatype for identifying nodes in a graph. Used by the various functions

to create and manipulate graphs.

Exported constructors:

data DvGraph

The abstract datatype for graphs represented by daVinci. Such graphs are constructed

from a list of nodes by the function dvNewGraph.

Exported constructors:

data DvNode

The abstract datatype for nodes in a graph represented by daVinci. Nodes are con-

structed by the functions dvSimpleNode and dvNodeWithEdges.

Exported constructors:

data DvEdge

The abstract datatype for edges in a graph represented by daVinci. Edges are con-

structed by the function dvSimpleEdge.

Exported constructors:

data DvScheduleMsg

The abstract datatype for communicating with the daVinci visualization tool. The

constructors of this datatype are not important since all communications are wrapped

in this library. The only relevant point is that Port DvScheduleMsg -> Success is

the type of an event handler that can manipulate a graph visualized by daVinci (see

dvSetNodeColor, dvAddNode etc).

Exported constructors:

57

Exported functions:

dvDisplay :: DvGraph → IO ()

Displays a graph with daVinci and run the scheduler for handling events.

dvDisplayInit :: DvGraph → (Port DvScheduleMsg → Success) → IO ()

Displays a graph with daVinci and run the scheduler for handling events after perform-

ing some initialization events.

dvNewGraph :: [DvNode] → DvGraph

Constructs a new graph from a list of nodes.

dvSimpleNode :: DvId → String → (Port DvScheduleMsg → Success) → DvNode

A node without outgoing edges.

dvNodeWithEdges :: DvId → String → [DvEdge] → (Port DvScheduleMsg → Success)

→ DvNode

A node with a list of outgoing edges.

dvSimpleEdge :: DvId → DvId → (Port DvScheduleMsg → Success) → DvEdge

An edge to a particular node.

dvSetNodeColor :: DvId → String → Port DvScheduleMsg → Success

An event handler that sets the color (second argument) of a node.

dvAddNode :: DvId → String → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that adds a new node to the graph.

dvSetEdgeColor :: DvId → String → Port DvScheduleMsg → Success

An event handler that sets the color (second argument) of an edge.

dvAddEdge :: DvId → DvId → DvId → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that adds a new edge to the graph.

dvDelEdge :: DvId → Port DvScheduleMsg → Success

An event handler that deletes an existing edge from the graph.

dvSetClickHandler :: DvId → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that changes the event handler of a node or edge.

dvEmptyH :: Port DvScheduleMsg → Success

The ”empty” event handler.

58

A.2.12 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

removeFile :: String → IO ()

Deletes a file from the file system.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameFile :: String → String → IO ()

Renames a file.

renameDirectory :: String → String → IO ()

Renames a directory.

59

A.2.13 Library Dynamic

Library for dynamic predicates. 7 dyn.html”> This paper contains a description of the basic ideas

behind this library.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be

declared by:

p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Remark: This library has been revised to the library Database. Thus, it might not be further

supported in the future.

Exported types:

data Dynamic

The general type of dynamic predicates.

Exported constructors:

Exported functions:

dynamic :: a

dynamic is only used for the declaration of a dynamic predicate and should not be used

elsewhere.

persistent :: String → a

persistent is only used for the declaration of a persistent dynamic predicate and should

not be used elsewhere.

(<>) :: Dynamic → Dynamic → Dynamic

Combine two dynamics.

(|>) :: Dynamic → Bool → Dynamic

Restrict a dynamic with a condition.

(|&>) :: Dynamic → Success → Dynamic

Restrict a dynamic with a constraint.

assert :: Dynamic → IO ()

7http://www.informatik.uni-kiel.de/~mh/papers/JFLP04

60

Asserts new facts (without free variables!) about dynamic predicates. Conditional

dynamics are asserted only if the condition holds.

retract :: Dynamic → IO Bool

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics

are retracted only if the condition holds. Returns True if all facts to be retracted exist,

otherwise False is returned.

getKnowledge :: IO (Dynamic → Success)

Returns the knowledge at a particular point of time about dynamic predicates. If other

processes made changes to persistent predicates, these changes are read and made visible

to the currently running program.

getDynamicSolutions :: (a → Dynamic) → IO [a]

Returns all answers to an abstraction on a dynamic expression. If other processes

made changes to persistent predicates, these changes are read and made visible to the

currently running program.

getDynamicSolution :: (a → Dynamic) → IO (Maybe a)

Returns an answer to an abstraction on a dynamic expression. Returns Nothing if no

answer exists. If other processes made changes to persistent predicates, these changes

are read and made visible to the currently running program.

isKnown :: Dynamic → IO Bool

Returns True if there exists the argument facts (without free variables!) and False,

otherwise.

transaction :: IO a → IO (Maybe a)

Perform an action (usually containing updates of various dynamic predicates) as a single

transaction. This is the preferred way to execute any changes to persistent dynamic

predicates if there might be more than one process that may modify the definition of

such predicates in parallel.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,

no other process can perform a transaction in parallel). After the successful transac-

tion, the access is unlocked so that the updates performed in this transaction become

persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort

of the transaction), the changes of the transaction to persistent predicates are ignored

and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should

be handled (execept for abortTransaction). If a transaction is externally interrupted

(e.g., by killing the process), some locks might never be removed. However, they can

be explicitly removed by deleting the corresponding lock files reported at startup time.

Nested transactions are not supported and lead to a failure.

61

transactionWithErrorCatch :: IO a → IO (Either a IOError)

Perform an action (usually containing updates of various dynamic predicates) as a

single transaction. This is similar to transaction but an execution error is caught and

returned instead of printing it.

abortTransaction :: IO a

Aborts the current transaction. If a transaction is aborted, the remaining actions of the

transaction are not executed and all changes to persistent dynamic predicates made

in this transaction are ignored.

abortTransaction should only be used in a transaction. Although the execution of

abortTransaction always fails (basically, it writes an abort record in log files, unlock

them and then fails), the failure is handled inside transaction.

A.2.14 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is

/.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is

:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory

prefix is ”.” if there is no real prefix in the name.

62

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

findFileInPath :: String → [String] → [String] → IO (Maybe String)

Included for backward compatibility. Use lookupFileInPath instead!

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if

such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is

delivered if there is no such file.

A.2.15 Library Float

A collection of operations on floating point numbers.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

i2f :: Int → Float

Conversion function from integers to floats.

63

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between

the argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the

argument. If the argument is equidistant between two integers, it is rounded to the

closest even integer value.

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

Cosine.

tan :: Float → Float

Tangent.

atan :: Float → Float

Arc tangent.

A.2.16 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its

value can be accessed and modified by IO actions. Furthermore, global entities can be declared as

persistent so that their values are stored across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global entity g with an initial value v of type t must be declared by:

g :: Global t

g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the

global entity (see type GlobalSpec).

64

Exported types:

data Global

The type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does

not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used else-

where. In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term

before it is updated.

A.2.17 Library GlobalVariable

Library for handling global variables. A global variable has a name declared in the program. Its

value (a data term possibly containing free variables) can be accessed and modified by IO actions.

In contast to global entities (as defined in the library Global), global variables can contain logic

variables shared with computations running in the same computation space. As a consequence,

global variables cannot be persistent, their values are not kept across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global variable g with an initial value v of type t must be declared by:

65

g :: GVar t

g = gvar v

Here, the type t must not contain type variables. v is the initial value for every program run.

Note: the implementation in PAKCS is based on threading a state through the execution. Thus,

it might be the case that some updates of global variables are lost if fancy features like unsafe

operations or debugging support are used.

Exported types:

data GVar

The general type of global variables.

Exported constructors:

Exported functions:

gvar :: a → GVar a

gvar is only used for the declaration of a global variable and should not be used else-

where. In the future, it might become a keyword.

readGVar :: GVar a → IO a

Reads the current value of a global variable.

writeGVar :: GVar a → a → IO ()

Updates the value of a global variable. The associated term is evaluated to a data term

and might contain free variables.

A.2.18 Library GUI

Library for GUI programming in Curry (based on Tcl/Tk). This paper contains a description of

the basic ideas behind this library.

This library is an improved and updated version of the library Tk. The latter might not be

supported in the future.

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication

is done.

Exported constructors:

data Widget

The type of possible widgets in a GUI.

66

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton

– a button in a GUI whose event handler is activated if the user presses the button

• Canvas :: [ConfItem] → Widget

Canvas

– a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton

– a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

• Entry :: [ConfItem] → Widget

Entry

– an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label

– a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox

– a widget containing a list of items for selection

• Message :: [ConfItem] → Widget

Message

– a message for showing simple string values

• MenuButton :: [ConfItem] → Widget

MenuButton

– a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale

– a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH

67

– a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV

– a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit

– a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row

– a horizontal alignment of widgets

• Col :: [ConfCollection] → [Widget] → Widget

Col

– a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix

– a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

Exported constructors:

• Active :: Bool → ConfItem

Active

– define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor

– alignment of information inside a widget where the argument must be: n, ne, e, se, s,

sw, w, nw, or center

• Background :: String → ConfItem

Background

– the background color

68

• Foreground :: String → ConfItem

Foreground

– the foreground color

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler

– an event handler associated to a widget. The event handler returns a list of widget

ref/configuration pairs that are applied after the handler in order to configure GUI

widgets

• Height :: Int → ConfItem

Height

– the height of a widget (chars for text, pixels for graphics)

• CheckInit :: String → ConfItem

CheckInit

– initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems

– list of items contained in a canvas

• List :: [String] → ConfItem

List

– list of values shown in a listbox

• Menu :: [MenuItem] → ConfItem

Menu

– the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef

– a reference to this widget

• Text :: String → ConfItem

Text

– an initial text contents

• Width :: Int → ConfItem

Width

69

– the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill

– fill widget in both directions

• FillX :: ConfItem

FillX

– fill widget in horizontal direction

• FillY :: ConfItem

FillY

– fill widget in vertical direction

• TclOption :: String → ConfItem

TclOption

– further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some

event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf

– reconfigure the widget referred by wref with configuration item conf

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler

– add a new handler to the GUI that processes inputs on an input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl

– remove a handler for an input stream referred by hdl from the GUI (usually used to

remove handlers for closed streams)

data Event

70

The data type of possible events on which handlers can react. This list is still incomplete

and might be extended or restructured in future releases of this library.

Exported constructors:

• DefaultEvent :: Event

DefaultEvent

– the default event of the widget

• MouseButton1 :: Event

MouseButton1

– left mouse button pressed

• MouseButton2 :: Event

MouseButton2

– middle mouse button pressed

• MouseButton3 :: Event

MouseButton3

– right mouse button pressed

• KeyPress :: Event

KeyPress

– any key is pressed

• Return :: Event

Return

– return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign

– centered alignment

• LeftAlign :: ConfCollection

LeftAlign

71

– left alignment

• RightAlign :: ConfCollection

RightAlign

– right alignment

• TopAlign :: ConfCollection

TopAlign

– top alignment

• BottomAlign :: ConfCollection

BottomAlign

– bottom alignment

data MenuItem

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton

– a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator

– a separator between menu entries

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton

– a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk

(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

72

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the

constructor WRefLabel will not be exported so that values can only be created inside

this module.

Exported constructors:

data Style

The data type of possible text styles.

Exported constructors:

• Bold :: Style

Bold

– text in bold font

• Italic :: Style

Italic

– text in italic font

• Underline :: Style

Underline

– underline text

• Fg :: Color → Style

Fg

– foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg

– background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

73

• Blue :: Color

• Brown :: Color

• Cyan :: Color

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

• Pink :: Color

• Purple :: Color

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

74

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI

events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO ()) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO ()) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runControlledGUI :: String → (Widget,a → GuiPort → IO ()) → [a] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external message stream.

This operation is useful to run a GUI that should react on user events as well as messages

sent to an external port.

runConfigControlledGUI :: String → (Widget,a → GuiPort → IO [ReconfigureItem])

→ [a] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external message stream.

This operation is useful to run a GUI that should react on user events as well as messages

sent to an external port.

runInitControlledGUI :: String → (Widget,a → GuiPort → IO ()) → (GuiPort → IO

()) → [a] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, an event handler is provided that process

messages received from an external message stream. This operation is useful to run a

GUI that should react on user events as well as messages sent to an external port.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO ()]) →
[Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of

event handlers is provided that process inputs received from a corresponding list of

handles to input streams. Thus, if the i-th handle has some data available, the i-th

event handler is executed with the i-th handle as a parameter. This operation is useful

to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

75

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO ()]) →
(GuiPort → IO ()) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, a list of event handlers is provided that process

inputs received from a corresponding list of handles to input streams. Thus, if the i-th

handle has some data available, the i-th event handler is executed with the i-th handle

as a parameter. This operation is useful to run a GUI that should react on inputs

provided by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for

backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the

end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust

the view to the end of the TextEdit widget. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and

end position similarly to getCursorPosition. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

76

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

Removes a style value in a region of a TextEdit widget. The region is specified a start

and end position similarly to getCursorPosition. This is an experimental function

and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are

numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is

visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is

useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popup message :: String → IO ()

A simple popup message.

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a

GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI

port as parameter (in order to read or write values from/into the GUI) and returns a

list of widget reference/configuration pairs which is applied after the handler in order

to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

The event handler is a configuration handler (see Command) that allows the configura-

tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

77

A text edit widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration

options for the entry widget.

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be

returned (or ”” if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types

that could be selected. A file type pair consists of a name and an extension for that

file type. The file with its full path name will be returned (or ”” if the user cancels the

selection).

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing

file, she/he will asked to confirm to overwrite it. The file with its full path name will

be returned (or ”” if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of

file types that could be selected. A file type pair consists of a name and an extension

for that file type. If the user chooses an existing file, she/he will asked to confirm to

overwrite it. The file with its full path name will be returned (or ”” if the user cancels

the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or

”” if the user cancels the selection).

A.2.19 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on

the precision of integers. Operation bitNot is necessarily an exception.

78

Exported functions:

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0 . Executes in O(log b)

steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <= 0 .

For positive integers, the returned value is 1 less the number of digits in the decimal

representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0 . Executes in

O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0 .

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if m <= 0 or n < m.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

79

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only

the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

A.2.20 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

80

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument

is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the

beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t

milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available

within t milliseconds, it returns -1, otherwise it returns the index of the corresponding

handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

81

Waits until input is available on a given handles or a message in the message stream.

Usually, the message stream comes from an external port. Thus, this operation im-

plements a committed choice over receiving input from an IO handle or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message

stream. Usually, the message stream comes from an external port. Thus, this operation

implements a committed choice over receiving input from IO handles or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before

returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

82

A.2.21 Library IOExts

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when

they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams

of the new process (stdin,stdout,stderr) are returned as handles so that they can be

explicitly manipulated. They should be closed with IO.hClose since they are not closed

automatically when the process terminates.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams

of the new process is returned as one handle which is both readable and writable. Thus,

writing to the handle produces input to the process and output from the process can

be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be

used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO

”myaction.lock” act) ensures that the action ”act” is not executed by two processes on

the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to

ground terms before applying this operation.

getAssoc :: String → IO (Maybe String)

83

Gets the value associated to a string. Nothing is returned if there does not exist an

associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial values.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

A.2.22 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

• JSString :: String → JSExp

JSString

– string constant

• JSInt :: Int → JSExp

JSInt

– integer constant

• JSBool :: Bool → JSExp

JSBool

– Boolean constant

• JSIVar :: Int → JSExp

JSIVar

– indexed variable

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx

– array access to index array variable

84

• JSOp :: String → JSExp → JSExp → JSExp

JSOp

– infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall

– function call

• JSApply :: JSExp → JSExp → JSExp

JSApply

– function call where the function is an expression

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda

– (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign

– assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf

– conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch

– switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall

– procedure call

• JSReturn :: JSExp → JSStat

JSReturn

85

– return statement

• JSVarDecl :: Int → JSStat

JSVarDecl

– local variable declaration

data JSBranch

Exported constructors:

• JSCase :: String → [JSStat] → JSBranch

JSCase

– case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault

– default branch

data JSFDecl

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

86

A.2.23 Library KeyDatabase

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Query that returns all keys of entries in the database.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Query that returns all infos of entries in the database.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Query that returns all key/info pairs of the database.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

Sorts a given list by associated index and group for identical index. Empty lists are

added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes an entry with a given key in the database. No error is raised if the given key

does not exist.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes all entries with the given keys in the database. No error is raised if some of the

given keys does not exist.

87

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores a new entry in the database and return the key of the new entry.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries in the database.

A.2.24 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

This module reimplements the interface of the module KeyDatabase based on the SQLite database

engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust

the value of the constant pathtosqlite3.

Programs that use the KeyDatabase module can be adjusted to use this module instead by re-

placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the

declarations of database predicates to use the function persistentSQLite instead of dynamic or

persistent. This module redefines the types Dynamic, Query, and Transaction and although

both implementations can be used in the same program (by importing modules qualified) they

cannot be mixed.

Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,

groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

Exported types:

data Query

Queries can read but not write to the database.

Exported constructors:

data Transaction

Transactions can modify the database and are executed atomically.

Exported constructors:

data Dynamic

88

http://sqlite.org/

Result type of database predicates.

Exported constructors:

data ColVal

Abstract type for value restrictions

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

Exported functions:

runQ :: Query a → IO a

Runs a database query in the IO monad.

transformQ :: (a → b) → Query a → Query b

Applies a function to the result of a database query.

runT :: Transaction a → IO (Either a TError)

89

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as

soon as the transaction is started. After one transaction is started, no other database

connection will be able to write to the database or start a transaction. Other connections

can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might

also be possible to allow multiple simultaneous transactions that lock tables on the first

database access (which is the default in SQLite). However this leads to unpredictable

order in which locks are taken when multiple databases are involved. The current

implementation fixes the locking order by sorting databases by their name and locking

them in order immediately when a transaction begins.

More information on 8 transaction.html”>transactions in SQLite is available online.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similar to runT but a run-time error is raised if the execution

of the transaction fails.

getDB :: Query a → Transaction a

Lifts a database query to the transaction type such that it can be composed with other

transactions. Run-time errors that occur during the execution of the given query are

transformed into transaction errors.

returnT :: a → Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to

ignore results when composing transactions.

errorT :: TError → Transaction a

Aborts a transaction with an error.

failT :: String → Transaction a

Aborts a transaction with a user-defined error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Combines two transactions into a single transaction that executes both in sequence.

The first transaction is executed, its result passed to the function which computes the

second transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.

8http://sqlite.org/lang

90

(|>>) :: Transaction a → Transaction b → Transaction b

Combines two transactions to execute them in sequence. The result of the first trans-

action is ignored.

sequenceT :: [Transaction a] → Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.

sequenceT :: [Transaction a] → Transaction ()

Executes a list of transactions sequentially, ignoring their results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-

action sequentially, and collects their results.

mapT :: (a → Transaction b) → [a] → Transaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-

actions sequentially, and ignores their results.

persistentSQLite :: String → String → [String] → Int → a → Dynamic

This function is used instead of dynamic or persistent to declare predicates whose

facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when

the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a

tuple with a matching arity. Other record types are not supported. If no column names

are provided a table with a single column called info is created. Columns of name

rowid are not supported and lead to a run-time error.

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Returns a list of all stored keys. Do not use this function unless the database is small.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Returns a list of all info parts of stored entries. Do not use this function unless the

database is small.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.

(@=) :: Int → a → ColVal

91

Constructs a value restriction for the column given as first argument

someDBKeys :: (Int → a → Dynamic) → [ColVal] → Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven

value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int → a → Dynamic) → [ColVal] → Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions

for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int → a → Dynamic) → [ColVal] → Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe

to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int → a → Dynamic) → [Int] → [ColVal] → Query

[(Int,b)]

Returns a list of column projections on those entries that match the given value re-

strictions for columns. Safe to use even on large databases if the number of results is

small.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is

not present.

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is

not present.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes the information stored under the given key. If the given key does not exist this

transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes the information stored under the given keys. No error is raised if (some of) the

keys do not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Updates the information stored under the given key. The transaction is aborted with a

KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores new information in the database and yields the newly generated key.

92

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries from the database associated with a predicate.

closeDBHandles :: IO ()

Closes all database connections. Should be called when no more database access will

be necessary.

showTError :: TError → String

Transforms a transaction error into a string.

A.2.25 Library KeyDB

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

Remark: This library has been revised to the library KeyDatabase. Thus, it might not be further

supported in the future.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → IO Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → IO [Int]

Returns all keys of entries in the database.

getDBInfo :: (Int → a → Dynamic) → Int → IO a

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

Sorts a given list by associated index and group for identical index. Empty lists are

added for missing indexes

93

getDBInfos :: (Int → a → Dynamic) → [Int] → IO [a]

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → IO ()

Deletes an entry with a given key in the database.

updateDBEntry :: (Int → a → Dynamic) → Int → a → IO ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → IO Int

Stores a new entry in the database and return the key of the new entry.

cleanDB :: (Int → a → Dynamic) → IO ()

Deletes all entries in the database.

A.2.26 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise

Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise

Nothing is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as

(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

94

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the

list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

permutations :: [a] → [[a]]

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that

satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4)></4)>

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

95

Splits the list argument into a list of lists of related adjacent elements.

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits

[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]

== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: [Int] → Int

Returns the sum of a list of integers.

product :: [Int] → Int

Returns the product of a list of integers.

maximum :: [a] → a

Returns the maximum of a non-empty list.

96

minimum :: [a] → a

Returns the minimum of a non-empty list.

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]

== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a

function to each element of a list, passing an accumulating parameter from left to right,

and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a

function to each element of a list, passing an accumulating parameter from right to left,

and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

A.2.27 Library Maybe

Library with some useful functions on the Maybe datatype

97

Exported functions:

isJust :: Maybe a → Bool

isNothing :: Maybe a → Bool

fromJust :: Maybe a → a

fromMaybe :: a → Maybe a → a

maybeToList :: Maybe a → [a]

listToMaybe :: [a] → Maybe a

catMaybes :: [Maybe a] → [a]

mapMaybe :: (a → Maybe b) → [a] → [b]

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is

interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

monadic sequence for maybe

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

monadic map for maybe

A.2.28 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In

contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to

provide sockets that are addressed by symbolic names rather than numbers.

In standard applications, the server side uses the operations listenOn and socketAccept to provide

some service on a named socket, and the client side uses the operation connectToSocket to request

a service.

98

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to

connectToSocket, this action waits until the socket has been registered with its sym-

bolic name.

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of

the connection. This action waits (possibly forever) until the socket with the symbolic

name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the

symbolic name is not registered, an error is reported.

99

A.2.29 Library Parser

Library with functional logic parser combinators.

Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective

of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser

p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with

representation) at least once.

100

A.2.30 Library Ports

Library for distributed programming with ports. This paper9 contains a description of the basic

ideas behind this library.

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.

Exported constructors:

data SP_Msg

A ”stream port” is an adaption of the port concept to model the communication with

bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream

(e.g., opened by openProcessPort) where the communication is performed via the fol-

lowing stream port messages.

Exported constructors:

• SP_Put :: String → SP_Msg

SP_Put s

– write the argument s on the output stream

• SP_GetLine :: String → SP_Msg

SP_GetLine s

– unify the argument s with the next text line of the input stream

• SP_GetChar :: Char → SP_Msg

SP_GetChar c

– unify the argument c with the next character of the input stream

• SP_EOF :: Bool → SP_Msg

SP_EOF b

– unify the argument b with True if we are at the end of the input stream, otherwise with

False

• SP_Close :: SP_Msg

SP_Close

– close the input/output streams

9http://www.informatik.uni-kiel.de/~mh/papers/PPDP99.html

101

Exported functions:

openPort :: Port a → [a] → Success

Opens an internal port for communication.

send :: a → Port a → Success

Sends a message to a port.

doSend :: a → Port a → IO ()

I/O action that sends a message to a port.

ping :: Int → Port a → IO (Maybe Int)

Checks whether port p is still reachable.

timeoutOnStream :: Int → [a] → Maybe [a]

Checks for instantiation of a stream within some amount of time.

openProcessPort :: String → IO (Port SP_Msg)

Opens a new connection to a process that executes a shell command.

openNamedPort :: String → IO [a]

Opens an external port with a symbolic name.

connectPortRepeat :: Int → IO a → Int → String → IO (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPort, this action waits

until the external port has been registered with its symbolic name.

connectPortWait :: String → IO (Port a)

Waits for connection to an external port and return the connected port. This action

waits (possibly forever) until the external port is registered.

connectPort :: String → IO (Port a)

Connects to an external port. The external port must be already registered, otherwise

an error is reported.

choiceSPEP :: Port SP_Msg → [a] → Either String [a]

This function implements a committed choice over the receiving of messages via a stream

port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a → [b] → Success) → a → Port b → Success

102

Creates a new object (of type State -> [msg] -> Success) with an initial state and a

port to which messages for this object can be sent.

newNamedObject :: (a → [b] → Success) → a → String → IO ()

Creates a new object (of type State -> [msg] -> Success) with a symbolic port name

to which messages for this object can be sent.

runNamedServer :: ([a] → IO b) → String → IO b

Runs a new server (of type [msg] -> IO a) on a named port to which messages can

be sent.

A.2.31 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library

(fill, fillBreak and indent are missing) with a linear-time, bounded implementation by Olaf

Chitil.

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

empty :: Doc

The empty document is, indeed, empty. Although empty has no content, it does have a

height of 1 and behaves exactly like (text "") (and is therefore not a unit of <$>).

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any

newline (\n) characters. If the string contains newline characters, the function string

should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting

level. Document (linesep s) behaves like (text s) if the line break is undone by

group.

line :: Doc

103

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

The line document advances to the next line and indents to the current nesting level.

Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The linebreak document advances to the next line and indents to the current nesting

level. Document linebreak behaves like empty if the line break is undone by group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, otherwise

it behaves like line.

softline = group line

softbreak :: Doc

The document softbreak behaves like empty if the resulting output fits the page, other-

wise it behaves like line.

softbreak = group linebreak

group :: Doc → Doc

The group combinator is used to specify alternative layouts. The document (group x)

undoes all line breaks in document x. The resulting line is added to the current line if

that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-

creased by i (See also hang, align and indent).

nest 2 (text "hello" <$> text "world") <$> text "!"

outputs as:

hello

world

!

hang :: Int → Doc → Doc

The hang combinator implements hanging indentation. The document (hang i d)

renders document d with a nesting level set to the current column plus i. The following

example uses hanging indentation for some text:

test = hang 4

(fillSep

(map text

(words "the hang combinator indents these words !")))

104

Which lays out on a page with a width of 20 characters as:

the hang combinator

indents these

words !

The hang combinator is implemented as:

hang i x = align (nest i x)

align :: Doc → Doc

The document (align d) renders document ‘d with the nesting level set to the current

column. It is used for example to implement hang.

As an example, we will put a document right above another one, regardless of the

current nesting level:

x $$ y = align (x <$> y)

test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice

world

combine :: Doc → Doc → Doc → Doc

The document (combine x l r) encloses document x between documents l and r using

(<>).

combine x l r = l <> x <> r

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative

operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between.

(<$>) :: Doc → Doc → Doc

The document (x <$> y) concatenates document x and y with a line in between.

(</>) :: Doc → Doc → Doc

105

The document (x </> y) concatenates document x and y with a softline in between.

This effectively puts x and y either next to each other (with a space in between) or

underneath each other.

(<$$>) :: Doc → Doc → Doc

The document (x<$$> y) concatenates document x and y with a linebreak in between.

(<//>) :: Doc → Doc → Doc

The document (x<//> y) concatenates document x and y with a softbreak in between.

This effectively puts x and y either right next to each other or underneath each other.

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Function

f should be like (<+>), (<$>) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with (<$>). If

a group undoes the line breaks inserted by vsep, all documents are separated with a

space.

someText = map text (words ("text to lay out"))

test = text "some" <+> vsep someText

This is layed out as:

some text

to

lay

out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

some text

to

lay

out

106

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (<+>) as long

as its fits the page, than inserts a line and continues doing that for all documents in

xs.

fillSep xs = foldr (</>) empty xs

sep :: [Doc] → Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),

if it fits the page, or vertically with (<$>).

sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a

group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<>) as long

as its fits the page, than inserts a linebreak and continues doing that for all documents

in xs.

fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),

if it fits the page, or vertically with (<$$>).

cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last

document.

someText = map text ["words","in","a","tuple"]

test = parens (align (cat (punctuate comma someText)))

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

107

(words,

in,

a,

tuple)

(If you want put the commas in front of their elements instead of at the end, you should

use tupled or, in general, encloseSep.)

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSep l r sep xs) concatenates the documents xs seperated by sep

and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs

test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10

,200

,3000]

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r sep xs) concatenates the documents xs seperated

by sep and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r sep xs) concatenates the documents xs seperated

by sep and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

list :: [Doc] → Doc

108

The document (list xs) comma seperates the documents xs and encloses them in square

brackets. The documents are rendered horizontally if that fits the page. Otherwise they

are aligned vertically. All comma seperators are put in front of the elements.

tupled :: [Doc] → Doc

The document (tupled xs) comma seperates the documents xs and encloses them in

parenthesis. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All comma seperators are put in front of the elements.

semiBraces :: [Doc] → Doc

The document (semiBraces xs) seperates the documents xs with semi colons and encloses

them in braces. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All semi colons are put in front of the elements.

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using

(<>).

enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes ".

bquotes :: Doc → Doc

Document (bquotes x) encloses document x with ‘ quotes.

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character shouldn’t be a

newline (\n), the function line should be used for line breaks.

109

string :: String → Doc

The document (string s) concatenates all characters in s using line for newline char-

acters and char for all other characters. It is used instead of text whenever the text

contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote, ".

semi :: Doc

110

The document semi contains a semi colon, ";".

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

A.2.32 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

111

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that

the returned values are very implementation dependent so that one should interpret

them with care!

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful

to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

112

Invoke the garbage collector (if possible). This could be useful before run-time critical

operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,

the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this

evaluation. During the evaluation, the garbage collector is turned off to get the total

space usage.

evalTime :: a → a

Evaluates the argument to normal form (and return the normal form) and print the

time needed for this evaluation on standard error. Included for backward compatibility

only, use profileTime!

evalSpace :: a → a

Evaluates the argument to normal form (and return the normal form) and print the

time and space needed for this evaluation on standard error. During the evaluation,

the garbage collector is turned off. Included for backward compatibility only, use pro-

fileSpace!

A.2.33 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a

property is defined by a line of the form prop=value where prop starts with a letter. All other lines

(e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

113

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the

property file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.34 Library Read

Library with some functions for reading special tokens.

This library is included for backward compatibility. You should use the library ReadNumeric which

provides a better interface for these functions.

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the

the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks

and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and

the the integer is read up to the first non-heaxdecimal digit.

A.2.35 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain

leadings blanks and the integer is read up to the first non-digit. If the string does not

start with an integer token, Nothing is returned, otherwise the result is (Just (v,s))

where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

114

Read a natural number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-digit. If the string does not start with

a natural number token, Nothing is returned, otherwise the result is (Just (v,s)) where

v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain

leadings blanks and the number is read up to the first non-hexadecimal digit. If the

string does not start with a hexadecimal number token, Nothing is returned, otherwise

the result is (Just (v,s)) where v is the value of the number and s is the remaing string

without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-octal digit. If the string does not start

with an octal number token, Nothing is returned, otherwise the result is (Just (v,s))

where v is the value of the number and s is the remaing string without the number

token.

A.2.36 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. This function is similar to

the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. Note that this function differs

from the prelude function show since it prefixes constructors with their module name

in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!). In case of a

successful parse, the result is a one element list containing a pair of the data term and

the remaining unparsed string.

115

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. In case of a successful parse, the

result is a one element list containing a pair of the data term and the remaining un-

parsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and

returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and

returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which

might be useful to modify the file with a standard text editor.

116

A.2.37 Library SetFunctions

This module contains a prototypical implementation of set functions in PAKCS. The general idea

of set functions is described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th International

Conference on Principles and Practice of Declarative Programming (PPDP’09), pp. 73-82, ACM

Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-

determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.

Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are values

of the arguments a1,...,an (i.e., the arguments are evaluated ”outside” this capsule so that the

non-determinism caused by evaluating these arguments is not captured in this capsule but yields

several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound inside

this capsule (but causes a suspension until they are bound). The set of values returned by a set

function is represented by an abstract type ”Values” on which several operations are defined in this

module.

Restrictions:

1. The set is a multiset, i.e., it might contain multiple values.

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its

evaluation will not terminate even if only some elements (e.g., for a containment test) are

demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be

evaluated.

Since this implementation is restricted and prototypical, the interface is not stable and might

change.

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set2 :: (a → b → c) → a → b → Values c

117

Combinator to transform a binary function into a corresponding set function.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

Combinator to transform a function of arity 4 into a corresponding set function.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

Combinator to transform a function of arity 7 into a corresponding set function.

isEmpty :: Values a → Bool

Is a multiset of values empty?

valueOf :: a → Values a → Bool

Is some value an element of a multiset of values?

contains :: a → Values a → Bool

Do not use. Use valueOf!

mapValues :: (a → b) → Values a → Values b

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

minValue :: (a → a → Bool) → Values a → a

Returns the minimal element of a non-empty multiset of values with respect to a given

total ordering on the elements.

118

maxValue :: (a → a → Bool) → Values a → a

Returns the maximal element of a non-empty multiset of value with respect to a given

total ordering on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the

list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a

consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As

a consequence, the multiset of values is completely evaluated. In order to ensure that

the result of this operation is independent of the evaluation order, the given ordering

must be a total order.

A.2.38 Library Socket

Library to support network programming with sockets. In standard applications, the server side

uses the operations listenOn and socketAccept to provide some service on a socket, and the client

side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is

returned.

socketAccept :: Socket → IO (String,Handle)

119

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.39 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not

included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for unde-

fined environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent

shell commands (see system) and visible to subsequent calls to getEnviron (but it is

not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

120

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently

executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit

status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given

by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.40 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day

hour minute second timezone) where timezone is an integer representing the timezone

as a difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

121

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC

time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs

in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).

Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is

independent on the local time.

toClockTime :: CalendarTime → ClockTime

122

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., ”September 23, 2006”.

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

123

A.2.41 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing

or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Success → a → a

Spawns a constraint and returns the second argument. This function can be consid-

ered as defined by ”spawnConstraint c x | c = x”. However, the evaluation of the

constraint and the right-hand side are performed concurrently, i.e., a suspension of the

constraint does not imply a blocking of the right-hand side and the right-hand side

might be evaluated before the constraint is successfully solved. Thus, a computation

might return a result even if some of the spawned constraints are suspended (use the

PAKCS/Curry2Prolog option ”+suspend” to show such suspended goals).

isVar :: a → Bool

Tests whether the first argument evaluates to a currently unbound variable (use with

care!).

identicalVar :: a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable

(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True

whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-

dard prefix notation. Thus, showAnyTerm evaluates its argument to normal

form. This function is similar to the function ReadShowTerm.showTerm but it also

transforms logic variables into a string representation that can be read back by

Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and

binding status of logic variables so that it should be used with care!

showAnyQTerm :: a → String

Transforms the normal form of a term into a string representation in standard prefix

notation. Thus, showAnyQTerm evaluates its argument to normal form. This function

is similar to the function ReadShowTerm.showQTerm but it also transforms logic variables

into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,

the result depends on the evaluation and binding status of logic variables so that it

should be used with care!

124

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The string might contain logical variable en-

codings produced by showAnyTerm. In case of a successful parse, the result is a one

element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The string might contain logical variable

encodings produced by showAnyTerm.

readsAnyQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. The string might contain logical

variable encodings produced by showAnyQTerm. In case of a successful parse, the re-

sult is a one element list containing a pair of the data term and the remaining unparsed

string.

readAnyQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. The string might contain logical

variable encodings produced by showAnyQTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in

standard prefix notation without module qualifiers. The result depends on the evalua-

tion and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in

standard prefix notation with module qualifiers. The result depends on the evaluation

and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String → [(a,String)]

Transforms a string containing an expression in standard prefix notation with qualified

constructor names into the corresponding expression. The string might contain logical

variable and defined function encodings produced by showAnyQExpression. In case of

a successful parse, the result is a one element list containing a pair of the expression

and the remaining unparsed string.

readAnyQExpression :: String → a

Transforms a string containing an expression in standard prefix notation with qualified

constructor names into the corresponding expression. The string might contain logical

variable and defined function encodings produced by showAnyQExpression.

125

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-

sequently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which

is neutral in the default can be implemented much more efficient

126

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized

time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

Exported functions:

empty :: Queue a

The empty queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqHead :: Queue a → a

The first element of the queue.

deqLast :: Queue a → a

The last element of the queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

127

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

deqLength :: Queue a → Int

Returns the number of elements in the queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q,deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then

Nothing else Just (deqLast q,deqInit q) but more efficient.

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.

In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the

order predicate le should not satisfy (le x x) for some key x.

Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like

(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of

key, the last corresponding element of the list is taken.

128

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added

starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM C combines the new element with

the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something

which isn’t there

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete

something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right

argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be

taken from the second map.

129

intersectFM C :: (a → a → b) → FM c a → FM c a → FM c b

Filters only those keys that are bound in both of the given maps and combines the

elements as in addToFM C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return

default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key

ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key

ordering.

130

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive

order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given

irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially

given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that

will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown

which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two

provide the same ordering predicate as used in the original finite map.

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).

In this library, graphs are composed and decomposed in an inductive way.

The key idea is as follows:

A graph is either empty or it consists of node context and a graph g’ which are put together by a

constructor (:&).

This constructor (:&), however, is not a constructor in the sense of abstract data type, but more

basically a defined constructing funtion.

A context is a node together withe the edges to and from this node into the nodes in the graph g’.

For examples of how to use this library, cf. the module GraphAlgorithms.

131

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled

with ()).

Unlabeled node

type LNode a = (Int,a)

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,

a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges

from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that

node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

132

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation

of Graph is hidden.

Exported constructors:

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the Context for an arbitrarily-chosen Node and the remaining

Graph.

In order to use graphs as abstract data structures, we also need means to decompose a

graph. This decompostion should work as much like pattern matching as possible. The

normal matching is done by the function matchAny, which takes a graph and yields a

graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty Graph.

133

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a Graph from the list of LNodes and LEdges.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a Graph from a list of Contexts.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled Graph from the list of Nodes and Edges.

insNode :: (Int,a) → Graph a b → Graph a b

Insert a LNode into the Graph.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a LEdge into the Graph.

delNode :: Int → Graph a b → Graph a b

Remove a Node from the Graph.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an Edge from the Graph.

insNodes :: [(Int,a)] → Graph a b → Graph a b

Insert multiple LNodes into the Graph.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple LEdges into the Graph.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple Nodes from the Graph.

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple Edges from the Graph.

isEmpty :: Graph a b → Bool

test if the given Graph is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a Graph into the MContext found

for the given node and the remaining Graph.

noNodes :: Graph a b → Int

The number of Nodes in a Graph.

134

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum Node in a Graph.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given Node. In contrast to ”match”, ”context” causes an error

if the Node is not present in the Graph.

lab :: Graph a b → Int → Maybe a

Find the label for a Node.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a Node.

suc :: Graph a b → Int → [Int]

Find all Nodes that have a link from the given Node.

pre :: Graph a b → Int → [Int]

Find all Nodes that link to to the given Node.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given Node.

lpre :: Graph a b → Int → [(Int,b)]

Find all Nodes that link to the given Node and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound LEdges for the given Node.

inn :: Graph a b → Int → [(Int,Int,b)]

Find all inward-bound LEdges for the given Node.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the Node.

indeg :: Graph a b → Int → Int

The inward-bound degree of the Node.

deg :: Graph a b → Int → Int

The degree of the Node.

gelem :: Int → Graph a b → Bool

True if the Node is present in the Graph.

135

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The Node in a Context.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

The label in a Context.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The LNode from a Context.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to or from in a Context.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to in a Context.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked from in a Context.

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All outward-directed LEdges in a Context.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed LEdges in a Context.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a Context.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a Context.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a Context.

136

labNodes :: Graph a b → [(Int,a)]

A list of all LNodes in the Graph.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all LEdges in the Graph.

nodes :: Graph a b → [Int]

List all Nodes in the Graph.

edges :: Graph a b → [(Int,Int)]

List all Edges in the Graph.

newNodes :: Int → Graph a b → [Int]

List N available Nodes, ie Nodes that are not used in the Graph.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the Node labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the Edge labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

A.3.5 Library Random

Library for pseudo-random number generation in Curry.

This library provides operations for generating pseudo-random number sequences. For any given

seed, the sequences generated by the operations in this module should be identical to the sequences

generated by the java.util.Random package.

The algorithm is a linear congruential pseudo-random number generator described in Donald E.

Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms, section 3.2.1.

137

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, uniformly distributed 32-bits integer values. All

2³² possible integer values are produced with (approximately) equal prob-

ability.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom, uniformly distributed sequence of values between 0 (inclusive)

and the specified value (exclusive). Each value is a 32-bits positive integer. All n possible

values are produced with (approximately) equal probability.

nextBoolean :: Int → [Bool]

Returns a pseudorandom, uniformly distributed sequence of boolean values. The values

True and False are produced with (approximately) equal probability.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should

only be used as a seed for pseudorandom number sequence and not as a random number

since the precision is limited to milliseconds

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:

Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e.,

one has to provide two explicit order predicates (”lessThan” and ”eq”below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates

generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is

((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a

multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for

the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

138

The three relations are inserted into the structure by function empty. Returns an empty

tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sort :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

A.3.7 Library SetRBT

Library with an implementation of sets as red-black trees.

All the operations on sets are generic, i.e., one has to provide an explicit order predicate (”cmp”

below) on elements.

Exported types:

type SetRBT a = RedBlackTree a

139

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences

in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements

of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all

elements of the first set contained in the second set into a new set, which order is taken

from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

A.3.8 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

140

Exported functions:

quickSort :: (a → a → Bool) → [a] → [a]

Quicksort.

mergeSort :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-

guished and Umlauts are sorted as vocals.

A.3.9 Library TableRBT

Library with an implementation of tables as red-black trees:

A table is a finite mapping from keys to values. All the operations on tables are generic, i.e.,

one has to provide an explicit order predicate (”cmp” below) on elements. Each inner node in the

red-black tree contains a key-value association.

141

Exported types:

type TableRBT a b = RedBlackTree (a,b)

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.10 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here10 for a

description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into

a list of children of the same type and recombine new children to a new value of the

original type.

10http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

142

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children

can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.

The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible.

On each member of the family of the result the given function will yield Nothing.

Proceeds bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as

long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

143

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.4 Libraries for Web Applications

A.4.1 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index

access (e.g., ”A-Z”) to these entities.

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields

True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple

text layout.

144

A.4.2 Library HTML

Library for HTML and CGI programming. This paper contains a description of the basic ideas

behind this library.

The installation of a cgi script written with this library can be done by the command

makecurrycgi -m initialForm -o /home/joe/public_html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,

/home/joe/public html/prog.cgi is the desired location of the compiled cgi script, and

initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where

makecurrycgi is a shell script stored in pakcshome/bin).

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the

corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

data HtmlExp

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s

– a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs

– a structure with a tag, attributes, and HTML expressions inside the structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref

– an input element (described by the first argument) with a cgi reference

145

http://www.informatik.uni-kiel.de/~mh/papers/PADL01.html

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr

– an input element (first arg) with an associated event handler (tpyically, a submit button)

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of

HTML forms.

Exported constructors:

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs

– an HTML form with title t, optional parameters (e.g., cookies) ps, and contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c

– an answer in an arbitrary format where t is the content type (e.g., ”text/plain”) and c

is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)

are its name and value and optional parameters (expiration date, domain, path (e.g.,

the path ”/” makes the cookie valid for all documents on the server), security) which

are collected in a list.

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params

– a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s

– a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s

– a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s

146

– a JavaScript statement to be executed when the form is submitted (i.e., <form ...

onsubmit=”s”>)

• FormTarget :: String → FormParam

FormTarget s

– a name of a target frame where the output of the script should be represented (should

only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc

– the encoding scheme of this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he

– HTML expression to be included in form header

• MultipleHandlers :: FormParam

MultipleHandlers

– indicates that the event handlers of the form can be multiply used (i.e., are not deleted

if the form is submitted so that they are still available when going back in the browser;

but then there is a higher risk that the web server process might overflow with unused

events); the default is a single use of event handlers, i.e., one cannot use the back button

in the browser and submit the same form again (which is usually a reasonable behavior

to avoid double submissions of data).

• BodyAttr :: (String,String) → FormParam

BodyAttr ps

– optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

147

The data type for representing HTML pages. The constructor arguments are the title,

the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc

– the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s

– a URL for a CSS file for this page

• PageJScript :: String → PageParam

PageJScript s

– a URL for a Javascript file for this page

• PageMeta :: [(String,String)] → PageParam

PageMeta as

– meta information (in form of attributes) for this page

Exported functions:

defaultEncoding :: String

The default encoding used in generated web pages.

defaultBackground :: (String,String)

The default background for generated web pages.

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

148

A URL for a CSS file for a HTML form.

form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages with the default encoding and a default

background.

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as

the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser

together with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together

with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

answerEncText :: String → String → HtmlForm

A textual result instead of an HTML form as a result for active web pages where the

encoding is given as the first parameter.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

Adds sound to given HTML form. The functions adds two different declarations for

sound, one invented by Microsoft for the internet explorer, one introduced for netscape.

As neither is an official part of HTML, addsound might not work on all systems and

browsers. The greatest chance is by using sound files in MID-format.

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

149

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

pageMetaInfo :: [(String,String)] → PageParam

Meta information for a HTML page. The argument is a list of attributes included in

the meta-tag for this page.

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page with the default encoding.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like

<,>,&,”) which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain

special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

h4 :: [HtmlExp] → HtmlExp

Header 4

150

h5 :: [HtmlExp] → HtmlExp

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

emphasize :: [HtmlExp] → HtmlExp

Emphasize

strong :: [HtmlExp] → HtmlExp

Strong (more emphasized) text.

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,”) are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

151

anchor :: String → [HtmlExp] → HtmlExp

An anchor for hypertext reference inside a document

ulist :: [[HtmlExp]] → HtmlExp

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a

table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class

defined in a style definition (see styleSheet) or in an external style sheet (see form

and page parameters FormCSS and PageCSS).

152

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined

in an external style sheet.

blockstyle :: String → [HtmlExp] → HtmlExp

Provides a style for a block of HTML elements. The style argument is the name of

a style class defined in an external style sheet. This element is used (in contrast to

”style”) for larger blocks of HTML elements since a line break is placed before and

after these elements.

inline :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a single HTML element. Although this construction

has no rendering, it is sometimes useful for programming when several HTML elements

must be put together.

block :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a block. A line break is placed before and after

these elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,

otherwise ”” is returned.

checkedbox :: CgiRef → String → HtmlExp

153

A checkbox that is initially checked with a reference and a value. The value is returned

if checkbox is on, otherwise ”” is returned.

radio main :: CgiRef → String → HtmlExp

A main button of a radio (initially ”on”) with a reference and a value. The value is

returned of this button is on. A complete radio button suite always consists of a main

button (radiomain) and some further buttons (radioothers) with the same reference.

Initially, the main button is selected (or nothing is selected if one uses radiomainoff

instead of radio main). The user can select another button but always at most one

button of the radio can be selected. The value corresponding to the selected button is

returned in the environment for this radio reference.

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially ”off”) with a reference and a value. The value is

returned of this button is on.

radio other :: CgiRef → String → HtmlExp

A further button of a radio (initially ”off”) with a reference (identical to the main

button of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are

shown in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item

in this list. The names are shown in the selection and the value is returned for the

selected name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

A selection button with a reference and a list of name/value/flag pairs. The names are

shown in the selection and the value is returned if the corresponding name is selected.

If flag is True, the corresonding name is initially selected. If more than one name has

been selected, all values are returned in one string where the values are separated by

newline (\n) characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be

used with care since it may cause conflicts with the CGI-based implementation of this

library.

htmlQuote :: String → String

Quotes special characters (<,>,&,", umlauts) in a string as HTML special characters.

154

htmlIsoUmlauts :: String → String

Translates umlauts in iso-8859-1 encoding into HTML special characters.

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

addClass :: HtmlExp → String → HtmlExp

Adds a class attribute to an HTML element.

showHtmlExps :: [HtmlExp] → String

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

Transforms a single HTML expression into string representation.

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script is

called with URL ”http://.../script.cgi?parameter”, then ”parameter” is returned by

this I/O action. Note that an URL parameter should be ”URL encoded” to avoid the

appearance of characters with a special meaning. Use the functions ”urlencoded2string”

and ”string2urlencoded” to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are

represented in the form of name/value pairs since no other components are important

here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

155

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

htmlSpecialChars2tex :: String → String

Convert special HTML characters into their LaTeX representation, if necessary.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-

ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-

ument. The variable ”packages” holds the packages to add to the latex document e.g.

”ngerman”

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page. The variable ”packages”

holds the packages to add to the latex document (e.g., ”ngerman”).

germanLatexDoc :: [HtmlExp] → String

156

show german latex document

intForm :: IO HtmlForm → IO ()

Execute an HTML form in ”interactive” mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in ”interactive” mode with various parameters.

A.4.3 Library HtmlParser

This module contains a very simple parser for HTML documents.

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is

a well structured document, the list of HTML expressions should contain exactly one

element.

A.4.4 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted

to the local environment.

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC

– recipient of a carbon copy

• BCC :: String → MailOption

BCC

– recipient of a blind carbon copy

• TO :: String → MailOption

TO

– recipient of the email

157

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are

allowed, e.g., more than one CC option for multiple recipient of carbon copies.

Important note: The implementation of this operation is based on the command ”mailx”

and must be adapted according to your local environment!

A.4.5 Library Markdown

Library to translate markdown documents into HTML or LaTeX. The slightly restricted subset of

the markdown syntax recognized by this implementation is documented in this page.

Exported types:

type MarkdownDoc = [MarkdownElem]

A markdown document is a list of markdown elements.

data MarkdownElem

The data type for representing the different elements occurring in a markdown docu-

ment.

Exported constructors:

• Text :: String → MarkdownElem

Text s

– a simple text in a markdown document

• Emph :: String → MarkdownElem

Emph s

– an emphasized text in a markdown document

• Strong :: String → MarkdownElem

Strong s

– a strongly emphaszed text in a markdown document

• Code :: String → MarkdownElem

Code s

– a code string in a markdown document

158

http://en.wikipedia.org/wiki/Markdown
http://www.informatik.uni-kiel.de/~pakcs/markdown_syntax.html

• HRef :: String → String → MarkdownElem

HRef s u

– a reference to URL u with text s in a markdown document

• Par :: [MarkdownElem] → MarkdownElem

Par md

– a paragraph in a markdown document

• CodeBlock :: String → MarkdownElem

CodeBlock s

– a code block in a markdown document

• UList :: [[MarkdownElem]] → MarkdownElem

UList mds

– an unordered list in a markdown document

• OList :: [[MarkdownElem]] → MarkdownElem

OList mds

– an ordered list in a markdown document

• Quote :: [MarkdownElem] → MarkdownElem

Quote md

– a quoted paragraph in a markdown document

• HRule :: MarkdownElem

HRule

– a hoirzontal rule in a markdown document

• Header :: Int → String → MarkdownElem

Header l s

– a level l header with title s in a markdown document

Exported functions:

fromMarkdownText :: String → [MarkdownElem]

Parse markdown document from its textual representation.

removeEscapes :: String → String

Remove the backlash of escaped markdown characters in a string.

159

markdownText2HTML :: String → [HtmlExp]

Translate a markdown text into a (partial) HTML document.

markdownText2CompleteHTML :: String → String

Translate a markdown text into a complete HTML text that can be viewed as a stan-

dalone document by a browser.

markdownText2LaTeX :: String → String

Translate a markdown text into a (partial) LaTeX document. All characters with a

special meaning in LaTeX, like dollar or ampersand signs, are quoted.

markdownText2LaTeXWithFormat :: (String → String) → String → String

Translate a markdown text into a (partial) LaTeX document where the first argument is

a function to translate the basic text occurring in markdown elements to a LaTeX string.

For instance, one can use a translation operation that supports passing mathematical

formulas in LaTeX style instead of quoting all special characters.

markdownText2CompleteLaTeX :: String → String

Translate a markdown text into a complete LaTeX document that can be formatted as

a standalone document.

formatMarkdownInputAsPDF :: IO ()

Format the standard input (containing markdown text) as PDF.

formatMarkdownFileAsPDF :: String → IO ()

Format a file containing markdown text as PDF.

A.4.6 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs).

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

code attached (for future extensions).

160

http://www.informatik.uni-kiel.de/~pakcs/WUI

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must

be a transformation mapping values from the old type to the new type. This function

must be bijective and operationally invertible (i.e., the inverse must be computable by

narrowing). Otherwise, use transformWSpec!

161

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

162

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-

structor. The second and third arguments are the WUI specifications for the argument

types.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

163

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

164

WUI combinator for constructors of arity 9. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

165

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

166

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

A.4.7 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the

program ”wget” is in your path, otherwise the implementation must be adapted to the

local installation.

A.4.8 Library XML

Library for processing XML data.

Warning: the structure of this library is not stable and might be changed in the future!

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

167

• XText :: String → XmlExp

XText

– a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem

– an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc

– the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl

– the url of the DTD for a document

Exported functions:

tagOf :: XmlExp → String

Returns the tag of an XML element (or empty for a textual element).

elemsOf :: XmlExp → [XmlExp]

Returns the child elements an XML element.

textOf :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function

when transforming XML expressions into other data structures.

For instance, textOf [XText ”xy”, XElem ”a” [] [], XText "bc"] == "xy bc"

168

textOfXml :: [XmlExp] → String

Included for backward compatibility, better use textOf!

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-

sion, if possible. If file or parse errors occur, Nothing is returned.

readFileWithXmlDocs :: String → IO [XmlExp]

Reads a file with an arbitrary sequence of XML documents and returns the list of

corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well

structured document, the list of XML expressions should contain exactly one element.

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the

XML document.

169

A.4.9 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be rep-

resented as algebraic datatypes and vice versa. See here11 for a description of this library.

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns

the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the

representation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

11http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

170

Takes an XML converter and an XML expression and returns a corresponding Curry

value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer values. Integer values must not be used in repe-

titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions

and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in

repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repeti-

tions and do not represent XML elements.

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element

that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

Takes a value and returns an XML converter for this value which is not represented as

XML data. Empty XML data must not be used in repetitions and does not represent

an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that

represents an attribute. Attributes must not be used in repetitions and do not represent

an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

171

Creates a converter for arbitrary optional XML data. Optional XML data must not be

used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter

that represents repetitions of this data. Repetitions must not be used in other repeti-

tions and do not represent XML elements.

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used

in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in

repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be

used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

Creates an XML converter for string attributes. String attributes must not be used in

repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used

in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

Creates an XML converter for integer elements. Integer elements may be used in repe-

titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in

repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-

tions.

172

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in

repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given

value. The created element may be used in repetitions.

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.

The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.

The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions but does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

173

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

174

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

175

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

A.5 Libraries for Meta-Programming

A.5.1 Library AbstractCurry

Library to support meta-programming in Curry.

This library contains a definition for representing Curry programs in Curry (type ”CurryProg”)

and an I/O action to read Curry programs and transform them into this abstract representation

(function ”readCurry”).

Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of

2003.

Assumption: an abstract Curry program is stored in file with extension .acy

176

Exported types:

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-

ified to avoid name clashes. The first component is the module name and the second

component the unqualified name as it occurs in the source program.

type CTVarIName = (Int,String)

The data type for representing type variables. They are represented by (i,n) where i is

a type variable index which is unique inside a function and n is a name (if possible, the

name written in the source program).

type CVarIName = (Int,String)

Data types for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form (CProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are im-

ported, typedecls, opdecls, functions: see below

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CVisibility

Exported constructors:

• Public :: CVisibility

• Private :: CVisibility

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

177

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

data CConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• CCons :: (String,String) → Int → CVisibility → [CTypeExpr] → CConsDecl

data CTypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

data COpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-

sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

178

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in AbstractCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

External functions are represented as (CFunc name arity type (CExternal s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and a list of rules.

A function declaration with the constructor CmtFunc is similarly to CFunc but has

a comment as an additional first argument. This comment could be used by pretty

printers that generate a readable Curry program containing documentation comments.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → CRules →
CFuncDecl

• CmtFunc :: String → (String,String) → Int → CVisibility → CTypeExpr →
CRules → CFuncDecl

data CRules

A rule is either a list of formal parameters together with an expression (i.e., a rule in flat

form), a list of general program rules with an evaluation annotation, or it is externally

defined

Exported constructors:

• CRules :: CEvalAnnot → [CRule] → CRules

• CExternal :: String → CRules

data CEvalAnnot

Data type for classifying evaluation annotations for functions. They can be either

flexible (default), rigid, or choice.

179

Exported constructors:

• CFlex :: CEvalAnnot

• CRigid :: CEvalAnnot

• CChoice :: CEvalAnnot

data CRule

The most general form of a rule. It consists of a list of patterns (left-hand side), a list of

guards (”success” if not present in the source text) with their corresponding right-hand

sides, and a list of local declarations.

Exported constructors:

• CRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CExpr → [CLocalDecl] → CLocalDecl

• CLocalVar :: (Int,String) → CLocalDecl

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CExpr → [CBranchExpr] → CExpr

180

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

• CSLet :: [CLocalDecl] → CStatement

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

data CBranchExpr

Data type for representing branches in case expressions.

Exported constructors:

• CBranch :: CPattern → CExpr → CBranchExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a

float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

181

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract

Curry program. Thus, the argument is the file name without suffix ”.curry” or ”.lcurry”)

and the result is a Curry term representing this program.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-

stract Curry program. Thus, the argument is the file name without suffix ”.curry” or

”.lcurry”) and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads a typed Curry program from a file (with extension ”.acy”)

with respect to some parser options. This I/O action is used by the standard action

readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads an untyped Curry program from a file (with extension

”.uacy”) with respect to some parser options. For more details see function

readCurryWithParseOptions

abstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding AbstractCurry program.

untypedAbstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding untyped AbstractCurry program.

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ”.acy” format. In

contrast to readCurry, this action does not parse a source program. Thus, the argument

must be the name of an existing file (with suffix ”.acy”) containing an AbstractCurry

program in ”.acy” format and the result is a Curry term representing this program. It

is currently predefined only in Curry2Prolog.

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ”.acy” format. The first argument must

be the name of the target file (with suffix ”.acy”).

182

A.5.2 Library AbstractCurryPrinter

A pretty printer for AbstractCurry programs.

This library defines a function ”showProg” that shows an AbstractCurry program in standard

Curry syntax.

Exported functions:

showProg :: CurryProg → String

Shows an AbstractCurry program in standard Curry syntax. The export list contains

the public functions and the types with their data constructors (if all data constructors

are public), otherwise only the type constructors. The potential comments in function

declarations are formatted as documentation comments.

showTypeDecls :: [CTypeDecl] → String

Shows a list of AbstractCurry type declarations in standard Curry syntax.

showTypeDecl :: CTypeDecl → String

Shows an AbstractCurry type declaration in standard Curry syntax.

showTypeExpr :: Bool → CTypeExpr → String

Shows an AbstractCurry type expression in standard Curry syntax. If the first argument

is True, the type expression is enclosed in brackets.

showFuncDecl :: CFuncDecl → String

Shows an AbstractCurry function declaration in standard Curry syntax.

showExpr :: CExpr → String

Shows an AbstractCurry expression in standard Curry syntax.

showPattern :: CPattern → String

A.5.3 Library CompactFlatCurry

This module contains functions to reduce the size of FlatCurry programs by combining the main

module and all imports into a single program that contains only the functions directly or indirectly

called from a set of main functions.

183

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose

– for more output

• Main :: String → Option

Main

– optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports

– optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs

– optimize w.r.t. given list of initially required functions

• Required :: [RequiredSpec] → Option

Required

– list of functions that are implicitly required and, thus, should not be deleted if the

corresponding module is imported

• Import :: String → Option

Import

– module that should always be imported (useful in combination with option InitFuncs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

184

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun requires reqfun) specifies that the use of the function ”fun” implies the application

of function ”reqfun”.

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function ”fun” should be always present if the

corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be

generated by external functions like ”==” or ”=:=” on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from

a set of main functions and writes it into a FlatCurry file. This is done by merging all

imported FlatCurry modules and removing the imported functions that are definitely

not used.

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a

set of main functions. This is done by merging all imported FlatCurry modules (these

are loaded demand-driven so that modules that contains no potentially called functions

are not loaded) and removing the imported functions that are definitely not used.

A.5.4 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The

source string is classified into the following categories:

• moduleHead - module interface, imports, operators

• code - the part where the actual program is defined

• big comment - parts enclosed in {- ... -}

• small comment - from ”–” to the end of a line

• text - a string, i.e. text enclosed in ”...”

• letter - the given string is the representation of a character

• meta - containing information for meta programming

For an example to use the state scanner cf. addtypes, the tool to add function types to a given

program.

185

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

Exported functions:

isSmallComment :: Token → Bool

test for category ”SmallComment”

isBigComment :: Token → Bool

test for category ”BigComment”

isComment :: Token → Bool

test if given token is a comment (big or small)

isText :: Token → Bool

test for category ”Text” (String)

isLetter :: Token → Bool

test for category ”Letter” (Char)

isCode :: Token → Bool

test for category ”Code”

isModuleHead :: Token → Bool

test for category ”ModuleHead”, ie imports and operator declarations

186

isMeta :: Token → Bool

test for category ”Meta”, ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to

know whether a given part of code is at the beginning of a line or in the middle. The

state scanner organizes the code in such a way that every string categorized as ”Code”

always starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-

ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program

after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

A.5.5 Library FlatCurry

Library to support meta-programming in Curry.

This library contains a definition for representing FlatCurry programs in Curry (type ”Prog”)

and an I/O action to read Curry programs and transform them into this representation (function

”readFlatCurry”).

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to

avoid name clashes. The first component is the module name and the second component

the unqualified name as it occurs in the source program.

type TVarIndex = Int

The data type for representing type variables. They are represented by (TVar i) where

i is a type variable index.

type VarIndex = Int

187

Data type for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(Prog modname imports typedecls functions opdecls translation_table)

where modname is the name of this module, imports is the list of modules names that

are imported, typedecls, opdecls, functions, translation of type names and con-

structor/function names are explained see below

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

• Private :: Visibility

data TypeDecl

Data type for representing definitions of algebraic data types.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

188

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

data OpDecl

Data type for operator declarations. An operator declaration fix p n in Curry corre-

sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

189

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name k type (Rule [i1,...,ik] e))

and represents the function name with definition

name :: type

name x1...xk = e

where each ij is the index of the variable xj.

Note: the variable indices are unique inside each function declaration and are usually

numbered from 0

External functions are represented as

(Func name arity type (External s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

data Rule

A rule is either a list of formal parameters together with an expression or an ”External”

tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or

rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

190

Data type for classifying combinations (i.e., a function/constructor applied to some

arguments).

Exported constructors:

• FuncCall :: CombType

FuncCall

– a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall

– a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall

– a partial call to a function (i.e., not all arguments are provided) where the parameter is

the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall

– a partial call to a constructor (i.e., not all arguments are provided) where the parameter

is the number of missing arguments

data Expr

Data type for representing expressions.

Remarks:

if-then-else expressions are represented as function calls:

(if e1 then e2 else e3)

is represented as

(Comb FuncCall ("Prelude","if_then_else") [e1,e2,e3])

Higher-order applications are represented as calls to the (external) function apply. For

instance, the rule

app f x = f x

is represented as

191

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

A conditional rule is represented as a call to an external function cond where the first

argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = success

is represented as

(Rule [0]

(Comb FuncCall ("Prelude","cond")

[Comb FuncCall ("Prelude","=:=") [Var 0, Lit (Intc 2)],

Comb FuncCall ("Prelude","success") []]))

Exported constructors:

• Var :: Int → Expr

Var

– variable (represented by unique index)

• Lit :: Literal → Expr

Lit

– literal (Int/Float/Char constant)

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb

– application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

• Free :: [Int] → Expr → Expr

Free

– introduction of free local variables

• Or :: Expr → Expr → Expr

Or

– disjunction of two expressions (used to translate rules with overlapping left-hand sides)

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case

– case distinction (rigid or flex)

192

data BranchExpr

Data type for representing branches in a case expression.

Branches ”(m.c x1...xn) -> e” in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-

stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either

an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

193

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry

program. Thus, the argument is the file name without suffix ”.curry” (or ”.lcurry”) and

the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which reads a FlatCurry program from a file with respect to some parser

options. This I/O action is used by the standard action readFlatCurry. It is currently

predefined only in Curry2Prolog.

flatCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

flatCurryIntName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ”.fcy” format. In contrast to

readFlatCurry, this action does not parse a source program. Thus, the argument must

be the name of an existing file (with suffix ”.fcy”) containing a FlatCurry program in

”.fcy” format and the result is a FlatCurry term representing this program.

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry program, i.e., a FlatCurry program

containing only ”Public” entities and function definitions without rules (i.e., external

functions). The argument is the file name without suffix ”.curry” (or ”.lcurry”) and the

result is a FlatCurry term representing the interface of this program.

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ”.fcy” format. The first argument must be

the name of the target file (with suffix ”.fcy”).

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,

names not defined in this module (except for names defined in the prelude) are prefixed

with their module name.

194

A.5.6 Library FlatCurryGoodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

195

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

196

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

197

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

198

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

199

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

funcType :: FuncDecl → TypeExpr

get type of function

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

200

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

201

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

202

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of varoables in let declaration

letBody :: Expr → Expr

get body of let declaration

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

203

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → Expr → a

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

204

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

is expression a partial constructor call?

isGround :: Expr → Bool

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

205

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

get literal from literal pattern

isConsPattern :: Pattern → Bool

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

206

A.5.7 Library FlatCurryRead

This library defines operations to read a FlatCurry programs or interfaces together with all its

imported modules in the current load path.

Exported functions:

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is

the name of the main module (possibly with a directory prefix).

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.

The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The

argument is the name of the main module (possibly with a directory prefix). If there is

no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead of

the interface.

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given

load path. The arguments are a load path and the name of the main module. If there

is no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead

of the interface.

A.5.8 Library FlatCurryShow

Some tools to show FlatCurry programs.

This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg,

showFlatType, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurryType,

showCurryExpr,...).

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

207

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.5.9 Library FlatCurryTools

Note: This library has been renamed into FlatCurryShow. Look there for further documentation.

This module is only included for backward compatibility and might be deleted in future releases.

Note that the function ”writeFLC” contained in previous releases is no longer supported. Use

Flat2Fcy.writeFCY instead and change file suffix into ”.fcy”!

A.5.10 Library FlatCurryXML

This library contains functions to convert FlatCurry programs into corresponding XML expressions

and vice versa. This can be used to store Curry programs in a way independent from PAKCS or

to use the PAKCS back end by other systems.

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

208

A.5.11 Library FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-

hand side of a function definition).

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases

in this expression. If the expression has rigid as well as flex cases (which cannot be the

case for source level programs but might occur after some program transformations),

the result ConflictFR is returned.

A.5.12 Library PrettyAbstract

Library for pretty printing AbstractCurry programs. In contrast to the library AbstractCur-

ryPrinter, this library implements a better human-readable pretty printing of AbstractCurry pro-

grams.

Exported functions:

preludePrecs :: [((String,String),(CFixity,Int))]

the precedences of the operators in the Prelude module

prettyCProg :: Int → CurryProg → String

(prettyCProg w prog) pretty prints the curry prog prog and fits it to a page width of

w characters.

prettyCTypeExpr :: String → CTypeExpr → String

(prettyCTypeExpr mod typeExpr) pretty prints the type expression typeExpr of the

module mod and fits it to a page width of 78 characters.

209

prettyCTypes :: String → [CTypeDecl] → String

(prettyCTypes mod typeDecls) pretty prints the type declarations typeDecls of the

module mod and fits it to a page width of 78 characters.

prettyCOps :: [COpDecl] → String

(prettyCOps opDecls) pretty prints the operators opDecls and fits it to a page width

of 78 characters.

showCProg :: CurryProg → String

(showCProg prog) pretty prints the curry prog prog and fits it to a page width of 78

characters.

printCProg :: String → IO ()

(printCProg modulname) pretty prints the typed Abstract Curry program of modulname

produced by AbstractCurry.readCurry and fits it to a page width of 78 characters.

The output is standard io.

printUCProg :: String → IO ()

(printUCProg modulname) pretty prints the untyped Abstract Curry program of

modulname produced by AbstractCurry.readUntypedCurry and fits it to a page width

of 78 characters. The output ist standard io.

cprogDoc :: CurryProg → Doc

(cprogDoc prog) creates a document of the Curry program prog and fits it to a page

width of 78 characters.

cprogDocWithPrecedences :: [((String,String),(CFixity,Int))] → CurryProg → Doc

(cprogDocWithPrecedences precs prog) creates a document of the curry prog prog and

fits it to a page width of 78 characters, the precedences precs ensure a correct bracketing

of infix operators

precs :: [COpDecl] → [((String,String),(CFixity,Int))]

generates a list of precedences

210

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax

is intended to simplify the writing of texts whose source is readable and can be easily formatted,

e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only

internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.

Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two or * characters:

emphasize

emphasize

__strong__

strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).

If one wants to put a link under a text, one can put the text in square brackets directly followed

by the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or , in

the output document, it should be escaped with a backslash, i.e., a backslash followed by a special

character in the source text is translated into the given character (this also holds for program code,

see below). For instance, the input text

word

produces the output ” word ”. The following backslash escapes are recognized:

\ backslash

‘ backtick

* asterisk

_ underscore

{} curly braces

[] square brackets

211

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses

hash symbol

+ plus symbol

- minus symbol (dash)

. dot

blank

! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list

elements (where the star can be preceded by blanks). The individual list elements must contain

the same indentation, as in

* First list element

with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one

could nest lists. Thus, the input text

- Color:

+ Yellow

+ Read

+ Blue

- BW:

+ Black

+ White

is formatted as

• Color:

212

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by

a dot and at least one blank. All following lines belonging to the same numbered item must have

the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second

element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is

> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input

line by at least four spaces where all following lines must have at least the same indentation as the

first non-blank character of the first line:

f x y = let z = (x,y)

in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)

in (z,z)

The visually structure a document, one can also put a line containing only blanks and at least three

dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

213

B.3 Headers

The are two forms to mark headers. In the first form, one can ”underline” the main header in the

source text by equal signs and the second-level header by dashes:

First-level header

==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,

where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

214

C Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the

translation process of programs inside PAKCS is shown in Figure 3 on page 216. In this figure,

boxes denote different components of PAKCS and names in boldface denote files containing various

intermediate representations during the translation process (see Section D below). The PAKCS

distribution contains a front end for reading (parsing and type checking) Curry programs that can

be also used by other Curry implementations. The back end (formerly known as “Curry2Prolog”)

compiles Curry programs into Prolog programs. It also support constraint solvers for arithmetic

constraints over real numbers and finite domain constraints, and further libraries for GUI pro-

gramming, meta-programming etc. Currently, it does not implement encapsulated search in full

generality (only a strict version of findall is supported), and concurrent threads are not executed

in a fair manner.

215

Figure 3: Overview of PAKCS

216

D Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-

sentations of the source program are created and stored in different files which are shortly explained

in this section. If you use the PAKCS, it is not necessary to know about these auxiliary files be-

cause they are automatically generated and updated. You should only remember the command for

deleting all auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where

all functions are global (i.e., lambda lifting has been performed) and pattern matching is

translated into explicit case/or expressions (compare Appendix A.1.4). This representation

might be useful for other back ends and compilers for Curry and is the basis doing meta-

programming in Curry. This file is implicitly generated when a program is read by PAKCS.

It can be also explicitly generated by the command

parsecurry --flat prog

The FlatCurry representation of a Curry program is usually generated by the front-end after

parsing, type checking and eliminating local declarations. If dir is the directory where the

Curry program is stored, the corresponding FlatCurry program is stored in the directory

“dir/.curry”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-

tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all

functions omitted (i.e., “external”). This representation is useful for providing a fast access

to module interfaces. This file is implicitly generated by the command

parsecurry --flat prog

and stored in the same directory as prog.fcy.

prog.pl: This file contains a Prolog program as the result of translating the Curry program with

PAKCS. If dir is the directory where the Curry program is stored, the corresponding Prolog

program is stored in the directory “dir/.curry/.pakcs”.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster load-

ing. This file is stored in the same directory as prog.pl.

prog.state: This file contains the saved state after compiling and saving a program with PAKCS

(see Section 2.1).

217

E Changing the Prelude or System Modules

The standard prelude, which is automatically imported into each Curry program, and all system

modules containing datatypes and functions useful for application programming (cf. Appendix A)

are stored in the system module directory “pakcshome/lib” (and its subdirectories). If you change

any of these modules, you have to recompile the complete system by executing make in the directory

pakcshome.

218

F External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-

tion should be added to the system, this function must be declared as external in the Curry source

code and then an implementation for this external function must be inserted in the corresponding

back end. An external function is defined as follows in the Curry source code:

1. Add a type declaration for the external function somewhere in the body of the appropriate

file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined

by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int -> Int -> Int

(+) external

The further modifications to be done for an inclusion of an external function has to be done in the

back end. A new external function is added to the back end of PAKCS by informing the compiler

about the existence of an external function and adding an implementation of this function in the

run-time system. Therefore, the following items must be added in the PAKCS compiler system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML

format and has the following general structure:12

<primitives>

specification of external function f1
...

specification of external function fn
</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">

<library>lib</library>

<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global

directory pakcshome/curry2prolog/lib_src) containing the code implementing this func-

tion and pred is a predicate name in this library implementing this function. Note that

the function f must be declared in module Mod: either as an external function or defined in

Curry by equations. In the latter case, the Curry definition is not translated but calls to this

function are redirected to the Prolog code specified above.

12http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure

of these files.

219

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

Furthermore, the list of specifications can also contain entries of the form

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code

generation, e.g., since they are never called w.r.t. to the current implementation of external

functions. For instance, this is useful when functions that can be defined in Curry should be

(usually more efficiently) are implemented as external functions.

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if

the external function requires the arguments to be evaluated in a particular form, this must

be done before calling the external function. For instance, the external function for adding

two integers requires that both arguments must be evaluated to non-variable head normal

form (which is identical to the ground constructor normal form). Therefore, the function “+”

is specified in the prelude by

(+) :: Int -> Int -> Int

x + y = (prim_Int_plus $# y) $# x

prim_Int_plus :: Int -> Int -> Int

prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.

Consequently, the specification file Prelude.prim_c2p has an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus</entry>

</primitive>

where the Prolog library prim_standard.pl contains the Prolog code implementing this

function.

2. For most external functions, a standard interface is generated by the compiler so that an

n-ary function can be implemented by an (n + 1)-ary predicate where the last argument

must be instantiated to the result of evaluating the function. The standard interface can

be used if all arguments are ensured to be fully evaluated (e.g., see definition of (+) above)

and no suspension control is necessary, i.e., it is ensured that the external function call

does not suspend for all arguments. Otherwise, the raw interface (see below) must be used.

For instance, the Prolog code implementing prim_Int_plus contained in the Prolog library

prim_standard.pl is as follows (note that the arguments of (+) are passed in reverse order

to prim_Int_plus in order to ensure a left-to-right evaluation of the original arguments by

the calls to ($#)):

prim_Int_plus(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external functions with result type IO a, assumes

that the I/O action is implemented as a predicate (with a possible side effect) that instantiates

the last argument to the returned value of type “a”. For instance, the primitive predicate

prim_getChar implementing prelude I/O action getChar can be implemented by the Prolog

code

220

prim_getChar(C) :- get_code(N), char_int(C,N).

where char_int is a predicate relating the internal Curry representation of a character with

its ASCII value.

4. If some arguments passed to the external functions are not fully evaluated or the external

function might suspend, the implementation must follow the structure of the PAKCS run-

time system by using the raw interface. In this case, the name of the external entry must be

suffixed by “[raw]” in the prim_c2p file. For instance, if we want to use the raw interface

for the external function prim_Int_plus, the specification file Prelude.prim_c2p must have

an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external function consists of the

definition of an (n + 3)-ary predicate pred. The first n arguments are the corresponding

actual arguments. The (n + 1)-th argument is a free variable which must be instantiated

to the result of the function call after successful execution. The last two arguments control

the suspension behavior of the function (see [5] for more details): The code for the predicate

pred should only be executed when the (n + 2)-th argument is not free, i.e., this predicate

has always the SICStus-Prolog block declaration

?- block pred(?,...,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-

tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external

function. Finally, the last argument (which is a free variable at call time) must be unified

with the (n + 2)-th argument after the function call is successfully evaluated (and does not

suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they

are accessed. Thus, an implementation of the external function for adding integers is as

follows in the raw interface:

?- block prim_Int_plus(?,?,?,-,?).

prim_Int_plus(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant

(and derefAll for dereferencing complex structures).

The Prolog code implementing the external functions must be accessible to the run-time system

of PAKCS by putting it into the directory containing the corresponding Curry module or into the

system directory pakcshome/curry2prolog/lib_src. Then it will be automatically loaded into

the run-time environment of each compiled Curry program.

Note that arbitrary functions implemented in C or Java can be connected to PAKCS by using

the corresponding interfaces of underlying Prolog system.

221

Index

<, 100

*., 48, 63

*#, 46

+., 48, 63

+#, 45

---, 20

--compact, 29

--fcypp, 29

-., 48, 63

-#, 46

-fpopt, 29

., 49

./=, 49

.==, 49

.&&, 49

.pakcsrc, 13

.<, 50

.<=, 49

.>, 50

.>=, 50

/., 48, 63

//, 126

/=#, 46

:!, 11

:&, 133

:add, 8

:analyze, 9

:browse, 9

:cd, 11

:coosy, 12

:dir, 11

:edit, 9

:fork, 12

:help, 8

:interface, 9

:load, 8

:modules, 9

:peval, 12

:programs, 9

:quit, 9

:reload, 8

:save, 11, 12

:set, 9, 11

:set path, 7

:show, 11

:type, 9

:xml, 8, 12

=#, 46

@author, 20

@cons, 20

@param, 20

@return, 20

@version, 20

#/=#, 46

#/\#, 47

#=#, 46

#=>#, 47

#<=#, 46

#<=>#, 47

#<#, 46

#>=#, 46

#>#, 46

#\/#, 47

<*>, 100

<+>, 105

<., 48

<//>, 106

</>, 105

<:, 51

<=., 48

<=:, 51

<=#, 46

<#, 46

<$$>, 106

<$>, 105

<>, 60, 105

>., 48

>:, 51

>=., 48

>=:, 51

>=#, 46

>#, 46

222

>>-, 98

>>>, 100

\\, 95

aBool, 172

abortTransaction, 62

abs, 79

AbstractCurry, 38

abstractCurryFileName, 182

aChar, 172

adapt, 171

adaptWSpec, 161

addAttr, 155

addAttrs, 155

addCanvas, 77

addClass, 155

addCookies, 149

addDays, 123

addDB, 54

addFormParam, 149

addHeadings, 152

addHours, 123

addListToFM, 129

addListToFM C, 129

addMinutes, 123

addMonths, 123

addPageParam, 150

addRegionStyle, 76

address, 151

addSeconds, 123

addSound, 149

addToFM, 129

addToFM C, 129

addYears, 123

aFloat, 172

aInt, 172

align, 105

all different, 47

allC, 52

allDBInfos, 87, 91

allDBKeyInfos, 87, 91

allDBKeys, 87, 91, 93

allDifferent, 47

allfails, 10

allVars, 205

allVarsInFunc, 201

allVarsInProg, 196

allVarsInRule, 202

alwaysRequired, 185

anchor, 152

andC, 51

angles, 109

answerEncText, 149

answerText, 149

anyC, 52

appendStyledValue, 76

appendValue, 76

applyAt, 126

argTypes, 199

Array, 126

assert, 60

assertEqual, 41

assertEqualIO, 41

assertIO, 41

Assertion, 41

assertSolutions, 41

assertTrue, 41

assertValues, 41

aString, 172

atan, 64

attr, 171

backslash, 111

baseName, 62

binomial, 79

bitAnd, 79

bitNot, 80

bitOr, 79

bitTrunc, 79

bitXor, 80

blink, 151

block, 153

blockstyle, 153

bold, 151

Boolean, 49

bound, 50

bquotes, 109

braces, 109

223

brackets, 109

BranchExpr, 193

branchExpr, 206

branchPattern, 206

breakline, 152

buildGr, 134

Button, 77

button, 153

CalendarTime, 121

calendarTimeToString, 123

CanvasItem, 72

CanvasScroll, 78

caseBranches, 204

caseExpr, 204

CaseType, 190

caseType, 203

cat, 107

categorizeByItemKey, 144

catMaybes, 98

CBranchExpr, 181

CConsDecl, 178

center, 151

CEvalAnnot, 179

CExpr, 180

CFixity, 178

CFuncDecl, 179

CgiEnv, 145

CgiRef, 145

char, 109, 171

check, 50

checkAssertion, 42

checkbox, 153

checkedbox, 153

childFamilies, 143

children, 143

choiceSPEP, 102

chooseColor, 78

cleancurry, 6

cleanDB, 88, 93, 94

CLiteral, 181

CLocalDecl, 180

ClockTime, 121

clockTimeToInt, 122

closeDBHandles, 93

Cmd, 77

cmpChar, 141

cmpList, 141

cmpString, 141

code, 151

col, 74

colon, 111

Color, 73

ColVal, 89

combArgs, 203

combine, 105, 126

combineSimilar, 126

combName, 203

CombType, 190

combType, 203

comma, 111

Command, 77

comment

documentation, 20

compact, 10

compareCalendarTime, 123

compareClockTime, 123

compareDate, 123

compose, 106

computeCompactFlatCurry, 185

ConfCollection, 71

ConfigButton, 77

ConfItem, 68

connectPort, 38, 102

connectPortRepeat, 102

connectPortWait, 102

connectToCommand, 83

connectToSocket, 99, 120

connectToSocketRepeat, 99

connectToSocketWait, 99

cons, 127

consArgs, 198

consArity, 197

ConsDecl, 189

consfail, 10

consName, 197

Constraint, 44

consVisibility, 197

224

contains, 118

Context, 132

context, 135

Context’, 132

cookieForm, 149

CookieParam, 147

coordinates, 155

COpDecl, 178

cos, 64

count, 47, 50

CPattern, 181

cprogDoc, 210

cprogDocWithPrecedences, 210

createDirectory, 59

CRule, 180

CRules, 179

CStatement, 181

ctDay, 122

ctHour, 122

ctMin, 122

ctMonth, 122

ctSec, 122

ctTZ, 122

CTVarIName, 177

ctYear, 122

CTypeDecl, 177

CTypeExpr, 178

Curry mode, 13

Curry2Prolog, 215

CurryDoc, 20

currydoc, 21

CURRYPATH, 7, 11, 27, 28

CurryProg, 177

CurryTest, 25

currytest, 25

CVarIName, 177

CVisibility, 177

cycle, 97

cyclic structure, 14

database programming, 27

daysOfMonth, 123

debug, 10, 12

debug mode, 10, 12

debugTcl, 74

Decomp, 132

defaultBackground, 148

defaultEncoding, 148

defaultRequired, 185

deg, 135

deg’, 136

delEdge, 134

delEdges, 134

delete, 95, 139

deleteBy, 95

deleteDB, 55

deleteDBEntries, 87, 92

deleteDBEntry, 87, 92, 94

deleteRBT, 140, 142

delFromFM, 129

delListFromFM, 129

delNode, 134

delNodes, 134

deqHead, 127

deqInit, 127

deqLast, 127

deqLength, 128

deqReverse, 127

deqTail, 127

deqToList, 128

digitToInt, 43

dirName, 62

dlist, 152

Doc, 103

documentation comment, 20

documentation generator, 20

doesDirectoryExist, 59

doesFileExist, 59

domain, 45, 198

doneT, 55, 90

doSend, 37, 102

dot, 111

dquote, 110

dquotes, 109

dvAddEdge, 58

dvAddNode, 58

dvDelEdge, 58

dvDisplay, 58

225

dvDisplayInit, 58

DvEdge, 57

dvEmptyH, 58

DvGraph, 57

DvId, 57

dvNewGraph, 58

DvNode, 57

dvNodeWithEdges, 58

DvScheduleMsg, 57

dvSetClickHandler, 58

dvSetEdgeColor, 58

dvSetNodeColor, 58

dvSimpleEdge, 58

dvSimpleNode, 58

DvWindow, 57

Dynamic, 60, 88

dynamic, 60

dynamicExists, 54

eBool, 173

eChar, 172

Edge, 132

edges, 137

eEmpty, 173

eFloat, 172

eInt, 172

element, 171

elemFM, 130

elemIndex, 94

elemIndices, 94

elemRBT, 140

elemsOf, 168

eltsFM, 131

Emacs, 13

emap, 137

emphasize, 151

empty, 100, 103, 127, 133, 138, 171

emptyDefaultArray, 126

emptyErrorArray, 126

emptyFM, 128

emptySetRBT, 140

emptyTableRBT, 142

encapsulated search, 7

enclose, 109

encloseSep, 108

Encoding, 168

entity relationship diagrams, 27

EntryScroll, 78

eOpt, 173

eqFM, 130

equal, 136

equals, 111

ERD2Curry, 27

erd2curry, 27

eRep, 173

eRepSeq1, 173

eRepSeq2, 174

eRepSeq3, 174

eRepSeq4, 175

eRepSeq5, 175

eRepSeq6, 176

errorT, 55, 90

eSeq1, 173

eSeq2, 174

eSeq3, 174

eSeq4, 175

eSeq5, 175

eSeq6, 176

eString, 172

evalChildFamilies, 143

evalChildFamiliesIO, 144

evalFamily, 143

evalFamilyIO, 144

evalSpace, 113

evalTime, 113

evaluate, 50

even, 80

Event, 70

exclusiveIO, 83

execCmd, 83

exists, 50

existsDBKey, 87, 91, 93

exitGUI, 76

exitWith, 121

exp, 64

expires, 149

Expr, 191

external function, 219

226

factorial, 79

failT, 55, 90

false, 49

family, 143

FCYPP, 29

fileSize, 59

fileSuffix, 63

fillCat, 107

fillEncloseSep, 108

fillSep, 107

filterFM, 130

find, 94

findall, 7

findFileInPath, 63

findfirst, 7

findIndex, 94

findIndices, 94

firewall, 38

Fixity, 189

FlatCurry, 38

flatCurry2Xml, 208

flatCurry2XmlFile, 208

flatCurryFileName, 194

flatCurryIntName, 194

FlexRigidResult, 209

float, 110, 171

FM, 128

fmSortBy, 131

fmToList, 131

fmToListPreOrder, 131

focusInput, 77

fold, 143

foldChildren, 144

foldFM, 130

foldValues, 118

form, 149

formatMarkdownFileAsPDF, 160

formatMarkdownInputAsPDF, 160

formCSS, 148

formEnc, 148

FormParam, 146

free, 10

free variable mode, 8, 10

freeExpr, 203

freeVars, 203

fromJust, 98

fromMarkdownText, 159

fromMaybe, 98

funcArgs, 201

funcArity, 200

funcBody, 201

FuncDecl, 189

funcName, 200

funcRHS, 201

funcRule, 200

function

external, 219

functional pattern, 14

funcType, 200

funcVisibility, 200

garbageCollect, 112

garbageCollectorOff, 112

garbageCollectorOn, 112

GDecomp, 132

gelem, 135

generateCompactFlatCurryFile, 185

germanLatexDoc, 156

getAllFailures, 40

getAllSolutions, 40

getArgs, 120

getAssoc, 83

getClockTime, 122

getContents, 82

getContentsOfUrl, 167

getCookies, 155

getCPUTime, 120

getCurrentDirectory, 59

getCursorPosition, 77

getDB, 55, 90

getDBInfo, 87, 92, 93

getDBInfos, 87, 92, 94

getDirectoryContents, 59

getDynamicSolution, 61

getDynamicSolutions, 61

getElapsedTime, 120

getEnviron, 120

getFileInPath, 63

227

getFlexRigid, 209

getHostname, 121

getKnowledge, 61

getLocalTime, 122

getModificationTime, 59

getOneSolution, 40

getOneValue, 40

getOpenFile, 78

getOpenFileWithTypes, 78

getPID, 121

getProcessInfos, 112

getProgName, 121

getRandomSeed, 138

getSaveFile, 78

getSaveFileWithTypes, 78

getSearchTree, 40

getUrlParameter, 155

getValue, 76

Global, 65

global, 65

GlobalSpec, 65

gmap, 137

Graph, 133

group, 95, 104

groupBy, 95

groupByIndex, 87, 93

GuiPort, 66

GVar, 66

gvar, 66

h1, 150

h2, 150

h3, 150

h4, 150

h5, 151

Handle, 80

hang, 104

hcat, 107

hClose, 81

headedTable, 152

hempty, 150

hEncloseSep, 108

hFlush, 81

hGetChar, 82

hGetContents, 82

hGetLine, 82

hiddenfield, 154

hIsEOF, 81

hIsReadable, 82

hIsWritable, 82

hPrint, 82

hPutChar, 82

hPutStr, 82

hPutStrLn, 82

hReady, 82

href, 151

hrule, 152

hSeek, 81

hsep, 106

HtmlExp, 145

HtmlForm, 146

HtmlHandler, 145

htmlIsoUmlauts, 155

HtmlPage, 147

htmlQuote, 154

htmlSpecialChars2tex, 156

htxt, 150

htxts, 150

hWaitForInput, 81

hWaitForInputOrMsg, 81

hWaitForInputs, 81

hWaitForInputsOrMsg, 82

i2f, 48, 63

identicalVar, 124

idOfCgiRef, 148

ilog, 79

image, 152

imageButton, 153

indeg, 135

indeg’, 136

index, 87, 93

indomain, 47

init, 96

inits, 96

inline, 153

inn, 135

inn’, 136

228

insEdge, 134

insEdges, 134

insertBy, 96

insertMultiRBT, 140

insertRBT, 140

insNode, 134

insNodes, 134

int, 110, 171

intercalate, 95

intersect, 95

intersectFM, 129

intersectFM C, 130

intersectRBT, 140

intersperse, 95

intForm, 157

intFormMain, 157

intToDigit, 43

IOMode, 80

IORef, 83

isAbsolute, 62

isAlpha, 42

isAlphaNum, 43

isBigComment, 186

isCase, 204

isCode, 186

isComb, 204

isCombTypeConsCall, 202

isCombTypeConsPartCall, 203

isCombTypeFuncCall, 202

isCombTypeFuncPartCall, 202

isComment, 186

isConsCall, 205

isConsPartCall, 205

isConsPattern, 206

isDigit, 42

isEmpty, 103, 118, 127, 134, 139

isEmptyFM, 130

isEmptyTable, 142

isEOF, 81

isExternal, 201

isFree, 204

isFuncCall, 205

isFuncPartCall, 205

isFuncType, 199

isGround, 205

isHexDigit, 43

isInfixOf, 96

isJust, 98

isKnown, 61

isLet, 204

isLetter, 186

isLit, 204

isLower, 42

isMeta, 187

isModuleHead, 186

isNothing, 98

isOctDigit, 43

isOr, 204

isPosix, 121

isPrefixOf, 96

isqrt, 79

isRuleExternal, 202

isSmallComment, 186

isSpace, 43

isSuffixOf, 96

isTCons, 199

isText, 186

isTVar, 199

isTypeSyn, 197

isUpper, 42

isVar, 124, 204

isWindows, 121

italic, 151

JSBranch, 86

jsConsTerm, 86

JSExp, 84

JSFDecl, 86

JSStat, 85

keyOrder, 130

keysFM, 131

lab, 135

lab’, 136

labEdges, 137

labeling, 47

LabelingOption, 44

labNode’, 136

229

labNodes, 137

labUEdges, 137

labUNodes, 137

langle, 110

last, 96

lbrace, 110

lbracket, 110

LEdge, 132

leqChar, 141

leqCharIgnoreCase, 141

leqLexGerman, 141

leqList, 141

leqString, 141

leqStringIgnoreCase, 141

let, 14

letBinds, 203

letBody, 203

line, 103

linebreak, 104

linesep, 103

list, 108

list2CategorizedHtml, 144

ListBoxScroll, 78

listenOn, 99, 119

listenOnFresh, 119

listToDefaultArray, 126

listToDeq, 127

listToErrorArray, 126

listToFM, 128

listToMaybe, 98

litem, 152

Literal, 193

literal, 203

LNode, 132

log, 64

lookup, 139

lookupFileInPath, 63

lookupFM, 130

lookupRBT, 142

lookupWithDefaultFM, 130

lparen, 110

LPath, 133

lpre, 135

lpre’, 136

lsuc, 135

lsuc’, 136

MailOption, 157

mainWUI, 167

mapAccumL, 97

mapAccumR, 97

mapChildFamilies, 143

mapChildFamiliesIO, 144

mapChildren, 143

mapChildrenIO, 144

mapFamily, 143

mapFamilyIO, 144

mapFM, 130

mapMaybe, 98

mapMMaybe, 98

mapT, 55, 91

mapT , 55, 91

mapValues, 118

markdown, 20

MarkdownDoc, 158

MarkdownElem, 158

markdownText2CompleteHTML, 160

markdownText2CompleteLaTeX, 160

markdownText2HTML, 160

markdownText2LaTeX, 160

markdownText2LaTeXWithFormat, 160

match, 134

matchAny, 133

matchHead, 128

matchLast, 128

matrix, 74

max3, 79

maxFM, 130

maximize, 49

maximum, 96

maximumFor, 48

maxlist, 79

maxValue, 119

maybeToList, 98

MContext, 132

MenuItem, 72

mergeSort, 141

min3, 79

230

minFM, 130

minimize, 48

minimum, 97

minimumFor, 48

minlist, 79

minusFM, 129

minValue, 118

missingArgs, 203

missingCombArgs, 203

mkGraph, 134

mkUGraph, 134

modules, 7

multipleSelection, 154

nbsp, 150

neg, 47, 49

neighbors, 135

neighbors’, 136

nest, 104

newDBEntry, 88, 92, 94

newDBKeyEntry, 88, 93

newIORef, 84

newNamedObject, 103

newNodes, 137

newObject, 102

newTreeLike, 139

nextBoolean, 138

nextInt, 138

nextIntRange, 138

nmap, 137

noChildren, 143

Node, 132

node’, 136

nodeRange, 135

nodes, 137

noindex, 22

noNodes, 134

nub, 94

nubBy, 94

odd, 80

olist, 152

onlyindex, 22

OpDecl, 189

openFile, 81

openNamedPort, 37, 38, 102

openPort, 37, 102

openProcessPort, 102

opFixity, 199

opName, 199

opPrecedence, 199

opt, 171

Option, 184

orC, 52

orExps, 203

out, 135

out’, 136

outdeg, 135

outdeg’, 136

page, 150

pageCSS, 150

pageEnc, 149

pageMetaInfo, 150

PageParam, 148

PAKCS, 8

pakcs, 8

PAKCS_LOCALHOST, 38

PAKCS_OPTION_FCYPP, 29

PAKCS_SOCKET, 38

PAKCS_TRACEPORTS, 38

pakcsrc, 13

par, 151

parens, 109

parsecurry, 217

parseHtmlString, 157

Parser, 100

ParserRep, 100

parseXmlString, 169

partition, 51, 95

password, 153

patArgs, 206

patCons, 206

patExpr, 206

Path, 133

path, 7, 11

pathSeparatorChar, 62

patLiteral, 206

231

Pattern, 193

pattern

functional, 14

permutations, 95

permute, 51

persistent, 60

persistentSQLite, 91

ping, 102

plainCode, 187

plusFM, 129

plusFM C, 129

popup message, 77

Port, 37, 101

ports, 37

pow, 79

pre, 135, 151

pre’, 136

precs, 210

preludePrecs, 209

pretty, 111

prettyCOps, 210

prettyCProg, 209

prettyCTypeExpr, 209

prettyCTypes, 210

printCProg, 210

printdepth, 11

printfail, 10

printMemInfo, 113

printUCProg, 210

printValues, 119

ProcessInfo, 111

product, 96

profile, 10

profileSpace, 113

profileSpaceNF, 113

profileTime, 113

profileTimeNF, 113

Prog, 188

progFuncs, 195

progImports, 195

progName, 195

progOps, 195

program

documentation, 20

testing, 25

progTypes, 195

ProtocolMsg, 41

punctuate, 107

QName, 177, 187

Query, 53, 88

queryAll, 54

queryJustOne, 54

queryOne, 54

queryOneWithDefault, 54

Queue, 127

quickSort, 141

radio main, 154

radio main off, 154

radio other, 154

range, 198

rangle, 110

rbrace, 110

rbracket, 110

readAbstractCurryFile, 182

readAnyQExpression, 125

readAnyQTerm, 125

readAnyUnqualifiedTerm, 125

readCompleteFile, 83

readCSV, 52

readCSVFile, 52

readCSVFileWithDelims, 52

readCSVWithDelims, 52

readCurry, 39, 182

readCurryWithParseOptions, 182

readFileWithXmlDocs, 169

readFlatCurry, 39, 194

readFlatCurryFile, 194

readFlatCurryInt, 194

readFlatCurryIntWithImports, 207

readFlatCurryIntWithImportsInPath, 207

readFlatCurryWithImports, 207

readFlatCurryWithImportsInPath, 207

readFlatCurryWithParseOptions, 194

readFM, 131

readGlobal, 65

readGVar, 66

232

readHex, 114, 115

readHtmlFile, 157

readInt, 114

readIORef, 84

readNat, 114

readOct, 115

readPropertyFile, 114

readQTerm, 116

readQTermFile, 116

readQTermListFile, 116

readsAnyQExpression, 125

readsAnyQTerm, 125

readsAnyUnqualifiedTerm, 125

readScan, 187

readsQTerm, 116

readsTerm, 116

readsUnqualifiedTerm, 115

readTerm, 116

readUnqualifiedTerm, 116

readUnsafeXmlFile, 169

readUntypedCurry, 182

readUntypedCurryWithParseOptions, 182

readXmlFile, 169

ReconfigureItem, 70

RedBlackTree, 138

redirect, 149

removeDirectory, 59

removeEscapes, 159

removeFile, 59

removeRegionStyle, 77

renameDirectory, 59

renameFile, 59

Rendering, 160

renderList, 167

renderTaggedTuple, 166

renderTuple, 166

rep, 172

replace, 96

replaceChildren, 143

replaceChildrenIO, 144

repSeq1, 173

repSeq2, 173

repSeq3, 174

repSeq4, 175

repSeq5, 175

repSeq6, 176

RequiredSpec, 184

requires, 185

resetbutton, 153

resultType, 199

retract, 61

returnT, 55, 90

rnmAllVars, 205

rnmAllVarsInFunc, 201

rnmAllVarsInProg, 196

rnmAllVarsInRule, 202

rnmAllVarsInTypeExpr, 199

rnmProg, 196

rotate, 128

round, 64

row, 74

rparen, 110

Rule, 190

ruleArgs, 201

ruleBody, 202

ruleExtDecl, 202

runConfigControlledGUI, 75

runControlledGUI, 75

runFormServerWithKey, 156

runFormServerWithKeyAndFormParams, 156

runGUI, 75

runGUIwithParams, 75

runHandlesControlledGUI, 75

runInitControlledGUI, 75

runInitGUI, 75

runInitGUIwithParams, 75

runInitHandlesControlledGUI, 76

runJustT, 56, 90

runNamedServer, 103

runPassiveGUI, 74

runQ, 54, 89

runT, 55, 89

runTNA, 56

satisfied, 50

satisfy, 100

scalarProduct, 47

scan, 187

233

scanl, 97

scanl1, 97

scanr, 97

scanr1, 97

sClose, 99, 120

SearchTree, 40

SeekMode, 80

seeText, 77

selection, 154

selectionInitial, 154

semi, 110

semiBraces, 109

send, 37, 102

sendMail, 158

sendMailWithOptions, 158

sep, 107

separatorChar, 62

seq1, 173

seq2, 173

seq3, 174

seq4, 174

seq5, 175

seq6, 176

seqStrActions, 42

sequenceMaybe, 98

sequenceT, 55, 91

sequenceT , 55, 91

set0, 117

set1, 117

set2, 117

set3, 118

set4, 118

set5, 118

set6, 118

set7, 118

setAssoc, 83

setConfig, 76

setCurrentDirectory, 59

setEnviron, 120

setInsertEquivalence, 139

SetRBT, 139

setRBT2list, 140

setValue, 76

showAnyExpression, 125

showAnyQExpression, 125

showAnyQTerm, 124

showAnyTerm, 124

showCProg, 210

showCSV, 52

showCurryExpr, 208

showCurryId, 208

showCurryType, 208

showCurryVar, 208

showExpr, 183

showFlatFunc, 208

showFlatProg, 207

showFlatType, 207

showFM, 131

showFuncDecl, 183

showGraph, 137

showHtmlExp, 155

showHtmlExps, 155

showHtmlPage, 155

showJSExp, 86

showJSFDecl, 86

showJSStat, 86

showLatexDoc, 156

showLatexDocs, 156

showLatexDocsWithPackages, 156

showLatexDocWithPackages, 156

showLatexExp, 156

showLatexExps, 156

showMemInfo, 113

showPattern, 183

showProg, 183

showQNameInModule, 194

showQTerm, 115

showTerm, 115

showTError, 54, 93

showTestCase, 42

showTestCompileError, 42

showTestEnd, 42

showTestMod, 42

showTypeDecl, 183

showTypeDecls, 183

showTypeExpr, 183

showXmlDoc, 169

showXmlDocWithParams, 169

234

simplify, 50

sin, 64

single, 12

singleton variables, 6

sizedSubset, 51

sizeFM, 130

sleep, 121

snoc, 127

Socket, 99, 119

socketAccept, 99, 119

socketName, 99

softbreak, 104

softline, 104

solve, 47

some, 100

someDBInfos, 92

someDBKeyInfos, 92

someDBKeyProjections, 92

someDBKeys, 92

sort, 139

sortBy, 96

sortByIndex, 87, 93

sortRBT, 140

sortValues, 119

sortValuesBy, 119

SP_Msg, 101

space, 111

spawnConstraint, 124

splitBaseName, 63

splitDirectoryBaseName, 62

splitFM, 129

splitPath, 63

splitSet, 51

spy, 13

sqrt, 64

squote, 110

squotes, 109

standardForm, 149

standardPage, 150

star, 100

stderr, 81

stdin, 81

stdout, 81

string, 110, 171

string2urlencoded, 155

stringList2ItemList, 144

stripSuffix, 63

strong, 151

Style, 73

style, 152

styleSheet, 152

subset, 51

suc, 135

suc’, 136

suffixSeparatorChar, 62

sum, 47, 96

system, 121

table, 152

TableRBT, 142

tableRBT2list, 142

tabulator stops, 6

tagOf, 168

tails, 96

tan, 64

tConsArgs, 198

tConsName, 198

teletype, 151

terminal, 100

TError, 53, 89

TErrorKind, 53, 89

testing programs, 25

testScan, 187

text, 103

textarea, 153

TextEditScroll, 77

textfield, 153

textOf, 168

textOfXml, 169

textstyle, 153

time, 11

timeoutOnStream, 102

toCalendarTime, 122

toClockTime, 122

toDayString, 123

Token, 186

Tokens, 186

toLower, 43

235

toTimeString, 123

toUpper, 43

toUTCTime, 122

trace, 13, 124

Transaction, 54, 88

transaction, 61

transactionWithErrorCatch, 62

transformQ, 54, 89

transformWSpec, 161

transpose, 95

Traversable, 142

trBranch, 205

trCombType, 202

trCons, 197

tree2list, 139

trExpr, 204

trFunc, 200

trOp, 199

trPattern, 206

trProg, 195

trRule, 201

trType, 196

trTypeExpr, 198

true, 49

truncate, 64

tupled, 109

TVarIndex, 187

tVarIndex, 198

typeConsDecls, 196

TypeDecl, 188

TypeExpr, 189

typeName, 196

typeParams, 196

typeSyn, 197

typeVisibility, 196

UContext, 132

UDecomp, 133

UEdge, 132

ufold, 137

UGr, 133

ulist, 152

unfoldr, 97

union, 95

unionRBT, 140

unitFM, 128

UNode, 132

unsafePerformIO, 124

unscan, 187

unsetEnviron, 120

untypedAbstractCurryFileName, 182

UPath, 133

Update, 195

update, 126, 139

updateDBEntry, 88, 92, 94

updateFile, 83

updatePropertyFile, 114

updateRBT, 142

updateValue, 76

updateXmlFile, 169

updBranch, 206

updBranches, 205

updBranchExpr, 206

updBranchPattern, 206

updCases, 205

updCombs, 204

updCons, 198

updConsArgs, 198

updConsArity, 198

updConsName, 198

updConsVisibility, 198

updFM, 129

updFrees, 205

updFunc, 200

updFuncArgs, 201

updFuncArity, 200

updFuncBody, 201

updFuncName, 200

updFuncRule, 201

updFuncType, 201

updFuncTypes, 199

updFuncVisibility, 201

updLets, 205

updLiterals, 204

updOp, 200

updOpFixity, 200

updOpName, 200

updOpPrecedence, 200

236

updOrs, 205

updPatArgs, 206

updPatCons, 206

updPatLiteral, 206

updPattern, 206

updProg, 195

updProgExps, 196

updProgFuncs, 196

updProgImports, 196

updProgName, 195

updProgOps, 196

updProgTypes, 196

updQNames, 205

updQNamesInConsDecl, 198

updQNamesInFunc, 201

updQNamesInProg, 196

updQNamesInRule, 202

updQNamesInType, 197

updQNamesInTypeExpr, 199

updRule, 202

updRuleArgs, 202

updRuleBody, 202

updRuleExtDecl, 202

updTCons, 199

updTVars, 199

updType, 197

updTypeConsDecls, 197

updTypeName, 197

updTypeParams, 197

updTypeSynonym, 197

updTypeVisibility, 197

updVars, 204

urlencoded2string, 155

user interface, 28

validDate, 123

valueOf, 118

Values, 117

values2list, 119

variables

singleton, 6

VarIndex, 187

varNr, 203

vcat, 107

verbatim, 151

Visibility, 188

vsep, 106

w10Tuple, 165

w11Tuple, 165

w12Tuple, 165

w4Tuple, 163

w5Tuple, 163

w6Tuple, 164

w7Tuple, 164

w8Tuple, 164

w9Tuple, 164

waitForSocketAccept, 99, 120

warn, 11

wCheckBool, 162

wCheckMaybe, 166

wCons10, 165

wCons11, 165

wCons12, 165

wCons2, 163

wCons3, 163

wCons4, 163

wCons5, 164

wCons6, 164

wCons7, 164

wCons8, 164

wCons9, 164

wConstant, 162

wEither, 166

where, 14

wHidden, 162

wHList, 166

Widget, 66

WidgetRef, 73

wInt, 162

withCondition, 161

withError, 161

withRendering, 161

wJoinTuple, 165

wList, 166

wListWithHeadings, 166

wMatrix, 166

wMaybe, 166

237

wMultiCheckSelect, 163

wPair, 163

wRadioBool, 163

wRadioMaybe, 166

wRadioSelect, 163

wRequiredString, 162

wRequiredStringSize, 162

writeAbstractCurryFile, 182

writeAssertResult, 42

writeCSVFile, 52

writeFCY, 194

writeGlobal, 65

writeGVar, 66

writeIORef, 84

writeQTermFile, 116

writeQTermListFile, 116

writeXmlFile, 169

writeXmlFileWithParams, 169

wSelect, 162

wSelectBool, 162

wSelectInt, 162

wString, 162

wStringSize, 162

wTextArea, 162

WTree, 161

wTree, 166

wTriple, 163

wui2html, 167

WuiHandler, 160

wuiHandler2button, 161

wuiInForm, 167

WuiSpec, 161

wuiWithErrorForm, 167

XAttrConv, 170

XElemConv, 170

xml, 169

xml2FlatCurry, 208

XmlDocParams, 168

XmlExp, 167

xmlFile2FlatCurry, 208

xmlRead, 170

XmlReads, 170

xmlReads, 170

xmlShow, 171

XmlShows, 170

xmlShows, 170

XOptConv, 170

XPrimConv, 170

XRepConv, 170

xtxt, 169

238

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions on Curry Programs
	Modules in PAKCS

	PAKCS: An Interactive Curry Development System
	How to Use PAKCS
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Records
	Record Type Declaration
	Record Construction
	Field Selection
	Field Update
	Records in Pattern Matching
	Export of Records
	Restrictions in the Usage of Records

	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryTest: A Tool for Testing Curry Programs
	ERD2Curry: A Tool to Generate Programs from ER Specifications
	UI: Declarative Programming of User Interfaces
	Preprocessing FlatCurry Files
	Technical Problems
	Bibliography
	Libraries of the PAKCS Distribution
	Constraints, Ports, Meta-Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry

	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library CLPFD
	Library CLPR
	Library CLPB
	Library Combinatorial
	Library Constraint
	Library CSV
	Library Database
	Library DaVinci
	Library Directory
	Library Dynamic
	Library FileGoodies
	Library Float
	Library Global
	Library GlobalVariable
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library KeyDatabase
	Library KeyDatabaseSQLite
	Library KeyDB
	Library List
	Library Maybe
	Library NamedSocket
	Library Parser
	Library Ports
	Library Pretty
	Library Profile
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library System
	Library Time
	Library Unsafe

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal

	Libraries for Web Applications
	Library CategorizedHtmlList
	Library HTML
	Library HtmlParser
	Library Mail
	Library Markdown
	Library WUI
	Library URL
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry
	Library AbstractCurryPrinter
	Library CompactFlatCurry
	Library CurryStringClassifier
	Library FlatCurry
	Library FlatCurryGoodies
	Library FlatCurryRead
	Library FlatCurryShow
	Library FlatCurryTools
	Library FlatCurryXML
	Library FlexRigid
	Library PrettyAbstract

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	Overview of the PAKCS Distribution
	Auxiliary Files
	Changing the Prelude or System Modules
	External Functions
	Index

