
PAKCS 1.14.2
The Portland Aachen Kiel Curry System

User Manual
Version of 2017-02-24

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Björn Peemöller8

Ramin Sadre9

Frank Steiner10

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de

(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 7

1 Overview of PAKCS 8
1.1 General Use . 8
1.2 Restrictions . 8
1.3 Modules in PAKCS . 9

2 PAKCS: An Interactive Curry Development System 10
2.1 Invoking PAKCS . 10
2.2 Commands of PAKCS . 11
2.3 Options of PAKCS . 14
2.4 Using PAKCS in Batch Mode . 17
2.5 Command Line Editing . 17
2.6 Customization . 17
2.7 Emacs Interface . 17

3 Extensions 19
3.1 Recursive Variable Bindings . 19
3.2 Functional Patterns . 19
3.3 Order of Pattern Matching . 21

4 Recognized Syntax of Curry 23
4.1 Notational Conventions . 23
4.2 Lexicon . 23

4.2.1 Comments . 23
4.2.2 Identifiers and Keywords . 23
4.2.3 Numeric and Character Literals . 24

4.3 Layout . 25
4.4 Context-Free Grammar . 25

5 Optimization of Curry Programs 29

6 curry browse: A Tool for Analyzing and Browsing Curry Programs 30

7 curry check: A Tool for Testing Properties of Curry Programs 32
7.1 Testing Properties . 32
7.2 Generating Test Data . 35
7.3 Checking Contracts and Specifications . 38
7.4 Checking Usage of Specific Operations . 39

8 curry doc: A Documentation Generator for Curry Programs 41

1

9 curry style: A Style Checker for Curry Programs 44
9.1 Basic Usage . 44
9.2 Configuration . 44

10 curry test: A Tool for Testing Curry Programs 45

11 curry verify: A Tool to Support the Verification of Curry Programs 47
11.1 Basic Usage . 47
11.2 Options . 48

12 CurryPP: A Preprocessor for Curry Programs 51
12.1 Integrated Code . 52

12.1.1 Regular Expressions . 52
12.1.2 Format Specifications . 52
12.1.3 HTML Code . 53
12.1.4 XML Expressions . 54

12.2 SQL Statements . 55
12.2.1 ER Specifications . 55
12.2.2 SQL Statements as Integrated Code . 58

12.3 Sequential Rules . 59
12.4 Default Rules . 59
12.5 Contracts . 60

13 runcurry: Running Curry Programs 63

14 CASS: A Generic Curry Analysis Server System 65
14.1 Using CASS to Analyze Programs . 65

14.1.1 Batch Mode . 66
14.1.2 API Mode . 66
14.1.3 Server Mode . 67

14.2 Implementing Program Analyses . 69

15 ERD2Curry: A Tool to Generate Programs from ER Specifications 72

16 Spicey: An ER-based Web Framework 73

17 curry peval: A Partial Evaluator for Curry 74
17.1 Basic Usage . 74
17.2 Options . 75

18 UI: Declarative Programming of User Interfaces 77

19 Preprocessing FlatCurry Files 78

20 Technical Problems 80

Bibliography 81

2

A Libraries of the PAKCS Distribution 84
A.1 Constraints, Ports, Meta-Programming . 84

A.1.1 Arithmetic Constraints . 84
A.1.2 Finite Domain Constraints . 85
A.1.3 Ports: Distributed Programming in Curry . 87
A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 88

A.2 General Libraries . 89
A.2.1 Library AllSolutions . 89
A.2.2 Library Assertion . 90
A.2.3 Library Char . 92
A.2.4 Library CHR . 94
A.2.5 Library CHRcompiled . 96
A.2.6 Library CLP.FD . 98
A.2.7 Library CLPFD . 103
A.2.8 Library CLPR . 107
A.2.9 Library CLPB . 108
A.2.10 Library Combinatorial . 110
A.2.11 Library CPNS . 111
A.2.12 Library CSV . 111
A.2.13 Library Debug . 112
A.2.14 Library Directory . 113
A.2.15 Library Distribution . 114
A.2.16 Library Either . 119
A.2.17 Library ErrorState . 120
A.2.18 Library FileGoodies . 121
A.2.19 Library FilePath . 122
A.2.20 Library Findall . 126
A.2.21 Library Float . 128
A.2.22 Library Function . 130
A.2.23 Library FunctionInversion . 131
A.2.24 Library GetOpt . 131
A.2.25 Library Global . 133
A.2.26 Library GlobalVariable . 134
A.2.27 Library GUI . 135
A.2.28 Library Integer . 147
A.2.29 Library IO . 149
A.2.30 Library IOExts . 151
A.2.31 Library JavaScript . 153
A.2.32 Library List . 156
A.2.33 Library Maybe . 160
A.2.34 Library NamedSocket . 161
A.2.35 Library Parser . 162
A.2.36 Library Ports . 163
A.2.37 Library Pretty . 165

3

A.2.38 Library Profile . 178
A.2.39 Library Prolog . 180
A.2.40 Library PropertyFile . 182
A.2.41 Library Read . 182
A.2.42 Library ReadNumeric . 183
A.2.43 Library ReadShowTerm . 183
A.2.44 Library SetFunctions . 185
A.2.45 Library Socket . 188
A.2.46 Library State . 189
A.2.47 Library System . 190
A.2.48 Library Time . 192
A.2.49 Library Unsafe . 194
A.2.50 Library Test.EasyCheck . 197

A.3 Data Structures and Algorithms . 201
A.3.1 Library Array . 201
A.3.2 Library Dequeue . 202
A.3.3 Library FiniteMap . 203
A.3.4 Library GraphInductive . 207
A.3.5 Library Random . 213
A.3.6 Library RedBlackTree . 213
A.3.7 Library SCC . 215
A.3.8 Library SearchTree . 215
A.3.9 Library SearchTreeTraversal . 218
A.3.10 Library SetRBT . 218
A.3.11 Library Sort . 219
A.3.12 Library TableRBT . 221
A.3.13 Library Traversal . 222
A.3.14 Library ValueSequence . 224
A.3.15 Library Rewriting.CriticalPairs . 225
A.3.16 Library Rewriting.DefinitionalTree . 225
A.3.17 Library Rewriting.Files . 227
A.3.18 Library Rewriting.Narrowing . 229
A.3.19 Library Rewriting.Position . 232
A.3.20 Library Rewriting.Rules . 233
A.3.21 Library Rewriting.Strategy . 235
A.3.22 Library Rewriting.Substitution . 237
A.3.23 Library Rewriting.Term . 238
A.3.24 Library Rewriting.Unification . 241
A.3.25 Library Rewriting.UnificationSpec . 241

A.4 Libraries for Database Access and Manipulation . 242
A.4.1 Library Database . 242
A.4.2 Library Dynamic . 246
A.4.3 Library KeyDatabase . 248
A.4.4 Library KeyDatabaseSQLite . 249

4

A.4.5 Library KeyDB . 254
A.4.6 Library Database.CDBI.Connection . 255
A.4.7 Library Database.CDBI.Criteria . 259
A.4.8 Library Database.CDBI.Description . 265
A.4.9 Library Database.CDBI.ER . 269
A.4.10 Library Database.CDBI.QueryTypes . 270
A.4.11 Library Database.ERD . 276
A.4.12 Library Database.ERDGoodies . 279

A.5 Libraries for Web Applications . 280
A.5.1 Library Bootstrap3Style . 280
A.5.2 Library CategorizedHtmlList . 281
A.5.3 Library HTML . 282
A.5.4 Library HtmlCgi . 295
A.5.5 Library HtmlParser . 297
A.5.6 Library Mail . 297
A.5.7 Library Markdown . 298
A.5.8 Library URL . 300
A.5.9 Library WUI . 301
A.5.10 Library WUIjs . 307
A.5.11 Library XML . 316
A.5.12 Library XmlConv . 318

A.6 Libraries for Meta-Programming . 325
A.6.1 Library AbstractCurry.Types . 325
A.6.2 Library AbstractCurry.Files . 331
A.6.3 Library AbstractCurry.Select . 332
A.6.4 Library AbstractCurry.Build . 335
A.6.5 Library AbstractCurry.Pretty . 339
A.6.6 Library FlatCurry.Types . 343
A.6.7 Library FlatCurry.Files . 349
A.6.8 Library FlatCurry.Goodies . 350
A.6.9 Library FlatCurry.Pretty . 362
A.6.10 Library FlatCurry.Read . 367
A.6.11 Library FlatCurry.Show . 367
A.6.12 Library FlatCurry.XML . 368
A.6.13 Library FlatCurry.FlexRigid . 369
A.6.14 Library FlatCurry.Compact . 369
A.6.15 Library FlatCurry.Annotated.Types . 371
A.6.16 Library FlatCurry.Annotated.Pretty . 372
A.6.17 Library FlatCurry.Annotated.Goodies . 375
A.6.18 Library FlatCurry.Annotated.TypeSubst . 388
A.6.19 Library FlatCurry.Annotated.TypeInference 389
A.6.20 Library CurryStringClassifier . 391

5

B Markdown Syntax 394
B.1 Paragraphs and Basic Formatting . 394
B.2 Lists and Block Formatting . 395
B.3 Headers . 397

C SQL Syntax Supported by CurryPP 398

D Overview of the PAKCS Distribution 403

E Auxiliary Files 405

F External Functions 406

Index 410

6

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports constraint programming over various constraint domains, the
high-level implementation of distributed applications, graphical user interfaces, and web services
(as described in more detail in [19, 20, 21]). Since PAKCS compiles Curry programs into Prolog
programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [29]. Therefore, this document only explains the use of the different components of PAKCS
and the differences and restrictions of PAKCS (see Section 1.2) compared with the language Curry
(Version 0.9.0).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

7

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog
or SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome /bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section E
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled
target code, the definition of functions with local declarations look different from their origi-
nal definition (in order to see the result of this transformation, you can use the CurryBrowser,
see Section 6).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computations
are treated as in Prolog by a backtracking strategy, which is known to be incomplete. Thus,
the order of rules could influence the ability to find solutions for a given goal.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

8

• Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall and
findfirst. These and some other operators are available in the library Findall (i.e., they are
not part of the standard prelude). In contrast to the general definition of encapsulated search
[28], the current implementation suspends the evaluation of findall and findfirst until the
argument does not contain unbound global variables. Moreover, the evaluation of findall is
strict, i.e., it computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation
strategy due to the combination of sharing and lazy evaluation (see [14] for a detailed dis-
cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation
of non-deterministic computations. Set functions compute the set of all results of a defined
function but do not encapsulate non-determinism occurring in the actual arguments. See the
library SetFunctions (Section A.2.44) for more details.

• There is currently no general connection to external constraint solvers. However, the PAKCS
compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-
pendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directory “pakcshome /lib”.
This search path can be extended by setting the environment variable CURRYPATH (which can be also
set in a PAKCS session by the option “:set path”, see below) to a list of directory names separated
by colons (“:”). In addition, a local standard search path can be defined in the “.pakcsrc” file (see
Section 2.6). Thus, modules to be loaded are searched in the following directories (in this order,
i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directory “pakcshome /lib”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (pakcshome /lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

9

2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in
Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level
debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.
The compilation process and the execution of compiled programs is fairly efficient if a good Prolog
implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” or “curry” (these are shell scripts stored in
pakcshome /bin where pakcshome is the installation directory of PAKCS). When the system is ready
(i.e., when the prompt “Prelude>” occurs), the prelude (pakcshome /lib/Prelude.curry) is already
loaded, i.e., all definitions in the prelude are accessible. Now you can type various commands (see
next section) or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

pakcs :load Mod :add List

starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation

pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This
invocation could be useful in “make” files for systems implemented in Curry.

There are also some additional options that can be used when invoking PAKCS:

-h or --help : Print only a help message.

-V or --version : Print the version information of PAKCS and quit.

--compiler-name : Print just the compiler name (pakcs) and quit.

--numeric-version : Print just the version number and quit.

--noreadline : Do not use input line editing (see Section 2.5).

-Dname=val (these options must come before any PAKCS command): Overwrite values defined
in the configuration file “.pakcsrc” (see Section 2.6), where name is a property defined in the
configuration file and val its new value.

-q or --quiet : With this option, PAKCS works silently, i.e., the initial banner and the input
prompt are not shown. The output of other information is determined by the options “verbose”
and “vn” (see Section 2.3).

10

One can also invoke PAKCS with some run-time arguments that can be accessed inside a Curry
program by the I/O operation getArgs (see library System (Section A.2.47). These run-time ar-
guments must be written at the end after the separator “--”. For instance, if PAKCS is invoked
by

pakcs :load Mod -- first and second

then a call to the I/O operation getArgs returns the list value

["first","and","second"]

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a
command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported
modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and com-
piles from this intermediate representation. If the file prog.fcy does not exists, too, the system
looks for a file prog_flat.xml containing a FlatCurry program in XML representation (com-
pare command “:xml”), translates this into a FlatCurry file prog.fcy and compiles from this
intermediate representation.

:reload Recompile all currently loaded modules.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their
exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. Since PAKCS
compiles Curry programs into Prolog programs, non-deterministic computations are imple-
mented by backtracking. Therefore, computed results are shown one after the other. In the
interactive mode (which can be set in the configuration file “.pakcsrc” or by setting the option
interactive, see below), you will be asked after each computed result whether you want to
see the next alternative result or all alternative results. The default answer value for this
question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below). Thus, in order to see the results of
their bindings, they must be introduced by a “where...free” declaration. For instance, one
can write

not b where b free

in order to obtain the following bindings and results:

{b = True} False
{b = False} True

11

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

:eval expr Same as expr. This command might be useful when putting commands as arguments
when invoking pakcs.

:define x=expr Define the identifier x as an abbreviation for the expression expr which can
be used in subsequent expressions. The identifier x is visible until the next load or reload

command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 6 for more details).

:edit Load the source code of the current main module into a text editor. If the variable
editcommand is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used
as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,
“vi”) is used.

:edit m Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

:interface Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”. If
this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry” shows the interface of
the system module FlatCurry for meta-programming (see Appendix A.1.4).

:usedimports Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

:modules Show the list of all currently loaded modules.

:programs Show the list of all Curry programs that are available in the load path.

:set option Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a description
of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options that
can only be set (e.g., printdepth) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

12

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command
to show the source text, otherwise the environment variable PAGER or the standard command
“cat” is used. If the source text is not available (since the program has been directly compiled
from a FlatCurry or XML file), the loaded program is decompiled and the decompiled Curry
program text is shown.

:show m Show the source text of module m which must be accessible via the current load path.

:source f Show the source code of function f (which must be visible in the currently loaded
module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function) will
be evaluated by the executable.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs (see Appendix A.1.3) where one can start a new server process by this command.
The new process will be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported
in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general idea
of observation debugging and the implementation of COOSy can be found in [13].

:xml Translate the currently loaded program module into an XML representation according to
the format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this
yields an implementation-independent representation of the corresponding FlatCurry program
(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently loaded
program, the XML representation will be written into the file “prog_flat.xml”.

:peval Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source

13

http://www.informatik.uni-kiel.de/~curry/flat/

program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated
program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all pro-
grams) based on the ideas described in [1, 2, 3, 4].

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression, setting
spy points (break points) etc. (see the commands for the debug mode described below).

+/-free Free variable mode. If the free variable mode is off (default), then free variables occur-
ring in initial expressions entered in the PAKCS environment must always be declared by
“where...free”. This avoids the introduction of free variables in initial expressions by typos
(which might lead to the exploration of infinite search spaces). If the free variable mode is on,
each undefined symbol occurring in an initial expression is considered as a free variable. In
this case, the syntax of accepted initial expressions is more restricted. In particular, lambda
abstractions, lets and list comprehensions are not allowed if the free variable mode is on.

+/-printfail Print failures. If this option is set, failures occurring during evaluation (i.e., non-
reducible demanded subexpressions) are printed. This is useful to see failed reductions due
to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside
evaluations of findall and findfirst), failures are not printed (since they are a typical pro-
gramming technique there). Note that this option causes some overhead in execution time
and memory so that it could not be used in larger applications.

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures of
enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

+/-consfail Print constructor failures. If this option is set, failures due to application of functions
with non-exhaustive pattern matching or failures during unification (application of “=:=”) are
shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures
are not printed (since they are a typical programming technique there). In contrast to the
option printfail, this option creates only a small overhead in execution time and memory
use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just failed)
function calls from the main function to the failed function are shown.

14

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in the file f .
This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an interactive mode
for exploring the fail trace is started (see help information in this interactive mode). When
the interactive mode is finished, the program execution proceeds with a failure.

+/-compact Reduce the size of target programs by using the parser option “--compact” (see Sec-
tion 19 for details about this option).

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-
deterministic value is computed only when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values. The
default value for this option can be set in the configuration file “.pakcsrc” (initially, the
interactive mode is turned off).

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main
expression is printed (instead of all values).

+/-profile Profile mode. If the profile mode is on, then information about the number of calls,
failures, exits etc. are collected for each function during the debug mode (see above) and
shown after the complete execution (additionaly, the result is stored in the file prog.profile
where prog is the current main program). The profile mode has no effect outside the debug
mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions
(if there are any) are shown (in their internal representation) at the end of a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the computation
is always printed together with the result of an evaluation.

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial expression of
a computation is printed before it is evaluated. If the verbose mode is on and the verbosity
level (see below) is non-zero, the type of the initial expression is also printed and the output
of the evaluation is more detailed.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will print
warnings about variables that occur only once in a program rule (see Section 1.2) or locally
declared names that shadow the definition of globally declared names. If the parser warnings
are switched off, these warnings are not printed during the reading of a Curry program.

path path Set the additional search path for loading modules to path. Note that this search path is
only used for loading modules inside this invocation of PAKCS, i.e., the environment variable
“CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:~/tests

15

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

printdepth n Set the depth for printing terms to the value n (initially: 0). In this case subterms
with a depth greater than n are abbreviated by dots when they are printed as a result of a
computation or during debugging. A value of 0 means infinite depth so that the complete
terms are printed.

vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like loading intermediate files or generating Prolog
target files.

n = 3: Show also messages related to loading Prolog files and libraries into the run-time
systems and other intermediate messages and results.

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed
to be of type IO and the program should not import the module Unsafe. Furthermore, the
allowed commands are eval, load, quit, and reload. This mode is useful to use PAKCS in
uncontrolled environments, like a computation service in a web page, where PAKCS could be
invoked by

pakcs :set safe

parser opts Define additional options passed to the front end of PAKCS, i.e., the parser program
pakcshome /bin/pakcs-frontend. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

args arguments Define run-time arguments for the evaluation of the main expression. For in-
stance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.47) returns the
value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by setting
the debug option with the command “:set +debug”. In order to switch back to normal evaluation
of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an
expression is stopped after each step and the user is asked how to proceed (see the options
there).

16

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-
sions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automatically
activated when a spy point is reached.

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

> pakcs :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution
of the expression being evaluated. The actual run-time arguments (string1, string2) are defined
by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit
Hello World
>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS
(as often supported by the readline library), you should have the Unix command rlwrap installed
on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it
should not be used (e.g., because it is executed in an editor with readline functionality), one can
call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard
version of this configuration file is copied with the name “.pakcsrc” into your home directory. The
file contains definitions of various settings, e.g., about showing warnings, progress messages etc.
After you have started PAKCS for the first time, look into this file and adapt it to your own
preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available for
many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a special

17

http://www.emacs.org

Curry mode that supports the development of Curry programs in the Emacs environment. This
mode includes support for syntax highlighting, finding declarations in the current buffer, and loading
Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “pakcshome /tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

18

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

ones5 = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2
where

one2 = 1 : two1
two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that the
expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to implement operations in a more readable way.
Furthermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is a
function call at a pattern position. With functional patterns, we can define the operation last as
follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [6] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y
last [_,y] = y
last [_,_,y] = y
. . .

19

which shows that the evaluation of the list elements is not demanded by the functional pattern.
In general, a pattern of the form (f t1...tn) for n > 0 (or of the qualified form (M.f t1...tn)

for n ≥ 0) is interpreted as a functional pattern if f is not a visible constructor but a defined
function that is visible in the scope of the pattern. Furthermore, for a functional pattern to be well
defined, there are two additional requirements to be satisfied:

1. If a function f is defined by means of a functional pattern fp, then the evaluation of fp must
not depend on f , i.e., the semantics of a function defined using functional patterns must not
(transitively) depend on its own definition. This excludes definitions such as

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

and is necessary to assign a semantics to funtions employing functional patterns (see [6] for
more details).

2. Only functions that are globally defined may occur inside a functional pattern. This restriction
ensures that no local variable might occur in the value of a functional pattern, which might
lead to an non-intuitive semantics. Consider, for instance, the following (complicated) equality
operation

eq :: a → a → Bool
eq x y = h y
where
g True = x
h (g a) = a

where the locally defined function g occurs in the functional pattern (g a) of h. Since (g a)

evaluates to the value of x whereas a is instantiated to True, the call h y now evaluates to
True if the value of y equals the value of x. In order to check this equality condition, a strict
unification between x and y is required so that an equivalent definition without functional
patterns would be:

eq :: a → a → Bool
eq x y = h y
where
h x1 | x =:= x1 = True

However, this implies that variables occuring in the value of a functional pattern imply a strict
unification if they are defined in an outer scope, whereas variables defined inside a functional
pattern behave like pattern variables. In consequence, the occurrence of variables from an
outer scope inside a functional pattern might lead to an non-intuitive behavior. To avoid such
problems, locally defined functions are excluded as functional patterns. Note that this does
not exclude a functional pattern inside a local function, which is still perfectly reasonable.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

20

f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x
where
f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

Optimization of programs containing functional patterns. Since functions patterns can
evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences of
variables which are, if present, replaced by equality constraints so that the constructor term is always
linear (see [6] for details). Since these dynamic checks are costly and not necessary for functional
patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional patterns
that checks for occurrences of functional patterns that evaluate always to linear constructor terms
and replace such occurrences with a more efficient implementation. This optimizer can be enabled
by the following possibilities:

• Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in
PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a
function f defined with functional patterns that recursively depend on f).

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.
If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

21

1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate instead
of finitely failing. In such cases, it could be necessary to consider the influence of the order of pattern
matching. Note that other orders of pattern matching can be obtained using auxiliary operations.

22

4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the
Curry Report [29]. Furthermore, the syntax recognized by PAKCS differs from that specified in the
Curry Report regarding numeric or character literals. We therefore present the complete description
of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production
NonTerm nonterminal symbol

Term terminal symbol
[α] optional
{α} zero or more repetitions
(α) grouping

α | β alternative
α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF8. However, source programs are biased
towards ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Comments

Comments either begin with “--” and terminate at the end of the line, or begin with “{-” and
terminate with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be
nested.

4.2.2 Identifiers and Keywords

The case of identifiers is important, i.e., the identifier “abc” is different from “ABC”. Although the
Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the PAKCS only
supports the free mode which puts no constraints on the case of identifiers in certain language
constructs.

Letter ::= any ASCII letter
Dashes ::= -- {-}

Ident ::= (Letter {Letter | Digit | _ | ’})〈ReservedID〉
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident

TypeVarID ::= Ident | _
DataConstrID ::= Ident

23

InfixOpID ::= (Symbol {Symbol})〈Dashes | ReservedSym〉
FunctionID ::= Ident
VariableID ::= Ident

LabelID ::= Ident

QTypeConstrID ::= [ModuleID .] TypeConstrID
QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID
QFunctionID ::= [ModuleID .] FunctionID

QLabelID ::= [ModuleID .] LabelID

The following identifiers are recognized as keywords and cannot be used as regular identifiers.

ReservedID ::= case | data | do | else | external | fcase | foreign
| free | if | import | in | infix | infixl | infixr
| let | module | newtype | of | then | type | where

Note that the identifiers as, hiding and qualified are no keywords. They have only a special
meaning in module headers and can thus be used as ordinary identifiers elsewhere. The following
symbols also have a special meaning and cannot be used as an infix operator identifier.

ReservedSym ::= .. | : | :: | = | \ | | | <- | -> | @ | ~

4.2.3 Numeric and Character Literals

In contrast to the Curry Report, PAKCS adopts Haskell’s notation of literals for both numeric as
well as character and string literals, extended with the ability to denote binary integer literals.

Int ::= Decimal
| 0b Binary | 0B Binary
| 0o Octal | 0O Octal
| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent]
| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit {Digit}
Binary ::= Binit {Binit}
Octal ::= Octit {Octit}

Hexadecimal ::= Hexit {Hexit}

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

For character and string literals, the syntax is as follows:

Char ::= ’ (Graphic〈\〉 | Space | Escape〈\&〉) ’
String ::= " { Graphic〈" | \〉 | Space | Escape | Gap } "
Escape ::= \ (CharEsc | AsciiEsc | Decimal | o Octal | x Hexadecimal)

CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
AsciiAsc ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

24

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= A | . . . | Z | @ | [| \ |] | ^ | _
Gap ::= \ WhiteChar {WhiteChar} \

Graphic ::= any graphical character
WhiteChar ::= any whitespace character

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol, and the indentation of a line is the indentation of its first symbol.1

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly braces ({ }) and
the single entities are separated by semicolons (;). Instead of using the curly braces and semicolons
of the context-free syntax, a Curry programmer can also specify these lists by indentation: the
indentation of a list of syntactic entities after let, where, do, or of is the indentation of the next
symbol following the let, where, do, of. Any item of this list starts with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in the previous line. Lines with an indentation less than the indentation of the
list terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, can be written with the layout rules as

f x = h x
where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where
g y = y + 1
h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.

4.4 Context-Free Grammar

Module ::= module ModuleID [Exports] where Block
| Block

Block ::= { [ImportDecls ;] BlockDecl1 ; . . . ; BlockDecln } (no fixity declarations here, n ≥ 0)

1In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

25

Exports ::= (Export1 , . . . , Exportn) (n ≥ 0)

Export ::= QFunction
| QTypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| QTypeConstrID (..)
| module ModuleID

ConsLabel ::= DataConstr | Label

ImportDecls ::= ImportDecl1 ; . . . ; ImportDecln (n ≥ 1)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportSpec]
ImportSpec ::= (Import1 , . . . , Importn) (n ≥ 0)

| hiding (Import1 , . . . , Importn) (n ≥ 0)

Import ::= Function
| TypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| TypeConstrID (..)

BlockDecl ::= TypeSynDecl
| DataDecl
| NewtypeDecl
| FixityDecl
| FunctionDecl

TypeSynDecl ::= type SimpleType = TypeExpr
SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

DataDecl ::= data SimpleType (external data type)
| data SimpleType = ConstrDecl1 | . . . | ConstrDecln (n ≥ 1)

ConstrDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| TypeConsExpr ConOp TypeConsExpr (infix data constructor)
| DataConstr { FieldDecl1 , . . . , FieldDecln } (n ≥ 0)

FieldDecl ::= Label1 , . . . , Labeln :: TypeExpr (n ≥ 1)

NewtypeDecl ::= newtype SimpleType = NewConstrDecl
NewConstrDecl ::= DataConstr SimpleTypeExpr

| DataConstr { Label :: TypeExpr }

TypeExpr ::= TypeConsExpr [-> TypeExpr]
TypeConsExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 1)

| SimpleTypeExpr
SimpleTypeExpr ::= TypeVarID

| QTypeConstrID
| () (unit type)
| (TypeExpr1 , . . . , TypeExprn) (tuple type, n ≥ 2)

| [TypeExpr] (list type)
| (TypeExpr) (parenthesized type)

FixityDecl ::= Fixity [Int] Op1 , . . . , Opn (n ≥ 1)

Fixity ::= infixl | infixr | infix

FunctionDecl ::= Signature | ExternalDecl | Equation
Signature ::= Functions :: TypeExpr

ExternalDecl ::= Functions external (externally defined functions)
Functions ::= Function1 , . . . , Functionn (n ≥ 1)

Equation ::= FunLhs Rhs
FunLhs ::= Function SimplePat1 . . . SimplePatn (n ≥ 0)

26

| ConsPattern FunOp ConsPattern
| (FunLhs) SimplePat1 . . . SimplePatn (n ≥ 1)

Rhs ::= = Expr [where LocalDecls]
| CondExprs [where LocalDecls]

CondExprs ::= | InfixExpr = Expr [CondExprs]

LocalDecls ::= { LocalDecl1 ; . . . ; LocalDecln } (n ≥ 0)

LocalDecl ::= FunctionDecl
| PatternDecl
| Variable1 , . . . , Variablen free (n ≥ 1)

| FixityDecl
PatternDecl ::= Pattern Rhs

Pattern ::= ConsPattern [QConOp Pattern] (infix constructor pattern)
ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern, n ≥ 1)

| - Int (negative integer pattern)
| -. Float (negative float pattern)
| SimplePat

SimplePat ::= Variable
| _ (wildcard)
| GDataConstr (constructor)
| Literal (literal)
| (Pattern) (parenthesized pattern)
| (Pattern1 , . . . , Patternn) (tuple pattern, n ≥ 2)

| [Pattern1 , . . . , Patternn] (list pattern, n ≥ 1)

| Variable @ SimplePat (as-pattern)
| ~ SimplePat (irrefutable pattern)
| (QFunction SimplePat1 . . . SimplePatn) (functional pattern, n ≥ 1)

| (ConsPattern QFunOp Pattern) (infix functional pattern)
| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabel = Pattern

Expr ::= InfixExpr :: TypeExpr (expression with type signature)
| InfixExpr

InfixExpr ::= NoOpExpr QOp InfixExpr (infix operator application)
| - InfixExpr (unary int minus)
| -. InfixExpr (unary float minus)
| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (lambda expression, n ≥ 1)

| let LocalDecls in Expr (let expression)
| if Expr then Expr else Expr (conditional)
| case Expr of { Alt1 ; . . . ; Altn } (case expression, n ≥ 1)

| fcase Expr of { Alt1 ; . . . ; Altn } (fcase expression, n ≥ 1)

| do { Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n ≥ 0)

| FuncExpr
FuncExpr ::= [FuncExpr] BasicExpr (application)
BasicExpr ::= Variable (variable)

| _ (anonymous free variable)
| QFunction (qualified function)
| GDataConstr (general constructor)
| Literal (literal)

27

| (Expr) (parenthesized expression)
| (Expr1 , . . . , Exprn) (tuple, n ≥ 2)

| [Expr1 , . . . , Exprn] (finite list, n ≥ 1)

| [Expr [, Expr] .. [Expr]] (arithmetic sequence)
| [Expr | Qual1 , . . . , Qualn] (list comprehension, n ≥ 1)

| (InfixExpr QOp) (left section)
| (QOp〈-, -.〉 InfixExpr) (right section)
| QDataConstr { FBind1 , . . . , FBindn } (record construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (record update, n ≥ 1)

Alt ::= Pattern -> Expr [where LocalDecls]
| Pattern GdAlts [where LocalDecls]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

FBind ::= QLabel = Expr

Qual ::= Pattern <- Expr (generator)
| let LocalDecls (local declarations)
| Expr (guard)

Stmt ::= Pattern <- Expr
| let LocalDecls
| Expr

Literal ::= Int | Float | Char | String

GDataConstr ::= () (unit)
| [] (empty list)
| (,{,}) (tuple)
| QDataConstr

Variable ::= VariableID | (InfixOpID) (variable)
Function ::= FunctionID | (InfixOpID) (function)

QFunction ::= QFunctionID | (QInfixOpID) (qualified function)
DataConstr ::= DataConstrID | (InfixOpID) (constructor)

QDataConstr ::= QDataConstrID | (QInfixOpID) (qualified constructor)
Label ::= LabelID | (InfixOpID) (label)

QLabel ::= QLabelID | (QInfixOpID) (qualified label)

VarOp ::= InfixOpID | ` VariableID ` (variable operator)
FunOp ::= InfixOpID | ` FunctionID ` (function operator)

QFunOp ::= QInfixOpID | ` QFunctionID ` (qualified function operator)
ConOp ::= InfixOpID | ` DataConstrID ` (constructor operator)

QConOp ::= GConSym | ` QDataConstrID ` (qualified constructor operator)
LabelOp ::= InfixOpID | ` LabelID ` (label operator)

QLabelOp ::= QInfixOpID | ` QLabelID ` (qualified label operator)

Op ::= FunOp | ConOp | LabelOp (operator)
QOp ::= VarOp | QFunOp | QConOp | QLabelOp (qualified operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

28

5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into
the intermediate FlatCurry representation, PAKCS applies a transformation to optimize Boolean
equalities occurring in the Curry program. The ideas and details of this optimization are described
in [10]. Therefore, we sketch only some basic ideas and options to influence this optimization.

Consider the following definition of the operation last to extract the last element in list:

last xs | xs == _++[x]
= x

where x free

In order to evaluate the condition “xs == ++[x]”, the Boolean equality is evaluated to True or
False by instantiating the free variables and x. However, since we know that a condition must
be evaluated to True only and all evaluations to False can be ignored, we can use the constrained
equality to obtain a more efficient program:

last xs | xs =:= _++[x]
= x

where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, PAKCS
encourages programmers to use only the Boolean equality operator “==” in programs. The constraint
equality operator “=:=” can be considered as an optimization of “==” if it is ensured that only positive
results are required, e.g., in conditions of program rules.

To support this programming style, PAKCS has a built-in optimization phase on FlatCurry
files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “==” and
replaces them by “=:=” whenever the result False is not required. The usage of the optimizer can
be influenced by setting the property flag bindingoptimization in the configuration file .pakcsrc.
The following values are recognized for this flag:

no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude
operations in order to decide whether the value False is not required as a result of a Boolean
equality. Hence, the transformation can be efficiently performed without any complex analysis.

full: Perform a complete “required values” analysis of the program (see [10]) and use this informa-
tion to optimize programs. In most cases, this does not yield better results so that the fast

mode is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the
configuration file .pakcsrc or dynamically pass this change to the invocation of PAKCS by

. . . -Dbindingoptimization=no . . .

29

6 curry browse: A Tool for Analyzing and Browsing Curry Pro-
grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show
them in various formats, and analyze their properties.2 Moreover, it is constructed in a way so that
new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas behind
this tool can be found in [22, 23].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

• In the command shell via the command: pakcshome /bin/curry browse mod

• In the PAKCS environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on
a particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be
opened or closed by clicking. After selecting a module in the list of modules, its source code,
interface, or various other formats of the module can be shown in the main (right) text area. For
instance, one can show pretty-printed versions of the intermediate flat programs (see below) in order
to see how local function definitions are translated by lambda lifting [30] or pattern matching is
translated into case expressions [18, 35]. Since Curry is a language with parametric polymorphism
and type inference, programmers often omit the type signatures when defining functions. Therefore,
one can also view (and store) the selected module as source code where missing type signatures are
added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box of the
left column (the “function list”) with prefixes indicating the properties of the individual functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text
area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

2Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization
tool (dot http://www.graphviz.org/), otherwise they have no effect.

30

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls
directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

31

7 curry check: A Tool for Testing Properties of Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be
executed can be unit tests as well as property tests parameterized over some arguments. The
tests can be part of any Curry source program and, thus, they are also useful to document the
code. CurryCheck is based on EasyCheck [16]. Actually, the properties to be tested are written
by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [17] but
extended to the demands of functional logic programming.

7.1 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

The operator “-=-” specifies a test where both sides must have a single identical value. Since this
operator (as many more, see below) are defined in the library Test.Prop,3 we also have to import
this library. Apart from unit tests, which are often tedious to write, we can also write a property,
i.e., a test parameterized over some arguments. For instance, an interesting property of reversing a
list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- xs

Note that each property is defined as a Curry operation where the arguments are the parameters
of the property. Altogether, our program is as follows:

module Rev(rev) where

import Test.Prop

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

revRevIsId xs = rev (rev xs) -=- xs

3The library Test.Prop is a clone of the library Test.EasyCheck which defines only the interface but not the
actual test implementations. Thus, the library Test.Prop has less import dependencies. When CurryCheck generates
programs to execute the tests, it automatically replaces references to Test.Prop by references to Test.EasyCheck
in the generated programs.

32

Now we can run all tests by invoking the CurryCheck tool. If our program is stored in the file
Rev.curry, we can execute the tests as follows:

> curry check Rev
...
Executing all tests...
revNull (module Rev, line 7):
Passed 1 test.

rev123 (module Rev, line 8):
Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.
In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests
by defaulting the type variable to prelude type Ordering (the actual default type can also be set
by a command-line flag). If we want to test this property on integers numbers, we can explicitly
provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] → Prop
revRevIsId xs = rev (rev xs) -=- xs

The command curry check has some options to influence the output, like “-q” for a quiet execution
(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test
cases are shown. Moreover, the return code of curry check is 0 in case of successful tests, otherwise,
it is 1. Hence, CurryCheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the
properties do not have to be exported, as show in the module Rev above. Hence, one can add
properties to any library and export only library-relevant operations. To test these properties,
CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires
write permission on the directory where the source code is stored.

The library Test.Prop defines many combinators to construct properties. In particular, there
are a couple of combinators for dealing with non-deterministic operations (note that this list is
incomplete):

• The combinator “<~>” is satisfied if the set of values of both sides are equal.

• The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of
y must be a subset of the set of values of x.

• The property x <~y is satisfied if y evaluates to every value of x, i.e., the set of values of x
must be a subset of the set of values of y.

• The combinator “<~~>” is satisfied if the multi-set of values of both sides are equal. Hence,
this operator can be used to compare the number of computed solutions of two expressions.

• The property always x is satisfied if all values of x are true.

• The property eventually x is satisfied if some value of x is true.

33

• The property failing x is satisfied if x has no value, i.e., its evaluation fails.

• The property x # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

insert :: a → [a] → [a]
insert x xs = x : xs
insert x (y:ys) = y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of
the list:

insertAsFirstOrLast :: Int → [Int] → Prop
insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] → Prop
permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left
argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since we
know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].
Actually, this list has only one permuted value since the two possible permutations are identical
and the combinator “#” counts the number of different values. The property would be correct if all
elements in the input list xs are different. This can be expressed by a conditional property: the
property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if
we define a predicate allDifferent by

allDifferent [] = True
allDifferent (x:xs) = x ‘notElem‘ xs && allDifferent xs

then we can reformulate our property as follows:

permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

34

This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually $ sorted (perm xs)

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] → [Int}
psort xs | sorted ys = ys
where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <~> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used
as an oracle to test more efficient sorting algorithms like quicksort:

qsort :: [Int] → [Int]
qsort [] = []
qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>x) l)

The following property specifies the correctness of quicksort:

qsortIsSorting xs = qsort xs <~> psort xs

Actually, if we test this property, we obtain a failure:

> curry check ExampleTests
...
qsortIsSorting (module ExampleTests, line 53) failed
Falsified by third test.
Arguments:
[1,1]
Results:
[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.
Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful
test execution.

For I/O operations, it is difficult to execute them with random data. Hence, CurryCheck only
supports specific I/O unit tests:

• a ‘returns‘ x is satisfied if the I/O action a returns the value x.

• a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can
write several I/O tests that are executed in a well-defined order.

7.2 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these
values. Since these values are generated in a systematic way, one can even prove a property if the

35

number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is validated by checking it with all possible values:

> curry check -v ExampleTests
...
0:
False
False
1:
False
True
2:
True
False
3:
True
True
neg_or (module ExampleTests, line 67):
Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given
limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line
flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> curry check -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for function
types). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply
collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy (in the
current implementation: randomized level diagonalization [16]). For instance, we can get 20 values
for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],[2],
[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

Since the features of PAKCS for search space exploration are more limited, PAKCS uses in
CurryCheck explicit generators for search tree structures which are defined in the module
SearchTreeGenerators. For instance, the operations

genInt :: SearchTree Int

genList :: SearchTree a → SearchTree [a]

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library
Test.EasyCheck also defines an operation

36

valuesOfSearchTree :: SearchTree a → [a]

so that we obtain 20 values for a list of integers in PAKCS by

...> take 20 (valuesOfSearchTree (genList genInt))
[[],[1],[1,1],[1,-1],[2],[6],[3],[5],[0],[0,1],[0,0],[-1],[-1,0],[-2],
[-3],[1,5],[1,0],[2,-1],[4],[3,-1]]

Apart from the different implementations, CurryCheck can test properties on predefined types,
as already shown, as well as on user-defined types. For instance, we can define our own Peano
representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-
phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:

data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are
not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced
trees). Of course, one could drop undesired values by an explicit condition. For instance, consider
the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:

sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests
this property by enumerating integers, i.e., also many negative numbers which are dropped for the
tests. In order to generate only valid test data, we define our own generator for a search tree
containing only valid data:

genInt = genCons0 0 ||| genCons1 (+1) genInt

37

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1

constructs from a given search tree a new tree where the function given in the first argument is
applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than
one argument. The combinator “|||” combines two search trees.

If the Curry program containing properties defines a generator operation with the name genτ ,
then CurryCheck uses this generator to test properties with argument type τ . Hence, if we put
the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check
this property are only non-negative integers. Since these integers are slowly increasing, i.e., the
search tree is actually degenerated to a list, we can also use the following definition to obtain a
more balanced search tree:

genInt = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genInt
||| genCons1 (\n → 2*n+1) genInt

The library SearchTree defines the structure of search trees as well as operations on search trees, like
limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).
For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a
new data type and defining a generator for this data type. For instance, to test only the operation
sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define
a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genCons1 NonNeg genNN
where

genNN = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genNN
||| genCons1 (\n → 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type

sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+1) ‘div‘ 2

or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

7.3 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-
plementations for a given problem in the same programming language, as discussed in [8]. If a
specification or contract is provided for some function, then CurryCheck automatically generates
properties to test this specification or contract.

Following the notation proposed in [8], a specification for an operation f is an operation f’spec
of the same type as f . A contract consists of a pre- and a postcondition, where the precondition
could be omitted. A precondition for an operation f of type τ → τ ′ is an operation

f’pre :: τ → Bool

38

whereas a postcondition for f is an operation

f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than one argument
is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition
and a specification for a sort operation sort and an implementation via quicksort as follows (where
sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- An implementation of sort with quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondition
are automatically generated. For instance, a specification is satisfied if it yields the same values as
the implementation, and a postcondition is satisfied if each value computed for some input satisfies
the postcondition relation between input and output. For our example, CurryCheck generates the
following properties (if there are also preconditions for some operation, these preconditions are used
to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x =

let r = sort x
in (r == r) ==> always (sort’post x r)

sortSatisfiesSpecification :: [Int] → Prop
sortSatisfiesSpecification x = sort x <~> sort’spec x

7.4 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code
of the given program for unintended uses of specific operations (these checks can be omitted via the
option “--nosource”). Currently, the following source code checks are performed:

• The prelude operation “=:<=” is used to implement functional patterns [6]. It should not be
used in source programs to avoid unintended uses. Hence, CurryCheck reports such unin-
tended uses.

• Set functions [7] are used to encapsulate all non-deterministic results of some function in a set
structure. Hence, for each top-level function f of arity n, the corresponding set function can

39

be expressed in Curry (via operations defined in the module SetFunctions, see Section A.2.44)
by the application “setn f” (this application is used in order to extend the syntax of Curry
with a specific notation for set functions). However, it is not intended to apply the operator
“setn” to lambda abstractions, locally defined operations or operations with an arity different
from n. Hence, CurryCheck reports such unintended uses of set functions.

40

8 curry doc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry program
(i.e., the main module and all its imported modules) in HTML format. The generated HTML
pages contain information about all data types and functions exported by a module as well as
links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate pro-
grams!). All documentation comments immediately before a definition of a datatype or (top-level)
function are kept together.4 The documentation comments for the complete module occur before
the first “module” or “import” line in the module. The comments can also contain several special
tags. These tags must be the first thing on its line (in the documentation comment) and continues
until the next tag is encountered or until the end of the comment. The following tags are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-
ported set of elements is described in detail in the appendix). For instance, it can contain Markdown
annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code
elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed
by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines
prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the
Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<” must
be quoted (e.g., “<”). However, header tags like <h1> should not be used since the structuring is
generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark references
to names of operations or data types in Curry programs which are translated into links inside

4The documentation tool recognizes this association from the first identifier in a program line. If one wants to
add a documentation comment to the definition of a function which is an infix operator, the first line of the operator
definition should be a type definition, otherwise the documentation comment is not recognized.

41

http://en.wikipedia.org/wiki/Markdown

the generated HTML documentation. Such references have to be enclosed in single quotes. For
instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas the
text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants to
write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single words,
i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted, as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of ‘xs‘ and ‘ys‘
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.
--- It is based on the operation ’conc’ to concatenate two lists.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.
--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

curry doc Example

This command creates the directory DOC_Example (if it does not exist) and puts all HTML docu-
mentation files for the main program module Example and all its imported modules in this directory
together with a main index file index.html. If one prefers another directory for the documentation
files, one can also execute the command

curry doc docdir Example

where docdir is the directory for the documentation files.

42

In order to generate the common documentation for large collections of Curry modules (e.g., the
libraries contained in the PAKCS distribution), one can call curry doc with the following options:

curry doc --noindexhtml docdir Mod : This command generates the documentation for module Mod
in the directory docdir without the index pages (i.e., main index page and index pages for all
functions and constructors defined in Mod and its imported modules).

curry doc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined in
the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

43

9 curry style: A Style Checker for Curry Programs

CASC is a tool to check the formatting style of Curry programs. The preferred style for writing
Curry programs, which is partially checked by this tool, is described in a separate web page5

Currently, CASC only checks a few formatting rules, like line lengths or indentation of if-then-else,
but the kind of checks performed by CASC will be extended in the future.

9.1 Basic Usage

To check the style of some Curry program stored in the file prog.curry, one can invoke the style
checker by the command

curry style prog

After processing the program, a list of all positions with stylistic errors is printed.

9.2 Configuration

CASC can be configured so that not all stylistic rules are checked. For this purpose, one should
copy the global configuration file of CASC, which is stored in pakcshome /currytools/casc/cascrc

(where pakcshome is the installation directory of PAKCS), into the home directory under the name
“.cascrc”. Then one can configure this file according to your own preferences, which are described
in this file.

5http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html

44

http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html

10 curry test: A Tool for Testing Curry Programs

General remark: The CurryTest tool described in this section has been replaced by the more
advanced tool CurryCheck (see Section 7). CurryTest is still available in PAKCS but is no more
supported. Hence, it is recommended to use CurryCheck for writing test cases.

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. Cur-
ryTest simplifies the task of writing test cases for a module and executing them. The tool is easy
to use. Assume one has implemented a module MyMod and wants to write some test cases to test
its functionality, making regression tests in future versions, etc. For this purpose, there is a sys-
tem library Assertion (Section A.2.2) which contains the necessary definitions for writing tests.
In particular, it exports an abstract polymorphic type “Assertion a” together with the following
operations:

assertTrue :: String → Bool → Assertion ()
assertEqual :: String → a → a → Assertion a
assertValues :: String → a → [a] → Assertion a
assertSolutions :: String → (a → Bool) → [a] → Assertion a
assertIO :: String → IO a → a → Assertion a
assertEqualIO :: String → IO a → IO a → Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value True.
Similarly, the expression “assertEqual s e1 e2” asserts that the expressions e1 and e2 must be equal
(i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the multiset of all
values of e, and the expression “assertSolutions s c vs” asserts that the constraint abstraction c
has the multiset of solutions vs. Furthermore, the expression “assertIO s a v” asserts that the I/O
action a yields the value v whenever it is executed, and the expression “assertEqualIO s a1 a2”
asserts that the I/O actions a1 and a2 yield equal values. The name s provided as a first argument
in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module
Assertion and defining top-level functions of type Assertion in this module (which must also be
exported). As an example, consider the following program that can be used to test some list
processing functions:

import List
import Assertion

test1 = assertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = assertTrue "all" (all (<5) [1,2,3,4])

test3 = assertSolutions "prefix" (\x → x++_ =:= [1,2])
[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal to
[1,2,3,4].

We can execute a test suite by the command

curry test TestList

45

Figure 2: Snapshot of CurryTest’s graphical interface

In our example, “TestList.curry” is the program containing the definition of all assertions. This has
the effect that all exported top-level functions of type Assertion are tested (i.e., the corresponding
assertions are checked) and the results (“OK” or failure) are reported together with the name of each
assertion. For our example above, we obtain the following successful protocol:

==
Testing module "TestList"...
OK: ++
OK: all
OK: prefix
All tests successfully passed.
==

There is also a graphical interface that summarizes the results more nicely. In order to start this
interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

curry test --window TestList

or

curry test -w TestList

A snapshot of the interface is shown in Figure 2.

46

11 curry verify: A Tool to Support the Verification of Curry Pro-
grams

Curry2Verify is a tool that supports the verification of Curry programs with the help of other
theorem provers or proof assistants. Basically, Curry2Verify extends CurryCheck (see Section 7),
which tests given properties of a program, by the possibility to verify these properties. For this
purpose, Curry2Verify translates properties into the input language of other theorem provers or
proof assistants. This is done by collecting all operations directly or indirectly involved in a given
property and translating them together with the given property.

Currently, only Agda [33] is supported as a target language for verification (but more target
languages may be supported in future releases). The basic schemes to translate Curry programs
into Agda programs are presented in [12]. That paper also describes the limitations of this ap-
proach. Since Curry is a quite rich programming language, not all constructs of Curry are currently
supported in the translation process (e.g., no case expressions, local definitions, list comprehen-
sions, do notations, etc). Only a kernel language, where the involved rules correspond to a term
rewriting system, are translated into Agda. However, these limitations might be relaxed in future
releases. Hence, the current tool should be considered as a first prototypical approach to support
the verification of Curry programs.

11.1 Basic Usage

To translate the properties of a Curry program stored in the file prog.curry into Agda, one can
invoke the command

curry verify prog

This generates for each property p in module prog an Agda program “TO-PROVE-p.agda”. If one
completes the proof obligation in this file, the completed file should be renamed into “PROOF-p.agda”.
This has the effect that CurryCheck does not test this property again but trusts the proof and use
this knowledge to simplify other tests.

As a concrete example, consider the following Curry module Double, shown in Figure 3, which
uses the Peano representation of natural numbers (module Nat) to define an operation to double the
value of a number, a non-deterministic operation coin which returns its argument or its incremented
argument, and a predicate to test whether a number is even. Furthermore, it contains a property
specifying that doubling the coin of a number is always even.

In order to prove the correctness of this property, we translate it into an Agda program by
executing

> curry verify Double
. . .

Agda module ’TO-PROVE-evendoublecoin.agda’ written.
If you completed the proof, rename it to ’PROOF-evendoublecoin.agda’.

The Curry program is translated with the default scheme (see further options below) based on the
“planned choice” scheme, described in [12]. The result of this translation is shown in Figure 4.

The Agda program contains all operations involved in the property and the property itself.
Non-deterministic operations, like coin, have an additional additional argument of the abstract

47

module Double(double,coin,even) where

import Nat
import Test.Prop

double x = add x x

coin x = x ? S x

even Z = True
even (S Z) = False
even (S (S n)) = even n

evendoublecoin x = always (even (double (coin x)))

Figure 3: Curry program Double.curry

type Choice that represents the plan to execute some non-deterministic branch of the program. By
proving the property for all possible branches as correct, it universally holds.

In our example, the proof is quite easy. First, we prove that the addition of a number to itself
is always even (lemma even-add-x-x, which uses an auxiliary lemma add-suc). Then, the property
is an immediate consequence of this lemma:

add-suc : ∀ (x y : N) → add x (suc y) ≡ suc (add x y)
add-suc zero y = refl
add-suc (suc x) y rewrite add-suc x y = refl

even-add-x-x : ∀ (x : N) → even (add x x) ≡ tt
even-add-x-x zero = refl
even-add-x-x (suc x) rewrite add-suc x x | even-add-x-x x = refl

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x rewrite even-add-x-x (coin c1 x) = refl

As the proof is complete, we rename this Agda program into PROOF-evendoublecoin.agda so that
the proof can be used by further invocations of CurryCheck.

11.2 Options

The command curry verify can be parameterized with various options. The available options can
also be shown by executing

curry verify --help

The options are briefly described in the following.

-h, -?, --help These options trigger the output of usage information.

48

-q, --quiet Run quietly and produce no informative output. However, the exit code will be
non-zero if some translation error occurs.

-v[n], --verbosity[=n] Set the verbosity level to an optional value. The verbosity level 0 is the
same as option -q. The default verbosity level 1 shows the translation progress. The verbosity
level 2 (which is the same as omitting the level) shows also the generated (Agda) program.
The verbosity level 3 shows also more details about the translation process.

-n, --nostore Do not store the translated program in a file but show it only.

-p p, --property=p As a default, all properties occurring in the source program are translated. If
this option is provided, only property p is translated.

-t t, --target=t Define the target language of the translation. Currently, only t = Agda is sup-
ported, which is also the default.

-s s, --scheme=s Define the translation scheme used to represent Curry programs in the target
language.

For the target Agda, the following schemes are supported:

choice Use the “planned choice” scheme, see [12] (this is the default). In this scheme, the
choices made in a non-deterministic computation are abstracted by passing a parameter
for these choices.

nondet Use the “set of values” scheme, see [12], where non-deterministic values are represented
in a tree structure.

49

-- Agda program using the Iowa Agda library

open import bool

module TO-PROVE-evendoublecoin
(Choice : Set)
(choose : Choice → B)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where

open import eq
open import nat
open import list
open import maybe

-- Translated Curry operations:

add : N → N → N
add zero x = x
add (suc y) z = suc (add y z)

coin : Choice → N → N
coin c1 x = if choose c1 then x else suc x

double : N → N
double x = add x x

even : N → B
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x = ?

Figure 4: Agda program TO-PROVE-evendoublecoin.agda

50

12 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp” implements various transformations on Curry source programs.
It supports some experimental language extensions that might become part of the standard parser
of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below
in more detail:

Integrated code: This extension allows to integrate code written in some other language into
Curry programs, like regular expressions, format specifications (“printf”), HTML and XML
code.

Sequential rules: If this feature is used, all rules in a Curry module are interpreted as sequential,
i.e., a rule is applied only if all previous rules defining the same operation are not applicable.
The idea of sequential rules are described in [9].

Default rules: If this feature is used, one can add a default rule to operations defined in a Curry
module. This provides a similar power than sequential rules but with a better operational
behavior. The idea of default rules is described in [11].

Contracts: If this feature is used, the Curry preprocessor looks for contracts (i.e., specification,
pre- and postconditions) occurring in a Curry module and adds them as assertions that are
checked during the execution of the program. Currently, only strict assertion checking is
supported which might change the operational behavior of the program. The idea and usage
of contracts is described in [8].

The preprocessor is an executable named “currypp”, which is stored in the directory pakcshome /bin.
In order to apply the preprocessor when loading a Curry source program into PAKCS, one has to
add an option line at the beginning of the source program. For instance, in order to use default
rules in a Curry program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the PAKCS front end to process the Curry source
program with currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “seqrules” if the sequential rule matching
should be replaced, or by “contracts” to enable dynamic contract checking. To support inte-
grated code, one has to set the option “foreigncode” (which can also be combined with either
“defaultrules” or “seqrules”). If one wants to see the result of the transformation, one can also
set the option “-o”. This has the effect that the transformed source program is stored in the file
Prog.curry.CURRYPP if the name of the original program is Prog.curry.

For instance, in order to use integrated code and default rules in a module and store the trans-
formed program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program. If the options about the kind of preprocessing is omitted, all kinds
of preprocessing (except for “seqrules”) are applied. Thus, the preprocessor directive

51

{-# OPTIONS_CYMAKE -F --pgmF=currypp #-}

is equivalent to

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=contracts #-}

12.1 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number
of starting back ticks and ending ticks must always be identical. After the initial back ticks, there
must be an identifier specifying the kind of integrated code, e.g., regexp or html (see below). For
instance, if one uses regular expressions (see below for more details), the following expressions are
valid in source programs:

s ‘‘regex (a|(bc*))+’’
s ‘‘‘‘regex aba*c’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. For this
purpose, the program containing this code must start with the preprocessing directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

The next sections describe the currently supported foreign languages.

12.1.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained in
the language generated by a regular expression, one can specify regular expression similar to POSIX.
The foreign regular expression code must be marked by “regexp”. Since this code is transformed
into operations of the PAKCS library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid
identifier:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import RegExp

isID :: String → Bool
isID s = s ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

12.1.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with
foreign code marked by “format”. In this case, one can write a format specification, similarly to the
printf statement of C, followed by a comma-separated list of arguments. This format specification
is transformed into operations of the PAKCS library Format so that it must be imported. For
instance, the following program defines an operation that formats a string, an integer (with leading
sign and zeros), and a float with leading sign and precision 3:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

52

import Format

showSIF :: String → Int → Float → String
showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159

Thus, the execution of main will print the line

Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the
formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String → Int → Float → IO ()
showSIF s i f = ‘‘printf "Name: %s | %+.5i | %+6.3f\n",s,i,f’’

main = showSIF "Curry" 42 3.14159

12.1.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see PAKCS library
HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.
In order to include strings computed by Curry expressions into these HTML syntax, these Curry
expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

htmlPage :: String → [HtmlExp]
htmlPage name = ‘‘html
<html>

<head>
<title>Simple Test

<body>
<h1>Hello {name}!</h1>
<p>
Bye!

<p>Bye!
<h2>{reverse name}
Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type HtmlExp instead of String, it
can be integrated into the HTML syntax by double curly brackets. The following simple example,
taken from [21], shows the use of this feature:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

53

import HTML

main :: IO HtmlForm
main = return $ form "Question" $

‘‘html
Enter a string: {{textfield tref ""}}
<hr>
{{button "Reverse string" revhandler}}
{{button "Duplicate string" duphandler}}’’

where
tref free

revhandler env = return $ form "Answer"
‘‘html <h1>Reversed input: {reverse (env tref)}’’

duphandler env = return $ form "Answer"
‘‘html

<h1>
Duplicated input:
{env tref ++ env tref}’’

12.1.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see PAKCS library XML).
The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing tags
and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be included
by enclosing them in curly and double curly brackets, respectively. The following example program
shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

import XML

main :: IO ()
main = putStrLn $ showXmlDoc $ head ‘‘xml
<contact>
<entry>
<phone>+49-431-8807271
<name>Hanus
<first>Michael
<email>mh@informatik.uni-kiel.de
<email>hanus@email.uni-kiel.de

<entry>
<name>Smith

54

<first>Bill
<phone>+1-987-742-9388

’’

12.2 SQL Statements

The Curry preprocessor also supports SQL statements in their standard syntax as integrated code.
In order to ensure a type-safe integration of SQL statements in Curry programs, SQL queries are
type-checked in order to determine their result type and ensure that the entities used in the queries
are type correct with the underlying relational database. For this purpose, SQL statements are
integrated code require a specification of the database model in form of entity-relationship (ER)
model. From this description, a set of Curry data types are generated which are used to represent
entities in the Curry program (see Section 12.2.1). The Curry preprocessor uses this information to
type check the SQL statements and replace them by type-safe access methods to the database. In
the following, we sketch the use of SQL statements as integrated code. A detailed description of the
ideas behind this technique can be found in [26]. Currently, only SQLite databases are supported.

12.2.1 ER Specifications

The structure of the data stored in underlying database must be described as an entity-relationship
model. Such a description consists of

1. a list of entities where each entity has attributes,

2. a list of relationships between entities which have cardinality constraints that must be satisfied
in each valid state of the database.

Entity-relationships models are often visualized as entity-relationship diagrams (ERDs). Figure 5
shows an ERD which we use in the following examples.

Instead of requiring the use of soem graphical ER modeling tool, ERDs must be specified in
textual form as a Curry data term, see also [15]. In this representation, an ERD has a name, which
is also used as the module name of the generated Curry code, lists of entities and relationships:

data ERD = ERD String [Entity] [Relationship]

Each entity consists of a name and a list of attributes, where each attribute has a name, a domain,
and specifications about its key and null value property:

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)
| FloatDom (Maybe Float)
| CharDom (Maybe Char)

55

(1,1)

(0..n)

Taking

+has_a

+belongs_to

Student

Name
Firstname
MatNum
Email
Age

Result

Attempt
Grade
Points

Lecture

Title
Topic

Lecturer

Name
Firstname

Exam

GradeAverage

Place

Street
StrNr
RoomNr

Time

Time

Participation

+participated_by +participated

(0..n) (0..n)

Teaching

+teaches

+taught_by

(1,1)

(1,1)

(0..n)+belongs_to

Resulting

+results_in

+result_of

(0..n)

(1,1)

Belonging

(0..n)
+has_a ExamPlace

ExamTime

+taking_place
(0..n)

(1,1)
+in

+ taking_place +at

(0..n) (1,1)

Figure 5: A simple entity-relationship diagram for university lectures [26]

| StringDom (Maybe String)
| BoolDom (Maybe Bool)
| DateDom (Maybe ClockTime)
| UserDefined String (Maybe String)
| KeyDom String -- later used for foreign keys

Thus, each attribute is part of a primary key (PKey), unique (Unique), or not a key (NoKey). Fur-
thermore, it is allowed that specific attributes can have null values, i.e., can be undefined. The
domain of each attribute is one of the standard domains or some user-defined type. In the latter
case, the first argument of the constructor UserDefined is the qualified type name used in the Curry
application program. For each kind of domain, one can also have a default value (modeled by the
Maybe type). The constructor KeyDom is not necessary to represent ERDs but it is internally used to
transform complex ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities (REnd), where each
connection has the name of the connected entity, the role name of this connection, and its cardinality
as arguments:

56

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Between Int MaxValue

data MaxValue = Max Int | Infinite

The cardinality is either a fixed integer or a range between two integers (where Infinite as the upper
bound represents an arbitrary cardinality). For instance, the simple-complex (1:n) relationship
Teaching in Fig.5 can be represented by the term

Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)]

The PAKCS library Database.ERD contains the ER datatypes described above. Thus, the specifica-
tion of the conceptual database model must be a data term of type Database.ERD.ERD. Figure 6 on
(page 62) shows the complete ER data term specification corresponding to the ERD of Fig. 5.

If such a data term specification is stored in file UniERD.term, then one can use the tool
“erd2cdbi”, which is stored in the directory pakcshome /bin, to process the ER model so that it
can be used in SQL statements. This tool is invoked with the name of the term file and the
(preferably absolute) file name of the SQLite database. If the later does not exist, it will be initial-
ized by the tool. In our example, we execute the following command (provided that the directory
pakcshome /bin is in the path):

> erd2cdbi Uni_ERD.term ‘pwd‘/Uni.db

This initializes the SQLite database Uni.db and performs the following steps:

1. The ER model is transformed into tables of a relational database, i.e., the relations of the
ER model are either represented by adding foreign keys to entities (in case of (0/1:1) or
(0/1:n) relations) or by new entities with the corresponding relations (in case of complex
(n:m) relations). This task is performed by the tool erd2curry (see Sect. 15).

2. A new Curry module Uni CDBI is generated. It contains the definitions of entities and rela-
tionships as Curry data types. Since entities are uniquely identified via a database key, each
entity definition has, in addition to its attributes, this key as the first argument. For instance,
the following definitions are generated for our university ERD (among many others):

data StudentID = StudentID Int

data Student = Student StudentID String String Int String Int

-- Representation of n:m relationship Participation:
data Participation = Participation StudentID LectureID

Note that the two typed foreign key columns (StudentID, LectureID) ensures a type-safe
handling of foreign-key constraints. These entity descriptions are relevant for SQL queries
since some queries (e.g., those that do not project on particular database columns) return lists
of such entities. Moreover, the generated module contains useful getter and setter functions

57

for each entity. Other generated operations, like entity description and definitions of their
columns, are not relevant for the programming but only used for the translation of SQL
statements.

3. Finally, an info file Uni_SQLCODE.info is created. It contains information about all entities,
attributes and their types, and relationships. This file is used by the SQL parser and translator
of the Curry preprocessor to type check the SQL statements and generate appropriate Curry
library calls.

12.2.2 SQL Statements as Integrated Code

After specifying and processing the ER model of the database, one can write SQL statement in their
standard syntax as integrated code (marked by the prefix “sql”) in Curry programs. For instance,
to retrieve all students from the database, one can define the following SQL query:

allStudents :: IO (SQLResult [Student])
allStudents = ‘‘sql Select * From Student;’’

Since database accesses might produce errors, the result of SQL statements is always of
type “SQLResult τ ”, where SQLResult is a type synonym defined in the PAKCS library
Database.CDBI.Connection:

type SQLResult a = Either DBError a

This library defines also an operation

fromSQLResult :: SQLResult a → a

which returns the retrieved database value or raises a run-time error. Hence, if one does not want to
check the occurrence of database errors immediately, one can also define the above query as follows:

allStudents :: IO [Student]
allStudents = liftIO fromSQLResult ‘‘sql Select * From Student;’’

In order to select students with an age between 20 and 25, one can put a condition as usual:

youngStudents :: IO (SQLResult [Student])
youngStudents = ‘‘sql Select * From Student

Where Age between 18 and 21;’’

Usually, one wants to parameterize queries over some values computed by the context of the Curry
program. Therefore, one can embed Curry expressions instead of concrete values in SQL statements
by enclosing them in curly brackets:

studAgeBetween :: Int → Int → IO (SQLResult [Student])
studAgeBetween min max =

‘‘sql Select * From Student
Where Age between {min} and {max};’’

Instead of retrieving complete entities (database tables), one can also project on some attributes
(database columns) and one can also order them with the usual “Order By” clause:

studAgeBetween :: Int → Int → IO (SQLResult [(String,Int)])

58

studAgeBetween min max =
‘‘sql Select Name, Age

From Student Where Age between {min} and {max}
Order By Name Desc;’’

In addition to the usual SQL syntax, one can also write conditions on relationships between entities.
For instance, the following code will be accepted:

studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades = ‘‘sql Select Distinct s.Name, r.Grade

From Student as s, Result as r
Where Satisfies s has_a r And r.Grade < 2.0;’’

This query retrieves a list of pairs containing the names and grades of students having a grade
better than 2.0. This query is beyond pure SQL since it also includes a condition on the relation
has a specified in the ER model (“Satisfies s has a r”).

The complete SQL syntax supported by the Curry preprocessor is shown in Appendix C. More
details about the implementation of this SQL translator can be found in [26, 31].

12.3 Sequential Rules

If the Curry preprocessor is called with the option “seqrules”, then all rules in the Curry module
are interpreted in a sequential manner, i.e., a rule is applied only if all previous rules defining the
same operation are not applicable, either because the left-hand side’s pattern does not match or
the condition is not satisfiable. The idea and detailed semantics of sequential rules are described
in [9]. Sequential rules are useful and preferable over rules with multiple guards if the patterns are
non-trivial (e.g., functional patterns) or the condition involve complex constraints.

As a simple example, the following module defines a lookup operation in association lists by a
functional pattern. Due to the sequential rule strategy, the second rule is applied only if there is no
appropriate key in the association list:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=seqrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value
mlookup _ _ = Nothing

12.4 Default Rules

An alternative to sequential rules are default rules, i.e., these two options cannot be simultaneously
used. Default rules are activated by the preprocessor option “defaultrules”. In this case, one can
add to each operation a default rule. A default rule for a function f is defined as a rule defining the
operation “f’default” (this mechanism avoids any language extension for default rules). A default
rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern
do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules
are described in [11].

Default rules are preferable over the sequential rule selection strategy since they have a better
operational behavior. This is due to the fact that the test for the application of default rules is
done with the same (sometimes optimal) strategy than the selection of standard rules. Moreover,

59

default rules provide a similar power than sequential rules, i.e., they can be applied if the standard
rules have complex (functional) patterns or complex conditions.

As a simple example, we show the implementation of the previous example for sequential rules
with a default rule:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value
mlookup’default _ _ = Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming. For
instance, the following program defines a solution to the n-queens puzzle, where the default rule is
useful since it is easier to characterize the unsafe positions of the queens on the chessboard (see the
first rule of safe):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

import Combinatorial(permute)
import Integer(abs)

-- A placement is safe if two queens are not in a same diagonal:
safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed
safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:
queens :: Int → [Int]
queens n = safe (permute [1..n])

12.5 Contracts

Contracts are annotations in Curry program to specify the intended meaning and use of operations
by other operations or predicates expressed in Curry. The idea of using contracts for the devel-
opment of reliable software is discussed in [8]. The Curry preprocessor supports dynamic contract
checking by transforming contracts, i.e., specifications and pre-/postconditions, into assertions that
are checked during the execution of a program. If some contract is violated, the program terminates
with an error.

The transformation of contracts into assertions is described in [8]. Note that only strict asser-
tion checking is supported at the moment. Strict assertion checking might change the operational
behavior of the program. The notation of contracts has been shortly introduced in Section 7.3. To
transform such contracts into assertions, one has to use the option “contracts” for the preprocessor.

As a concrete example, consider an implementation of quicksort with a postcondition and a
specification as shown in Section 7.3 (where the code for sorted and perm is not shown here):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=contracts #-}

. . .

-- Trivial precondition:

60

sort’pre xs = length xs >= 0

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- A buggy implementation of quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If this program is executed, the generated assertions report a contract violation for some inputs:

Quicksort> sort [3,1,4,2,1]
Postcondition of ’sort’ (module Quicksort, line 27) violated for:
[1,2,1] → [1,2]

ERROR: Execution aborted due to contract violation!

61

ERD "Uni"
[Entity "Student"

[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False,
Attribute "MatNum" (IntDom Nothing) Unique False,
Attribute "Email" (StringDom Nothing) Unique False,
Attribute "Age" (IntDom Nothing) NoKey True],

Entity "Lecture"
[Attribute "Title" (StringDom Nothing) NoKey False,
Attribute "Topic" (StringDom Nothing) NoKey True],

Entity "Lecturer"
[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False],

Entity "Place"
[Attribute "Street" (StringDom Nothing) NoKey False,
Attribute "StrNr" (IntDom Nothing) NoKey False,
Attribute "RoomNr" (IntDom Nothing) NoKey False],

Entity "Time"
[Attribute "Time" (DateDom Nothing) Unique False],

Entity "Exam"
[Attribute "GradeAverage" (FloatDom Nothing) NoKey True],

Entity "Result"
[Attribute "Attempt" (IntDom Nothing) NoKey False,
Attribute "Grade" (FloatDom Nothing) NoKey True,
Attribute "Points" (IntDom Nothing) NoKey True]]

[Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)],

Relationship "Participation"
[REnd "Student" "participated_by" (Between 0 Infinite),
REnd "Lecture" "participates" (Between 0 Infinite)],

Relationship "Taking"
[REnd "Result" "has_a" (Between 0 Infinite),
REnd "Student" "belongs_to" (Exactly 1)],

Relationship "Resulting"
[REnd "Exam" "result_of" (Exactly 1),
REnd "Result" "results_in" (Between 0 Infinite)],

Relationship "Belonging"
[REnd "Exam" "has_a" (Between 0 Infinite),
REnd "Lecture" "belongs_to" (Exactly 1)],

Relationship "ExamDate"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Time" "at" (Exactly 1)],

Relationship "ExamPlace"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Place" "in" (Exactly 1)]]

Figure 6: The ER data term specification of Fig. 5

62

13 runcurry: Running Curry Programs

runcurry is a command usually stored in pakcshome /bin (where pakcshome is the installation direc-
tory of PAKCS; see Section 1.1). This command supports the execution of Curry programs without
explicitly invoking the interactive environment. Hence, it can be useful to write short scripts in
Curry intended for direct execution. The Curry program must always contain the definition of
an operation main of type IO (). The execution of the program consists of the evaluation of this
operation.

Basically, the command runcurry supports three modes of operation:

• One can execute a Curry program whose file name is provided as an argument when runcurry is
called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be dropped.
One can write additional commands for the interactive environment, typically settings of some
options, before the Curry program name. All arguments after the Curry program name are
passed as run-time arguments. For instance, consider the following program stored in the file
ShowArgs.curry:

import System(getArgs)

main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

• One can also execute a Curry program whose program text comes from the standard input.
Thus, one can either “pipe” the program text into this command or type the program text on
the keyboard. For instance, if we type

> runcurry
main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

1
2
3
4
5
6
7
8

is produced.

• One can also write the program text in a script file to be executed like a shell script. In this
case, the script must start with the line

63

#!/usr/bin/env runcurry

followed by the source text of the Curry program. For instance, we can write a simple Curry
script to count the number of code lines in a Curry program by removing all blank and
comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char(isSpace)
import System(getArgs)

-- count number of program lines in a file:
countCLines :: String → IO Int
countCLines f =

readFile f >>=
return . length . filter (not . isEmptyLine) . map stripSpaces . lines

where
stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] = True
isEmptyLine [_] = False
isEmptyLine (c1:c2:_) = c1==’-’ && c2==’-’

-- The main program reads Curry file names from arguments:
main = do

args <- getArgs
mapIO_ (\f → do ls <- countCLines f

putStrLn $ "Stripped lines of file "++f++": " ++ show ls)
args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of
the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

When this command is executed, the command runcurry compiles the program and evaluates
the expression main. Since the compilation might take some time in more complex scripts,
one can also save the result of the compilation in a binary file. To obtain this behavior, one
has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program
is saved (in the same directory as the script). Now, when the same script is executed the next
time, the stored binary file is executed (provided that it is still newer than the script file itself,
otherwise it will be recompiled). This feature combines easy scripting with Curry together
with fast execution.

64

14 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [27]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

14.1 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> curry analyze -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> curry analyze -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

main :: Int → Int → [Int]
main x y = rev [x .. y]

65

CASS supports three different usage modes to analyze this program.

14.1.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command curry analyze,
where the analysis name and the name of the module to be analyzed must be provided:6

> curry analyze Demand Rev
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of main are demanded whereas only the first argument of append
is demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

14.1.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in the module AnalysisServer)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

The modules of the CASS implementation are stored in the directory
pakcshome /currytools/CASS and the modules implementing the various program analyses are
stored in pakcshome /currytools/analysis. Hence, one should add these directories to the Curry
load path when using CASS in API mode.

The CASS module GenericProgInfo contains operations to access the analysis information com-
puted by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it exists. As a
simple example, consider the demand analysis which is implemented in the module Demandedness

by the following operation:

demandAnalysis :: Analysis DemandedArgs

6More output is generated when the parameter debugLevel is changed in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time.

66

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import AnalysisServer (analyzeGeneric)
import GenericProgInfo (lookupProgInfo)
import Demandedness (demandAnalysis)

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.main:

. . .> demandedArgumentsOf "Rev" "main"
[1,2]

14.1.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does not
have a direct interface to Curry. In this case, one can connect to CASS via some socket using a simple
communication protocol that is specified in the file pakcshome /currytools/CASS/Protocol.txt and
sketched below.

To start CASS in the server mode, one has to execute the command

> curry analyze --server [-p <port>]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>
AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

67

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic CurryTerm
< Deterministic Text
< Deterministic XML
< HigherOrder CurryTerm
< DependsOn CurryTerm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> curry analyze --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 57
Overlapping XML
Overlapping CurryTerm
Overlapping Text
Deterministic XML
...
> AnalyzeModule Demand Text Rev
ok 3
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand CurryTerm Rev
ok 1
[(("Rev","append"),"demanded arguments: 1"),(("Rev","main"),"demanded arguments: 1,2"),(("Rev","rev"),"demanded arguments: 1")]
> AnalyzeModule Demand XML Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

68

</operation>
<operation>

<module>Rev</module>
<name>main</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer
ok 0
Connection closed by foreign host.

14.2 Implementing Program Analyses

Each program analysis accessible by CASS must be registered in the CASS module Registry. The
registered analysis must contain an operation of type

Analysis a

where a denotes the type of analysis results. For instance, the Overlapping analysis is implemented
as a function

overlapAnalysis :: Analysis Bool

where the Boolean analysis result indicates whether a Curry operation is defined by overlapping
rules.

In order to add a new analysis to CASS, one has to implement a corresponding analysis operation,
registering it in the module Registry (in the constant registeredAnalysis) and compile the modified
CASS implementation.

An analysis is implemented as a mapping from Curry programs represented in FlatCurry into
the analysis result. Hence, to implement the Overlapping analysis, we define the following operation
on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool
isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e
isOverlappingFunction (Func f _ _ _ (External _)) = f==("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f==(pre "?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e

69

orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs

where orInBranch (Branch _ be) = orInExpr be
orInExpr (Typed e _) = orInExpr e

In order to enable the inclusion of different analyses in CASS, CASS offers several constructor
operations for the abstract type “Analysis a” (defined in the CASS module Analysis). Each analysis
has a name provided as a first argument to these constructors. The name is used to store the analysis
information persistently and to pass specific analysis tasks to analysis workers. For instance, a simple
function analysis which depends only on a given function definition can be defined by the analysis
constructor

simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

Another analysis constructor supports the definition of a function analysis with dependencies (which
is implemented via a fixpoint computation):

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain.

For instance, a determinism analysis could be based on an abstract domain described by the
data type

data Deterministic = NDet | Det

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot—it requires a fixpoint computation. CASS provides such fixpoint
computations and requires only the implementation of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.

In our example, the determinism analysis can be implemented by the following operation:

70

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

The complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

This definition is sufficient to execute the analysis with CASS since the analysis system takes care
of computing fixpoints, calling the analysis functions with appropriate values, analyzing imported
modules, etc. Nevertheless, the analysis must be defined so that the fixpoint computation always
terminates. This can be achieved by using an abstract domain with finitely many values and
ensuring that the analysis function is monotone w.r.t. some ordering on the values.

71

15 ERD2Curry: A Tool to Generate Programs from ER Specifica-
tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored from
entity relationship diagrams. The idea of this tool is described in detail in [15]. Thus, we describe
only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has
to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.
This description can be compiled into a Curry program by the command

curry erd2curry -x myerd.xmi

If MyData is the name of the ERD, the Curry program file “MyData.curry” is generated containing all
the necessary database access code as described in [15]. In addition to the generated Curry program
file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry are created in the same
directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method
since the interface to the Umbrello UML Modeller is no longer actively supported, one can also
define an ERD in a Curry program as a (exported!) top-level operation of type ERD (w.r.t. the type
definition given in the library pakcshome /lib/Database/ERD.curry). If this definition is stored in
the Curry program file “MyERD.curry”, it can be compiled into a Curry program by the command

curry erd2curry MyERD.curry

The directory pakcshome /currytools/erd2curry/ contains two examples for such ERD program
files:

BlogERD.curry: This is a simple ERD model for a blog with entries, comments, and tags.

UniERD.curry: This is an ERD model for university lectures as presented in the paper [15].

There is also the possibility to visualize an ERD term as a graph with the graph visualization
program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand in
your “.pakcsrc” file, see Section 2.6, according to your local environment). The visualization can
be performed by the command

curry erd2curry -v MyERD.curry

72

16 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey gener-
ates an initial implementation from an entity-relationship (ER) description of the underlying data.
The generated implementation contains operations to create and manipulate entities of the data
model, supports authentication, authorization, session handling, and the composition of individ-
ual operations to user processes. Furthermore, the implementation ensures the consistency of the
database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by the user
cannot lead to an inconsistent state of the database.

The idea of this tool, which is part of the distribution of PAKCS, is described in detail in [25].
Thus, we describe only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model in a Curry pro-
gram file as an (exported!) top-level operation type ERD (w.r.t. the type definitions given in the
system library Database.ERD) and store it in some program file, e.g., “MyERD.curry”. The directory
pakcshome /currytools/spicey/ contains two examples for such ERD program files:

BlogERD.curry: This is a simple ER model for a blog with entries, comments, and tags, as presented
in the paper [25].

UniERD.curry: This is an ER model for university lectures as presented in the paper [15].

Then change to the directory in which you want to create the project sources. Execute the command

curry spiceup .../MyERD.curry

with the path to the ERD term file as a parameter You can also provide a path name, i.e., the name
of a directory, where the database files should be stored, e.g.,

curry spiceup --dbpath DBDIR .../MyERD.curry

If the parameter “--dbpath DBDIR” is not provided, then DBDIR is set to the current directory (“.”).
Since this specification will be used in the generated web programs, a relative database directory
name will be relative to the place where the web programs are stored. In order to avoid such
confusion, it might be better to specify an absolute path name for the database directory.

After the generation of this project (see the generated file README.txt for information about the
generated project structure), one can compile the generated programs by

make compile

In order to generate the executable web application, configure the generated Makefile by adapting
the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and
run

make deploy

After the successful compilation and deployment of all files, the application is executable in a web
browser by selecting the URL <URL of web dir>/spicey.cgi.

73

17 curry peval: A Partial Evaluator for Curry

peval is a tool for the partial evaluation of Curry programs. It operates on the FlatCurry represen-
tation and can thus easily be incorporated into the normal compilation chain. The essence of partial
evaluation is to anticipate at compile time (or partial evaluation time) some of the computations
normally performed at run time. Typically, partial evaluation is worthwhile for functions or opera-
tions where some of the input arguments are already known at compile time, or operations built by
the composition of multiple other ones. The theoretical foundations, design and implementation of
the partial evaluator is described in detail in [34].

17.1 Basic Usage

The partial evaluator is supplied as a binary that can be invoked for a single or multiple modules
that should be partially evaluated. In each module, the partially evaluator assumes the parts of the
program that should be partially evaluated to be annotated by the function

PEVAL :: a
PEVAL x = x

predefined in the module Prelude, such that the user can choose the parts to be considered.
To give an example, we consider the following module which is assumed to be placed in the file

Examples/power4.curry:

square x = x * x
even x = mod x 2 == 0
power n x = if n <= 0 then 1

else if (even n) then power (div n 2) (square x)
else x * (power (n - 1) x)

power4 x = PEVAL (power 4 x)

By the call to PEVAL, the expression power 4 x is marked for partial evaluation, such that the
function power will be improved w.r.t. the arguments 4 andx. Since the first argument is known
in this case, the partial evalautor is able to remove the case distinctions in the implementation of
power, and we invoke it via

$ curry peval Examples/power4.curry
Curry Partial Evaluator
Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

Final Partial Evaluation

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

Writing specialized program into file ’Examples/.curry/power4_pe.fcy’.

74

Note that the partial evaluator successfully removed the case distinction, such that the opera-
tion power4 can be expected to run reasonably faster. The new auxiliary function power4._pe0 is
integrated into the existing module such that only the implementation of power4 is changed, which
becomes visible if we increase the level of verbosity:

$ curry peval -v2 Examples/power4.curry
Curry Partial Evaluator
Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

... (skipped output)

Resulting program

module power4 (power4.square, power4.even, power4.power, power4.power4) where

import Prelude

power4.square :: Prelude.Int → Prelude.Int
power4.square v1 = v1 * v1

power4.even :: Prelude.Int → Prelude.Bool
power4.even v1 = (Prelude.mod v1 2) == 0

power4.power :: Prelude.Int → Prelude.Int → Prelude.Int
power4.power v1 v2 = case (v1 <= 0) of

Prelude.True → 1
Prelude.False → case (power4.even v1) of

Prelude.True → power4.power (Prelude.div v1 2) (power4.square v2)
Prelude.False → v2 * (power4.power (v1 - 1) v2)

power4.power4 :: Prelude.Int → Prelude.Int
power4.power4 v1 = power4._pe0 v1

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

17.2 Options

The partial evaluator can be parametrized using a number of options, which can also be shown
using --help.

-h, -?, --help These options trigger the output of usage information.

-V, --version These options trigger the output of the version information of the partial evaluator.

75

-d, --debug This flag is intended for development and testing issues only, and necessary to print
the resulting program to the standard output stream even if the verbosity is set to zero.

--assert, --closed These flags enable some internal assertions which are reasonable during devel-
opment of the partial evaluator.

--no-funpats Normally, functions defined using functional patterns are automatically considered
for partial evaluation, since their annotation using PEVAL is a little bit cumbersome. However,
this automatic consideration can be disabled using this flag.

-v n, --verbosity=n Set the verbosity level to n, see above for the explanation of the different
levels.

--color=mode, --colour=mode Set the coloring mode to mode, see above for the explanation of the
different modes.

-S semantics, --semantics=semantics Allows the use to choose a semantics used during partial
evaluation. Note that only the natural semantics can be considered correct for non-confluent
programs, which is why it is the default semantics [34]. However, the rlnt calculus can also be
chosen which is based on term rewriting, thus implementing a run-time choice semantics [4].
The letrw semantics is currently not fully supported, but implements the gist of let-rewriting
[32].

-A mode, --abstract=mode During partial evaluation, all expressions that may potentially occur in
the evaluation of an annotated expression are considered and evaluated, in order to ensure that
all these expressions are also defined in the resulting program. Unfortunately, this imposes
the risk of non-termination, which is why similar expressions are generalized according to the
abstraction criterion. While the none criterion avoids generalizations and thus may lead to
non-termination of the partial evaluator, the criteria wqo and wfo both ensure termination.
In general, the criterion wqo seems to be a good compromise of ensured termination and the
quality of the computed result program.

-P mode, --proceed=mode While the abstraction mode is responsible to limit the number of different
expressions to be considered, the proceed mode limits the number of function calls to be
evaluated during the evaluation of a single expressions. While the mode one only allows a
single function call to be evaluated, the mode each allows a single call of each single function,
while all puts no restrictions on the number of function calls to be evaluated. Clearly, the
last alternative also imposes a risk of non-termination.

--suffix=SUFFIX Set the suffix appended to the file name to compute the output file. If the suffix
is set to the empty string, then the original FlatCurry file will be replaced.

76

18 UI: Declarative Programming of User Interfaces

The PAKCS distribution contains a collection of libraries to implement graphical user interfaces
as well as web-based user interfaces from declarative descriptions. Exploiting these libraries, it is
possible to define the structure and functionality of a user interface independent from the concrete
technology. Thus, a graphical user interface or a web-based user interface can be generated from
the same description by simply changing the imported libraries. This programming technique is
described in detail in [24].

The libraries implementing these user interfaces are contained in the directory

pakcshome /tools/ui

Thus, in order to compile programs containing such user interface specifications, one has to include
the directory pakcshome /tools/ui into the Curry load path (e.g., by setting the environment variable
“CURRYPATH”, see also Section 1.3). The directory

pakcshome /tools/ui/examples

contains a few examples for such user interface specifications.

77

19 Preprocessing FlatCurry Files

After the invocation of the Curry front end to parse Curry programs and translate them into the
intermediate FlatCurry representation, one can apply transformations on the FlatCurry files before
they are passed to the back end which translates the FlatCurry files into Prolog code. These
transformations are invoked by the FlatCurry preprocessor pakcs/bin/fycpp. Currently, only the
FlatCurry file corresponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/fcypp:

--fpopt Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry
for details).

--compact Apply code compactification after parsing, i.e., transform the main module and
all its imported into one module and delete all non-accessible functions.

--compactexport Similar to --compact but delete all functions that are not accessible from
the exported functions of the main module.

--compactmain:f Similar to --compact but delete all functions that are not accessible from
the function “f” of the main module.

--fcypp cmd Apply command cmd to the main module after parsing. This is useful to in-
tegrate your own transformation into the compilation process. Note that the command
“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it re-
places the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:
For instance, setting FCYPP by

export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the
PAKCS programming environment.

3. Putting options into the source code:
If the source code contains a line with a comment of the form (the comment must start at the
beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}

then the transformations specified by <options> are applied after translating the source code
into FlatCurry code. For instance, the functional pattern optimization can be set by the
comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}

in the source code. Note that this comment must be in a single line of the source program. If
there are multiple lines containing such comments, only the first one will be considered.

78

Multiple options: Note that an arbitrary number of transformations can be specified by the
methods described above. If several specifications for preprocessing FlatCurry files are used, they
are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

2. all transformations specified as command line options of fcypp (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

79

20 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it
might be possible that some technical problems arise due to the use of sockets for implementing
these features. Therefore, this section gives some information about the technical requirements of
PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the
machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot
be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of a
Curry port. The demon will be automatically started for the first time on a machine when a user
compiles a program using Curry ports. It can also be manually started and terminated by the
scripts pakcshome /currytools/cpns/start and pakcshome /currytools/cpns/stop. If the demon is
already running, the command pakcshome /currytools/cpns/start does nothing (so it can be always
executed before invoking a Curry program using ports).

If you detect any further technical problem, please write to

pakcs@curry-language.org

80

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry pro-
grams. In Proc. of the 6th International Conference on Logic for Programming and Automated
Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declara-
tive language. In Proc. of the 5th International Symposium on Functional and Logic Program-
ming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.
Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings
of the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

[7] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[8] S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.
of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL
2012), pages 33–47. Springer LNCS 7149, 2012.

[9] S. Antoy and M. Hanus. Curry without Success. In Proc. of the 23rd International Workshop
on Functional and (Constraint) Logic Programming (WFLP 2014), volume 1335 of CEUR
Workshop Proceedings, pages 140–154. CEUR-WS.org, 2014.

[10] S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2015), pages 73–88. Springer LNCS 9527, 2015.

[11] S. Antoy and M. Hanus. Default rules for Curry. In Proc. of the 18th International Symposium
on Practical Aspects of Declarative Languages (PADL 2016), pages 65–82. Springer LNCS 9585,
2016.

[12] S. Antoy, M. Hanus, and S. Libby. Proving non-deterministic computations in Agda. In Proc. of
the 24th International Workshop on Functional and (Constraint) Logic Programming (WFLP
2016), to appear in EPTCS, 2016.

81

[13] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In Proc.
of the Sixth International Symposium on Practical Aspects of Declarative Languages (PADL’04),
pages 193–208. Springer LNCS 3057, 2004.

[14] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic compu-
tations. Journal of Functional and Logic Programming, 2004(6), 2004.

[15] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of
the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),
pages 316–332. Springer LNCS 4902, 2008.

[16] J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer
LNCS 4989, 2008.

[17] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–279.
ACM Press, 2000.

[18] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[19] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[20] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[21] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[22] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

[23] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61–74, 2006.

[24] M. Hanus and C. Kluß. Declarative programming of user interfaces. In Proc. of the 11th
International Symposium on Practical Aspects of Declarative Languages (PADL’09), pages 16–
30. Springer LNCS 5418, 2009.

[25] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.
Theory and Practice of Logic Programming, 14(3):269–291, 2014.

82

[26] M. Hanus and J. Krone. A typeful integration of SQL into Curry. In Pre-Proc. of the 24th
International Workshop on Functional and (Constraint) Logic Programming (WFLP 2016).
HTWK Leipzig, 2016.

[27] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

[28] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

[29] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

[30] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[31] J. Krone. Integration of SQL into Curry. Master’s thesis, University of Kiel, 2015.

[32] Francisco Javier López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. A
simple rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP ’07,
pages 197–208, New York, NY, USA, 2007. ACM.

[33] U. Norell. Dependently typed programming in Agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming (AFP’08), pages 230–266. Springer, 2009.

[34] Björn Peemöller. Normalization and Partial Evaluation of Functional Logic Programs. Depart-
ment of Computer Science, Kiel University, 2016. Dissertation, Faculty of Engineering, Kiel
University.

[35] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The Im-
plementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

83

http://www.curry-language.org

A Libraries of the PAKCS Distribution

The PAKCS distribution comes with an extensive collection of libraries for application program-
ming. The libraries for arithmetic constraints over real numbers, finite domain constraints, ports for
concurrent and distributed programming, and meta-programming by representing Curry programs
in Curry are described in the following subsection in more detail. The complete set of libraries with
all exported types and functions are described in the further subsections. For a more detailed online
documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.de/~pakcs/lib/
index.html.

A.1 Constraints, Ports, Meta-Programming

A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in PAKCS via arithmetic constraints, i.e., the equational
constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the evaluation
of the addition, as in corresponding constraints on integers like “3+x=:=5”). All operations related
to floating point numbers are suffixed by “.”. The following functions and constraints on floating
point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Bool

Comparing two floating point numbers with the “greater than or equal” relation.

84

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

i2f :: Int -> Float

Converting an integer number into a floating point number.

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the
mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding
balance at the end of the lifetime b. The financial calculations can be defined by the following two
rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 \& t <=. 1.0 --lifetime not more than 1 month?
= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?
= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a
monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.
Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-
linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of
possible values. For simplicity, the domain of finite domain variables are identified with a subset of
the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related to
finite domain variables are suffixed by “#”. The following functions and constraints for finite domain
constraint solving are currently supported in PAKCS:7

domain :: [Int] -> Int -> Int -> Bool

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the
interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Bool

Equality of finite domain values.
7Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see
Appendix F), it is relatively easy to provide the complete functionality.

85

(/=#) :: Int -> Int -> Bool

Disequality of finite domain values.

(<#) :: Int -> Int -> Bool

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Bool

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Bool

“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Bool

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · · + xn op x is satisfied, where
op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 + · · · +
cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is
the number of the xi that are equal to k and op is one of the above finite domain constraint
relations.

allDifferent :: [Int] -> Bool

The constraint “allDifferent [x1, . . . , xn]” is satisfied if all xi have pairwise different values.

labeling :: [LabelingOption] -> [Int] -> Bool

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the val-
ues of their domain according to the options os (see the module documentation for further
details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the
program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be replaced
by a different digit such that this equation is valid and there are no leading zeros. The usual way to
solve finite domain constraint problems is to specify the domain of the involved variables followed
by a specification of the constraints and the labeling of the constraint variables in order to start the
search for solutions. Thus, the “send+more=money” problem can be solved as follows:

import CLPFD

smm l =

86

l =:= [s,e,n,d,m,o,r,y] &
domain l 0 9 &
s ># 0 &
m ># 0 &
allDifferent l &

1000 *# s +# 100 *# e +# 10 *# n +# d
+# 1000 *# m +# 100 *# o +# 10 *# r +# e
=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &
labeling [FirstFail] l
where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields the
unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal
and external ports as described in [19]. Since [19] contains a detailed description of this concept
together with various programming examples, we only summarize here the functions and constraints
supported for ports in PAKCS.
The basic datatypes, functions, and constraints for ports are defined in the system module Ports

(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Bool

The constraint “openPort p s” establishes a new internal port p with an associated message
stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a
runtime error).

send :: a -> Port a -> Bool

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will
be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and
returns the associated stream of messages.

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the
form “portname@machine) to which one can send messages by the send constraint. Currently,

87

no dynamic type checking is done for external ports, i.e., sending messages of the wrong type
to a port might lead to a failure of the receiver.

Restrictions: Every expression, possibly containing logical variables, can be sent to a port. How-
ever, as discussed in [19], port communication is strict, i.e., the expression is evaluated to normal
form before sending it by the constraint send. Furthermore, if messages containing logical variables
are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this logical
variable only if it is bound to a ground term, i.e., as long as the binding contains logical
variables, the sender is not informed about the binding and, therefore, the sender waits.

External ports on local machines: The implementation of external ports assumes that the
host machine running the application is connected to the Internet (i.e., it uses the standard IP
address of the host machine for message sending). If this is not the case and the application should
be tested by using external ports only on the local host without a connection to the Internet, the
environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS is started. In this case,
the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the local machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets
to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action
openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the port
communication. Usually, a free socket is selected by the operating system. If the socket number
should be fixed in an application (e.g., because of the use of firewalls that allow only communication
over particular sockets), then one can set the environment variable “PAKCS_SOCKET” to a distinguished
socket number before PAKCS is started. This has the effect that PAKCS uses only this socket
number for communication (even for several external ports used in the same application program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to
external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable
is set to “yes” before PAKCS is started, then all connections to external ports and all messages sent
and received on external ports are printed on the standard error stream.

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are system
modules AbstractCurry.Types and FlatCurry.Types which define datatypes for the representation
of Curry programs. AbstractCurry.Types is a more direct representation of a Curry program,
whereas FlatCurry.Types is a simplified representation where local function definitions are replaced
by global definitions (i.e., lambda lifting has been performed) and pattern matching is translated
into explicit case/or expressions. Thus, FlatCurry.Types can be used for more back-end oriented
program manipulations (or, for writing new back ends for Curry), whereas AbstractCurry.Types is
intended for manipulations of programs that are more oriented towards the source program.

88

There are predefined I/O actions to read AbstractCurry and FlatCurry programs:
AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the
corresponding source program and return a data term representing this program (according to the
definitions in the modules AbstractCurry.Types and FlatCurry.Types).
Since all datatypes are explained in detail in these modules, we refer to the online documentation8

of these modules.
As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []
rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

(Prog "test"
["Prelude"]
[]
[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])
(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]
(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])
(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])
(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],
Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]
])

]))]
[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These
operations are useful to encapsulate non-deterministic operations between I/O actions in order to
connects the worlds of logic and functional programming and to avoid non-determinism failures on
the I/O level.
In contrast the "old" concept of encapsulated search (which could be applied to any subexpression
in a computation), the operations to encapsulate search in this module are I/O actions in order to
avoid some anomalities in the old concept.

8http://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html and http://www.informatik.
uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

89

http://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

Exported types:

data SearchTree

A search tree for representing search structures.

Exported constructors:

• SearchBranch :: [(b,SearchTree a b)] → SearchTree a b

• Solutions :: [a] → SearchTree a b

Exported functions:

getAllSolutions :: (a → Bool) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right
strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,
the evaluation of the constraint does not share any results. Moreover, this evaluation
suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getAllValues :: a → IO [a]

Gets all values of an expression. Since this is based on getAllSolutions, it inherits the
same restrictions.

getOneSolution :: (a → Bool) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Bool) → IO [a]

Returns a list of values that do not satisfy a given constraint.

getSearchTree :: [a] → (b → Bool) → IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level
of the tree. For each element in the list of the first argument, the search tree contains
a branch node with a child tree for each value of this element. Moreover, evaluations of
elements in the branch list are shared within corresponding subtrees.

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester "currytest".

90

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.
==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of
e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Bool) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has the
multiset of solutions vs. The solutions of c are compared with the elements in vs w.r.t.
==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield equal
(w.r.t. ==) results.

91

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the
currytest tool.

writeAssertResult :: (String,Bool) → IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.
Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest
tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the
currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

92

isControl :: Char → Bool

Returns true if the argument is a control character.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

93

A.2.4 Library CHR

A representation of CHR rules in Curry, an interpreter for CHR rules based on the refined opera-
tional semantics of Duck et al. (ICLP 2004), and a compiler into CHR(Prolog).
To use CHR(Curry), specify the CHR(Curry) rules in a Curry program, load it, add module CHR
and interpret or compile the rules with runCHR or compileCHR, respectively. This can be done in
one shot with

> pakcs :l MyRules :add CHR :eval ’compileCHR "MyCHR" [rule1,rule2]’ :q

Exported types:

data CHR

The basic data type of Constraint Handling Rules.

Exported constructors:

data Goal

A CHR goal is a list of CHR constraints (primitive or user-defined).

Exported constructors:

Exported functions:

(<=>) :: Goal a b → Goal a b → CHR a b

Simplification rule.

(==>) :: Goal a b → Goal a b → CHR a b

Propagation rule.

(\\) :: Goal a b → CHR a b → CHR a b

Simpagation rule: if rule is applicable, the first constraint is kept and the second con-
straint is deleted.

(|>) :: CHR a b → Goal a b → CHR a b

A rule with a guard.

(/\) :: Goal a b → Goal a b → Goal a b

Conjunction of CHR goals.

true :: Goal a b

The always satisfiable CHR constraint.

fail :: Goal a b

94

The always failing constraint.

andCHR :: [Goal a b] → Goal a b

Join a list of CHR goals into a single CHR goal (by conjunction).

allCHR :: (a → Goal b c) → [a] → Goal b c

Is a given constraint abstraction satisfied by all elements in a list?

chrsToGoal :: [a] → Goal b a

Transforms a list of CHR constraints into a CHR goal.

toGoal1 :: (a → b) → a → Goal c b

Transform unary CHR constraint into a CHR goal.

toGoal2 :: (a → b → c) → a → b → Goal d c

Transforms binary CHR constraint into a CHR goal.

toGoal3 :: (a → b → c → d) → a → b → c → Goal e d

Transforms a ternary CHR constraint into a CHR goal.

toGoal4 :: (a → b → c → d → e) → a → b → c → d → Goal f e

Transforms a CHR constraint of arity 4 into a CHR goal.

toGoal5 :: (a → b → c → d → e → f) → a → b → c → d → e → Goal g f

Transforms a CHR constraint of arity 5 into a CHR goal.

toGoal6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Goal

h g

Transforms a CHR constraint of arity 6 into a CHR goal.

(.=.) :: a → a → Goal a b

Primitive syntactic equality on arbitrary terms.

(./=.) :: a → a → Goal a b

Primitive syntactic disequality on ground(!) terms.

(.<=.) :: a → a → Goal a b

Primitive less-or-equal constraint.

(.>=.) :: a → a → Goal a b

Primitive greater-or-equal constraint.

(.<.) :: a → a → Goal a b

95

Primitive less-than constraint.

(.>.) :: a → a → Goal a b

Primitive greater-than constraint.

ground :: a → Goal a b

Primitive groundness constraint (useful for guards).

nonvar :: a → Goal a b

Primitive nonvar constraint (useful for guards).

anyPrim :: (() → Bool) → Goal a b

Embed user-defined primitive constraint.

solveCHR :: [[a] → CHR a b] → Goal a b → Bool

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second
argument) and embed this as a constraint solver in Curry. If user-defined CHR con-
straints remain after applying all CHR rules, a warning showing the residual constraints
is issued.

runCHR :: [[a] → CHR a b] → Goal a b → [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second
argument) and return the remaining CHR constraints.

runCHRwithTrace :: [[a] → CHR a b] → Goal a b → [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second
argument) and return the remaining CHR constraints. Trace also the active and passive
constraints as well as the applied rule number during computation.

compileCHR :: String → [[a] → CHR a b] → IO ()

Compile a list of CHR(Curry) rules into CHR(Prolog) and store its interface in a Curry
program (name given as first argument).

chr2curry :: Goal a b → Bool

Transforms a primitive CHR constraint into a Curry constraint. Used in the generated
CHR(Prolog) code to evaluated primitive constraints.

A.2.5 Library CHRcompiled

This module defines the structure of CHR goals and some constructors to be used in compiled
CHR(Curry) rules. Furthermore, it defines an operation solveCHR to solve a CHR goal as a con-
straint.
This module is imported in compiled CHR(Curry) programs, compare library CHR.

96

Exported types:

data Goal

A typed CHR goal. Since types are not present at run-time in compiled, we use a
phantom type to parameterize goals over CHR constraints. The argument of the goal is
the constraint implementing the goal with the compiled CHR(Prolog) program.

Exported constructors:

• Goal :: Bool → Goal a

Exported functions:

(/\) :: Goal a → Goal a → Goal a

Conjunction of CHR goals.

true :: Goal a

The always satisfiable CHR constraint.

fail :: Goal a

The always failing constraint.

andCHR :: [Goal a] → Goal a

Join a list of CHR goals into a single CHR goal (by conjunction).

allCHR :: (a → Goal b) → [a] → Goal b

Is a given constraint abstraction satisfied by all elements in a list?

solveCHR :: Goal a → Bool

Evaluate a given CHR goal and embed this as a constraint in Curry. Note: due to limi-
tations of the CHR(Prolog) implementation, no warning is issued if residual constraints
remain after the evaluation.

warnSuspendedConstraints :: Bool → Bool

Primitive operation that issues a warning if there are some suspended constraints in the
CHR constraint store. If the argument is true, then all suspended constraints are shown,
otherwise only the first one.

97

A.2.6 Library CLP.FD

Library for finite domain constraint solving.
An FD problem is specified as an expression of type FDConstr using the constraints and expressions
offered in this library. FD variables are created by the operation domain. An FD problem is solved
by calling solveFD with labeling options, the FD variables whose values should be included in the
output, and a constraint. Hence, the typical program structure to solve an FD problem is as follows:

main :: [Int]
main =

let fdvars = take n (domain u o)
fdmodel = {description of FD problem}

in solveFD {options} fdvars fdmodel

where n are the number of variables and [u..o] is the range of their possible values.

Exported types:

data FDRel

Possible relations between FD values.

Exported constructors:

• Equ :: FDRel

Equ

– Equal

• Neq :: FDRel

Neq

– Not equal

• Lt :: FDRel

Lt

– Less than

• Leq :: FDRel

Leq

– Less than or equal

• Gt :: FDRel

Gt

– Greater than

98

• Geq :: FDRel

Geq

– Greater than or equal

data Option

This datatype defines options to control the instantiation of FD variables in the solver
(solveFD).

Exported constructors:

• LeftMost :: Option

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: Option

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-
ciple)

• FirstFailConstrained :: Option

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: Option

Min

– The leftmost variable with the smalled lower bound is selected.

• Max :: Option

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: Option

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the
lower or upper bound of x (default).

• Enum :: Option

Enum

– Make a multiple choice for the selected variable for all the values in its domain.

99

• Bisect :: Option

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where
m is the midpoint of the domain x (also known as domain splitting).

• Up :: Option

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: Option

Down

– The domain is explored for instantiation in descending order.

• All :: Option

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → Option

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

• Maximize :: Int → Option

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

• Assumptions :: Int → Option

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration
strategy when a solution is found.

• RandomVariable :: Int → Option

RandomVariable x

– Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

• RandomValue :: Int → Option

RandomValue x

100

– Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

data FDExpr

Exported constructors:

data FDConstr

Exported constructors:

Exported functions:

domain :: Int → Int → [FDExpr]

Operations to construct basic constraints. Returns infinite list of FDVars with a given
domain.

fd :: Int → FDExpr

Represent an integer value as an FD expression.

(+#) :: FDExpr → FDExpr → FDExpr

Addition of FD expressions.

(-#) :: FDExpr → FDExpr → FDExpr

Subtraction of FD expressions.

(*#) :: FDExpr → FDExpr → FDExpr

Multiplication of FD expressions.

(=#) :: FDExpr → FDExpr → FDConstr

Equality of FD expressions.

(/=#) :: FDExpr → FDExpr → FDConstr

Disequality of FD expressions.

(<#) :: FDExpr → FDExpr → FDConstr

"Less than" constraint on FD expressions.

(<=#) :: FDExpr → FDExpr → FDConstr

"Less than or equal" constraint on FD expressions.

101

(>#) :: FDExpr → FDExpr → FDConstr

"Greater than" constraint on FD expressions.

(>=#) :: FDExpr → FDExpr → FDConstr

"Greater than or equal" constraint on FD expressions.

true :: FDConstr

The always satisfied FD constraint.

(/\) :: FDConstr → FDConstr → FDConstr

Conjunction of FD constraints.

andC :: [FDConstr] → FDConstr

Conjunction of a list of FD constraints.

allC :: (a → FDConstr) → [a] → FDConstr

Maps a constraint abstraction to a list of FD constraints and joins them.

allDifferent :: [FDExpr] → FDConstr

"All different" constraint on FD variables.

sum :: [FDExpr] → FDRel → FDExpr → FDConstr

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [FDExpr] → [FDExpr] → FDRel → FDExpr → FDConstr

(scalarProduct cs vs relop v) is satisfied if (sum (cs*vs) relop v) is satisfied.
The first argument must be a list of integers. The other arguments are as in sum.

count :: FDExpr → [FDExpr] → FDRel → FDExpr → FDConstr

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements
in the list of FD variables vs that are equal to v, is satisfied. The first argument must
be an integer. The other arguments are as in sum.

solveFD :: [Option] → [FDExpr] → FDConstr → [Int]

Computes (non-deterministically) a solution for the FD variables (second argument)
w.r.t. constraint (third argument), where the values in the solution correspond to the list
of FD variables. The first argument contains options to control the labeling/instantiation
of FD variables.

solveFDAll :: [Option] → [FDExpr] → FDConstr → [[Int]]

Computes all solutions for the FD variables (second argument) w.r.t. constraint (third
argument), where the values in each solution correspond to the list of FD variables. The
first argument contains options to control the labeling/instantiation of FD variables.

solveFDOne :: [Option] → [FDExpr] → FDConstr → [Int]

Computes a single solution for the FD variables (second argument) w.r.t. constraint
(third argument), where the values in the solution correspond to the list of FD variables.
The first argument contains options to control the labeling/instantiation of FD variables.

102

A.2.7 Library CLPFD

Library for finite domain constraint solving.
The general structure of a specification of an FD problem is as follows:
domainconstraint & fdconstraint & labeling

where:
domain constraint specifies the possible range of the FD variables (see constraint domain)
fd constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,
allDifferent, etc below)
labeling is a labeling function to search for a concrete solution.
Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement
the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for
external functions, it is relatively easy to provide the complete functionality.

Exported types:

data Constraint

A datatype to represent reifyable constraints.

Exported constructors:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the
enumeration constraint labeling.

Exported constructors:

• LeftMost :: LabelingOption

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: LabelingOption

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-
ciple)

• FirstFailConstrained :: LabelingOption

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: LabelingOption

Min

– The leftmost variable with the smalled lower bound is selected.

103

• Max :: LabelingOption

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: LabelingOption

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the
lower or upper bound of x (default).

• Enum :: LabelingOption

Enum

– Make a multiple choice for the selected variable for all the values in its domain.

• Bisect :: LabelingOption

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where m is the
midpoint of the domain x (also known as domain splitting).

• Up :: LabelingOption

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: LabelingOption

Down

– The domain is explored for instantiation in descending order.

• All :: LabelingOption

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → LabelingOption

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

• Maximize :: Int → LabelingOption

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

104

• Assumptions :: Int → LabelingOption

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration
strategy when a solution is found.

• RandomVariable :: Int → LabelingOption

RandomVariable x

– Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

• RandomValue :: Int → LabelingOption

RandomValue x

– Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

Exported functions:

domain :: [Int] → Int → Int → Bool

Constraint to specify the domain of all finite domain variables.

(+#) :: Int → Int → Int

Addition of FD variables.

(-#) :: Int → Int → Int

Subtraction of FD variables.

(*#) :: Int → Int → Int

Multiplication of FD variables.

(=#) :: Int → Int → Bool

Equality of FD variables.

(/=#) :: Int → Int → Bool

Disequality of FD variables.

(<#) :: Int → Int → Bool

"Less than" constraint on FD variables.

(<=#) :: Int → Int → Bool

"Less than or equal" constraint on FD variables.

(>#) :: Int → Int → Bool

105

"Greater than" constraint on FD variables.

(>=#) :: Int → Int → Bool

"Greater than or equal" constraint on FD variables.

(#=#) :: Int → Int → Constraint

Reifyable equality constraint on FD variables.

(#/=#) :: Int → Int → Constraint

Reifyable inequality constraint on FD variables.

(#<#) :: Int → Int → Constraint

Reifyable "less than" constraint on FD variables.

(#<=#) :: Int → Int → Constraint

Reifyable "less than or equal" constraint on FD variables.

(#>#) :: Int → Int → Constraint

Reifyable "greater than" constraint on FD variables.

(#>=#) :: Int → Int → Constraint

Reifyable "greater than or equal" constraint on FD variables.

neg :: Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#/\#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#\/#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if the first argument constraint do not hold or both
argument constraints are satisfied.

(#<=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraint are either satisfied and
do not hold.

solve :: Constraint → Bool

Solves a reified constraint.

106

sum :: [Int] → (Int → Int → Bool) → Int → Bool

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [Int] → [Int] → (Int → Int → Bool) → Int → Bool

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first argu-
ment must be a list of integers. The other arguments are as in sum.

count :: Int → [Int] → (Int → Int → Bool) → Int → Bool

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements in the
list of FD variables vs that are equal to v, is satisfied. The first argument must be an
integer. The other arguments are as in sum.

allDifferent :: [Int] → Bool

"All different" constraint on FD variables.

all different :: [Int] → Bool

For backward compatibility. Use allDifferent.

indomain :: Int → Bool

Instantiate a single FD variable to its values in the specified domain.

labeling :: [LabelingOption] → [Int] → Bool

Instantiate FD variables to their values in the specified domain.

A.2.8 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats in arithmetic constraints.

(-.) :: Float → Float → Float

Subtraction on floats in arithmetic constraints.

(*.) :: Float → Float → Float

Multiplication on floats in arithmetic constraints.

(/.) :: Float → Float → Float

Division on floats in arithmetic constraints.

(<.) :: Float → Float → Bool

107

"Less than" constraint on floats.

(>.) :: Float → Float → Bool

"Greater than" constraint on floats.

(<=.) :: Float → Float → Bool

"Less than or equal" constraint on floats.

(>=.) :: Float → Float → Bool

"Greater than or equal" constraint on floats.

i2f :: Int → Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends
until the first argument is ground.

minimumFor :: (a → Bool) → (a → Float) → a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates
to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a → Bool) → (a → Float) → a → Bool

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is
minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a → Bool) → (a → Float) → a

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates
to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a → Bool) → (a → Float) → a → Bool

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is
maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.9 Library CLPB

This library provides a Boolean Constraint Solver based on BDDs.

Exported types:

data Boolean

Exported constructors:

108

Exported functions:

true :: Boolean

The always satisfied constraint

false :: Boolean

The never satisfied constraint

neg :: Boolean → Boolean

Result is true iff argument is false.

(.&&) :: Boolean → Boolean → Boolean

Result is true iff both arguments are true.

(.||) :: Boolean → Boolean → Boolean

Result is true iff at least one argument is true.

(./=) :: Boolean → Boolean → Boolean

Result is true iff exactly one argument is true.

(.==) :: Boolean → Boolean → Boolean

Result is true iff both arguments are equal.

(.<=) :: Boolean → Boolean → Boolean

Result is true iff the first argument implies the second.

(.>=) :: Boolean → Boolean → Boolean

Result is true iff the second argument implies the first.

(.<) :: Boolean → Boolean → Boolean

Result is true iff the first argument is false and the second is true.

(.>) :: Boolean → Boolean → Boolean

Result is true iff the first argument is true and the second is false.

count :: [Boolean] → [Int] → Boolean

Result is true iff the count of valid constraints in the first list is an element of the second
list.

exists :: Boolean → Boolean → Boolean

Result is true, if the first argument is a variable which can be instantiated such that the
second argument is true.

109

satisfied :: Boolean → Bool

Checks the consistency of the constraint with regard to the accumulated constraints,
and, if the check succeeds, tells the constraint.

check :: Boolean → Bool

Asks whether the argument (or its negation) is now entailed by the accumulated con-
straints. Fails if it is not.

bound :: [Boolean] → Bool

Instantiates given variables with regard to the accumulated constraints.

simplify :: Boolean → Boolean

Simplifies the argument with regard to the accumulated constraints.

evaluate :: Boolean → Bool

Evaluates the argument with regard to the accumulated constraints.

A.2.10 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are
intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-
sented as lists. Ideally these lists contains no duplicate elements and the order of their elements
cannot be observed. In practice, these conditions are not enforced.

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list.

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list in
the same order.

allSubsets :: [a] → [[a]]

Compute all the sublists of a list.

splitSet :: [a] → ([a],[a])

Split a list into any two sublists.

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the
result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their
concatenation is a permutation of the input list. No guarantee is made on the order of
the arguments in the output.

110

A.2.11 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the
library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: IO ()

Starts the "Curry Port Name Server" (CPNS) running on the local machine. The CPNS
is responsible to resolve symbolic names for ports into physical socket numbers so that
a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()

Shows all registered ports at the local CPNS demon (in its logfile).

cpnsStop :: IO ()

Terminates the local CPNS demon

registerPort :: String → Int → Int → IO ()

Registers a symbolic port at the local host.

getPortInfo :: String → String → IO (Int,Int)

Gets the information about a symbolic port at some host.

unregisterPort :: String → IO ()

Unregisters a symbolic port at the local host.

cpnsAlive :: Int → String → IO Bool

Tests whether the CPNS demon at a host is alive.

main :: IO ()

Main function for CPNS demon. Check arguments and execute command.

A.2.12 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format
can be imported and exported by most spreadsheed and database applications.

111

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list of
strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list of
strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

A.2.13 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

traceShow :: a → b → b

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

112

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the
given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not
met it fails with the given error message.

A.2.14 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

createDirectoryIfMissing :: Bool → String → IO ()

Creates a new directory with the given name if it does not already exist. If the first
parameter is True it will also create all missing parent directories.

113

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameDirectory :: String → String → IO ()

Renames a directory.

getHomeDirectory :: IO String

Returns the home directory of the current user.

getTemporaryDirectory :: IO String

Returns the temporary directory of the operating system.

getAbsolutePath :: String → IO String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the
current home directory.

removeFile :: String → IO ()

Deletes a file from the file system.

renameFile :: String → String → IO ()

Renames a file.

copyFile :: String → String → IO ()

Copy the contents from one file to another file

A.2.15 Library Distribution

This module contains functions to obtain information concerning the current distribution of the
Curry implementation, e.g., compiler version, load paths, front end.

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front
end of the Curry compiler.

Exported constructors:

• FCY :: FrontendTarget

FCY

– FlatCurry file ending with .fcy

114

• FINT :: FrontendTarget

FINT

– FlatCurry interface file ending with .fint

• ACY :: FrontendTarget

ACY

– AbstractCurry file ending with .acy

• UACY :: FrontendTarget

UACY

– Untyped (without type checking) AbstractCurry file ending with .uacy

• HTML :: FrontendTarget

HTML

– colored HTML representation of source program

• CY :: FrontendTarget

CY

– source representation employed by the frontend

• TOKS :: FrontendTarget

TOKS

– token stream of source program

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry
compiler.

Exported constructors:

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., "pakcs" or "kics2").

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

115

curryRuntime :: String

The name of the run-time environment (e.g., "sicstus", "swi", or "ghc")

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution. This
file must have the usual format of property files (see description in module PropertyFile).

rcFileContents :: IO [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the
list of pairs (var,val).

getRcVar :: String → IO (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-
case/lowercase is ignored for the variable names.

getRcVars :: [String] → IO [Maybe String]

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase
is ignored for the variable names.

splitModuleFileName :: String → String → (String,String)

Split the FilePath of a module into the directory prefix and the FilePath correspond-
ing to the module name. For instance, the call splitModuleFileName "Data.Set"
"lib/Data/Set.curry" evaluates to ("lib", "Data/Set.curry"). This can be useful
to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String → [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers
"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] → String

Join the components of a module identifier. For instance, joinModuleIdentifiers
["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String → String

116

Strips the suffix ".curry" or ".lcurry" from a file name.

modNameToPath :: String → String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the
name by directory separator chars.

currySubdir :: String

Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.

inCurrySubdir :: String → String

Transforms a path to a module name into a file name by adding the currySubDir
to the path and transforming a hierarchical module name into a path. For instance,
inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String → String → String

Transforms a file name by adding the currySubDir to the file name. This version respects
hierarchical module names.

addCurrySubdir :: String → String

Transforms a directory name into the name of the corresponding sub directory containing
auxiliary files.

sysLibPath :: [String]

finding files in correspondence to compiler load path Returns the current path (list of
directory names) of the system libraries.

getLoadPathForModule :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.
a given module path. The directory prefix of the module path (or "." if there is no such
prefix) is the first element of the load path and the remaining elements are determined
by the environment variable CURRYRPATH and the entry "libraries" of the system’s
rc file.

lookupModuleSourceInLoadPath :: String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the current load path. If the module is hierarchical, the directory
is the top directory of the hierarchy. Returns Nothing if there is no corresponding source
file.

lookupModuleSource :: [String] → String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the load path provided as the first argument. If the module is
hierarchical, the directory is the top directory of the hierarchy. Returns Nothing if there
is no corresponding source file.

117

defaultParams :: FrontendParams

The default parameters of the front end.

rcParams :: IO FrontendParams

The default parameters of the front end as configured by the compiler specific resource
configuration file.

setQuiet :: Bool → FrontendParams → FrontendParams

Set quiet mode of the front end.

setExtended :: Bool → FrontendParams → FrontendParams

Set extended mode of the front end.

setOverlapWarn :: Bool → FrontendParams → FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] → FrontendParams → FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all
modules in this path (instead of using the default path).

setHtmlDir :: String → FrontendParams → FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

setLogfile :: String → FrontendParams → FrontendParams

Set the logfile parameter of the front end. If this parameter is set, all messages produced
by the front end are stored in this file.

setSpecials :: String → FrontendParams → FrontendParams

Set additional specials parameters of the front end. These parameters are specific for
the current front end and should be used with care, since their form might change in
the future.

addTarget :: FrontendTarget → FrontendParams → FrontendParams

Add an additional front end target.

quiet :: FrontendParams → Bool

Returns the value of the "quiet" parameter.

extended :: FrontendParams → Bool

Returns the value of the "extended" parameter.

overlapWarn :: FrontendParams → Bool

118

Returns the value of the "overlapWarn" parameter.

fullPath :: FrontendParams → Maybe [String]

Returns the full path parameter of the front end.

htmldir :: FrontendParams → Maybe String

Returns the htmldir parameter of the front end.

logfile :: FrontendParams → Maybe String

Returns the logfile parameter of the front end.

specials :: FrontendParams → String

Returns the special parameters of the front end.

callFrontend :: FrontendTarget → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,
one can call the front end of the Curry compiler with this action. If the front end returns
with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget → FrontendParams → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to
date, one can call the front end of the Curry compiler with this action where various
parameters can be set. If the front end returns with an error, an exception is raised.

A.2.16 Library Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either a b] → [a]

Extracts from a list of Either all the Left elements in order.

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either a b → a

119

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either a b] → ([a],[b])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,
to the first component of the output. Similarly the Right elements are extracted to the
second component of the output.

A.2.17 Library ErrorState

A combination of Error and state monad like ErrorT State in Haskell.

Exported types:

type ES a b c = b → Either a (c,b)

Error state monad.

Exported functions:

evalES :: (a → Either b (c,a)) → a → Either b c

Evaluate an ES monad

returnES :: a → b → Either c (a,b)

Lift a value into the ES monad

failES :: a → b → Either a (c,b)

Failing computation in the ES monad

(>+=) :: (a → Either b (c,a)) → (c → a → Either b (d,a)) → a → Either b

(d,a)

Bind of the ES monad

(>+) :: (a → Either b (c,a)) → (a → Either b (d,a)) → a → Either b (d,a)

Sequence operator of the ES monad

(<$>) :: (a → b) → (c → Either d (a,c)) → c → Either d (b,c)

Apply a pure function onto a monadic value.

(<*>) :: (a → Either b (c → d,a)) → (a → Either b (c,a)) → a → Either b

(d,a)

Apply a function yielded by a monadic action to a monadic value.

120

gets :: a → Either b (a,a)

Retrieve the current state

puts :: a → a → Either b ((),a)

Replace the current state

modify :: (a → a) → a → Either b ((),a)

Modify the current state

mapES :: (a → b → Either c (d,b)) → [a] → b → Either c ([d],b)

Map a monadic function on all elements of a list by sequencing the effects.

concatMapES :: (a → b → Either c ([d],b)) → [a] → b → Either c ([d],b)

Same as concatMap, but for a monadic function.

mapAccumES :: (a → b → c → Either d ((a,e),c)) → a → [b] → c → Either d

((a,[e]),c)

Same as mapES but with an additional accumulator threaded through.

A.2.18 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is /.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is
:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns "." if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

121

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory
prefix is "." if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if
such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is
delivered if there is no such file.

A.2.19 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

Exported functions:

pathSeparator :: Char

pathSeparators :: String

isPathSeparator :: Char → Bool

122

searchPathSeparator :: Char

isSearchPathSeparator :: Char → Bool

extSeparator :: Char

isExtSeparator :: Char → Bool

splitSearchPath :: String → [String]

getSearchPath :: IO [String]

splitExtension :: String → (String,String)

takeExtension :: String → String

replaceExtension :: String → String → String

(<.>) :: String → String → String

dropExtension :: String → String

addExtension :: String → String → String

hasExtension :: String → Bool

splitExtensions :: String → (String,String)

123

dropExtensions :: String → String

takeExtensions :: String → String

splitDrive :: String → (String,String)

joinDrive :: String → String → String

takeDrive :: String → String

dropDrive :: String → String

hasDrive :: String → Bool

isDrive :: String → Bool

splitFileName :: String → (String,String)

replaceFileName :: String → String → String

dropFileName :: String → String

takeFileName :: String → String

takeBaseName :: String → String

replaceBaseName :: String → String → String

124

hasTrailingPathSeparator :: String → Bool

addTrailingPathSeparator :: String → String

dropTrailingPathSeparator :: String → String

takeDirectory :: String → String

replaceDirectory :: String → String → String

combine :: String → String → String

(</>) :: String → String → String

splitPath :: String → [String]

splitDirectories :: String → [String]

joinPath :: [String] → String

equalFilePath :: String → String → Bool

makeRelative :: String → String → String

normalise :: String → String

isValid :: String → Bool

makeValid :: String → String

isRelative :: String → Bool

isAbsolute :: String → Bool

125

A.2.20 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are
not fully declarative, i.e., the results depend on the order of evaluation and program rules. There
are newer and better approaches the encpasulate search, in particular, set functions (see module
SetFunctions), which should be used.
In previous versions of PAKCS, some of these operations were part of the standard prelude. We
keep them in this separate module in order to support a more portable standard prelude.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy). Con-
ceptually, all values are computed on a copy of the expression, i.e., the evaluation of the
expression does not share any results. Moreover, the evaluation suspends as long as the
expression contains unbound variables. Similar to Prolog’s findall.

getSomeValue :: a → IO a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The
expression must have a value, otherwise the computation fails. Conceptually, the value
is computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

allValues :: a → [a]

Returns all values of an expression (currently, via an incomplete depth-first strategy).
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results. Moreover, the evaluation suspends as long
as the expression contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someValue :: a → a

Returns some value for an expression (currently, via an incomplete depth-first strat-
egy). If the expression has no value, the computation fails. Conceptually, the value is
computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

allSolutions :: (a → Bool) → [a]

126

Returns all values satisfying a predicate, i.e., all arguments such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). The evaluation suspends as long as the predicate expression contains
unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someSolution :: (a → Bool) → a

Returns some values satisfying a predicate, i.e., some argument such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules. Thus, this operation should be
used only if the predicate has a single solution.

try :: (a → Bool) → [a → Bool]

Basic search control operator.

inject :: (a → Bool) → (a → Bool) → a → Bool

Inject operator which adds the application of the unary procedure p to the search variable
to the search goal taken from Oz. p x comes before g x to enable a test+generate form
in a sequential implementation.

solveAll :: (a → Bool) → [a → Bool]

Computes all solutions via a a depth-first strategy.

once :: (a → Bool) → a → Bool

Gets the first solution via a depth-first strategy.

best :: (a → Bool) → (a → a → Bool) → [a → Bool]

Gets the best solution via a depth-first strategy according to a specified operator that
can always take a decision which of two solutions is better. In general, the comparison
operation should be rigid in its arguments!

findall :: (a → Bool) → [a]

Gets all solutions via a depth-first strategy and unpack the values from the lambda-
abstractions. Similar to Prolog’s findall.

findfirst :: (a → Bool) → a

Gets the first solution via a depth-first strategy and unpack the values from the search
goals.

browse :: (a → Bool) → IO ()

127

Shows the solution of a solved constraint.

browseList :: [a → Bool] → IO ()

Unpacks solutions from a list of lambda abstractions and write them to the screen.

unpack :: (a → Bool) → a

Unpacks a solution’s value from a (solved) search goal.

rewriteAll :: a → [a]

Gets all values computable by term rewriting. In contrast to findall, this operation
does not wait until all "outside" variables are bound to values, but it returns all values
computable by term rewriting and ignores all computations that requires bindings for
outside variables.

rewriteSome :: a → Maybe a

Similarly to rewriteAll but returns only some value computable by term rewriting.
Returns Nothing if there is no such value.

A.2.21 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float

The number pi.

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

(^.) :: Float → Int → Float

The value of a ^. b is a raised to the power of b. Executes in O(log b) steps.

i2f :: Int → Float

128

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between the
argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the
argument. If the argument is equidistant between two integers, it is rounded to the
closest even integer value.

recip :: Float → Float

Reciprocal

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

logBase :: Float → Float → Float

Logarithm to arbitrary Base.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

Cosine.

tan :: Float → Float

Tangent.

asin :: Float → Float

Arc sine.

acos :: Float → Float

atan :: Float → Float

129

Arc tangent.

sinh :: Float → Float

Hyperbolic sine.

cosh :: Float → Float

tanh :: Float → Float

Hyperbolic tangent.

asinh :: Float → Float

Hyperbolic Arc sine.

acosh :: Float → Float

atanh :: Float → Float

Hyperbolic Arc tangent.

A.2.22 Library Function

This module provides some utility functions for function application.

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =
x.

on :: (a → a → b) → (c → a) → c → c → b

(*) ‘on‘ f = \x y -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).

first :: (a → b) → (a,c) → (b,c)

Apply a function to the first component of a tuple.

second :: (a → b) → (c,a) → (c,b)

Apply a function to the second component of a tuple.

(***) :: (a → b) → (c → d) → (a,c) → (b,d)

Apply two functions to the two components of a tuple.

(&&&) :: (a → b) → (a → c) → a → (b,c)

Apply two functions to a value and returns a tuple of the results.

both :: (a → b) → (a,a) → (b,b)

Apply a function to both components of a tuple.

130

A.2.23 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:

invf1 :: (a → b) → b → a

Inverts a unary function.

invf2 :: (a → b → c) → c → (a,b)

Inverts a binary function.

invf3 :: (a → b → c → d) → d → (a,b,c)

Inverts a ternary function.

invf4 :: (a → b → c → d → e) → e → (a,b,c,d)

Inverts a function of arity 4.

invf5 :: (a → b → c → d → e → f) → f → (a,b,c,d,e)

Inverts a function of arity 5.

A.2.24 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the
ghc-base package it has been adapted for Curry by Bjoern Peemoeller
(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License
Copyright 2004, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
this list of conditions and the following disclaimer.
this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
used to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY
OF GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW
OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

131

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

132

A.2.25 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its
value can be accessed and modified by IO actions. Furthermore, global entities can be declared as
persistent so that their values are stored across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A global entity g with an initial value v of type t must be declared by:

g :: Global t
g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the
global entity (see type GlobalSpec).

Exported types:

data Global

The abstract type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does
not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used elsewhere.
In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

133

safeReadGlobal :: Global a → a → IO a

Safely reads the current value of a global. If readGlobal fails (e.g., due to a corrupted
persistent storage), the global is re-initialized with the default value given as the second
argument.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term
before it is updated.

A.2.26 Library GlobalVariable

Library for handling global variables. A global variable has a name declared in the program. Its
value (a data term possibly containing free variables) can be accessed and modified by IO actions.
In contast to global entities (as defined in the library Global), global variables can contain logic
variables shared with computations running in the same computation space. As a consequence,
global variables cannot be persistent, their values are not kept across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A global variable g with an initial value v of type t must be declared by:
g :: GVar t

g = gvar v

Here, the type t must not contain type variables. v is the initial value for every program run.
Note: the implementation in PAKCS is based on threading a state through the execution. Thus,
it might be the case that some updates of global variables are lost if fancy features like unsafe
operations or debugging support are used.

Exported types:

data GVar

The general type of global variables.

Exported constructors:

Exported functions:

gvar :: a → GVar a

gvar is only used for the declaration of a global variable and should not be used else-
where. In the future, it might become a keyword.

readGVar :: GVar a → IO a

Reads the current value of a global variable.

writeGVar :: GVar a → a → IO ()

Updates the value of a global variable. The associated term is evaluated to a data term
and might contain free variables.

134

A.2.27 Library GUI

This library contains definitions and functions to implement graphical user interfaces for Curry
programs. It is based on Tcl/Tk and its basic ideas are described in detail in this paper

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication
is done.

Exported constructors:

data Widget

The type of possible widgets in a GUI.

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton

– a button in a GUI whose event handler is activated if the user presses the button

• Canvas :: [ConfItem] → Widget

Canvas

– a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton

– a check button: it has value "0" if it is unchecked and value "1" if it is checked

• Entry :: [ConfItem] → Widget

Entry

– an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label

– a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox

– a widget containing a list of items for selection

135

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

• Message :: [ConfItem] → Widget

Message

– a message for showing simple string values

• MenuButton :: [ConfItem] → Widget

MenuButton

– a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale

– a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH

– a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV

– a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit

– a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row

– a horizontal alignment of widgets

• Col :: [ConfCollection] → [Widget] → Widget

Col

– a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix

– a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

136

Exported constructors:

• Active :: Bool → ConfItem

Active

– define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor

– alignment of information inside a widget where the argument must be: n, ne, e, se, s,
sw, w, nw, or center

• Background :: String → ConfItem

Background

– the background color

• Foreground :: String → ConfItem

Foreground

– the foreground color

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler

– an event handler associated to a widget. The event handler returns a list of widget ref/-
configuration pairs that are applied after the handler in order to configure GUI widgets

• Height :: Int → ConfItem

Height

– the height of a widget (chars for text, pixels for graphics)

• CheckInit :: String → ConfItem

CheckInit

– initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems

– list of items contained in a canvas

• List :: [String] → ConfItem

List

– list of values shown in a listbox

137

• Menu :: [MenuItem] → ConfItem

Menu

– the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef

– a reference to this widget

• Text :: String → ConfItem

Text

– an initial text contents

• Width :: Int → ConfItem

Width

– the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill

– fill widget in both directions

• FillX :: ConfItem

FillX

– fill widget in horizontal direction

• FillY :: ConfItem

FillY

– fill widget in vertical direction

• TclOption :: String → ConfItem

TclOption

– further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some
event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf

138

– reconfigure the widget referred by wref with configuration item conf

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler

– add a new handler to the GUI that processes inputs on an input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl

– remove a handler for an input stream referred by hdl from the GUI (usually used to
remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete
and might be extended or restructured in future releases of this library.

Exported constructors:

• DefaultEvent :: Event

DefaultEvent

– the default event of the widget

• MouseButton1 :: Event

MouseButton1

– left mouse button pressed

• MouseButton2 :: Event

MouseButton2

– middle mouse button pressed

• MouseButton3 :: Event

MouseButton3

– right mouse button pressed

• KeyPress :: Event

KeyPress

– any key is pressed

• Return :: Event

Return

139

– return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign

– centered alignment

• LeftAlign :: ConfCollection

LeftAlign

– left alignment

• RightAlign :: ConfCollection

RightAlign

– right alignment

• TopAlign :: ConfCollection

TopAlign

– top alignment

• BottomAlign :: ConfCollection

BottomAlign

– bottom alignment

data MenuItem

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton

– a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator

– a separator between menu entries

140

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton

– a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk
(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the
constructor WRefLabel will not be exported so that values can only be created inside
this module.

Exported constructors:

data Style

The data type of possible text styles.

Exported constructors:

• Bold :: Style

Bold

– text in bold font

• Italic :: Style

Italic

– text in italic font

• Underline :: Style

Underline

– underline text

141

• Fg :: Color → Style

Fg

– foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg

– background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

• Blue :: Color

• Brown :: Color

• Cyan :: Color

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

• Pink :: Color

• Purple :: Color

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

142

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI
events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO [ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO

[ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runControlledGUI :: String → (Widget,String → GuiPort → IO ()) → Handle → IO

()

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external stream identified
by a handle (third argument). This operation is useful to run a GUI that should react
on user events as well as messages written to the given handle.

runConfigControlledGUI :: String → (Widget,String → GuiPort → IO

[ReconfigureItem]) → Handle → IO ()

143

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external stream identified
by a handle (third argument). This operation is useful to run a GUI that should react
on user events as well as messages written to the given handle.

runInitControlledGUI :: String → (Widget,String → GuiPort → IO ()) → (GuiPort

→ IO [ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, an event handler is provided that process
messages received from an external message stream. This operation is useful to run a
GUI that should react on user events as well as messages written to the given handle.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of event
handlers is provided that process inputs received from a corresponding list of handles to
input streams. Thus, if the i-th handle has some data available, the i-th event handler
is executed with the i-th handle as a parameter. This operation is useful to run a GUI
that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → (GuiPort → IO [ReconfigureItem]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, a list of event handlers is provided that process
inputs received from a corresponding list of handles to input streams. Thus, if the i-th
handle has some data available, the i-th event handler is executed with the i-th handle as
a parameter. This operation is useful to run a GUI that should react on inputs provided
by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for
backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

144

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the
end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust
the view to the end of the TextEdit widget. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and
end position similarly to getCursorPosition. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

Removes a style value in a region of a TextEdit widget. The region is specified a start
and end position similarly to getCursorPosition. This is an experimental function
and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are
numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is
visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is
useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popupMessage :: String → IO ()

A simple popup message.

145

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a
GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI
port as parameter (in order to read or write values from/into the GUI) and returns a
list of widget reference/configuration pairs which is applied after the handler in order
to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.
The event handler is a configuration handler (see Command) that allows the configura-
tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration
options for the entry widget.

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be
returned (or "" if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types
that could be selected. A file type pair consists of a name and an extension for that
file type. The file with its full path name will be returned (or "" if the user cancels the
selection).

146

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing
file, she/he will asked to confirm to overwrite it. The file with its full path name will be
returned (or "" if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of
file types that could be selected. A file type pair consists of a name and an extension
for that file type. If the user chooses an existing file, she/he will asked to confirm to
overwrite it. The file with its full path name will be returned (or "" if the user cancels
the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or
"" if the user cancels the selection).

A.2.28 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on
the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

(^) :: Int → Int → Int

The value of a ^ b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <=
0. For positive integers, the returned value is 1 less the number of digits in the decimal
representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0. Executes
in O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0.

147

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <
m‘.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only
the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

148

A.2.29 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

149

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available
within t milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.
Usually, the message stream comes from an external port. Thus, this operation im-
plements a committed choice over receiving input from an IO handle or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message
stream. Usually, the message stream comes from an external port. Thus, this operation
implements a committed choice over receiving input from IO handles or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

150

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of
file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has
been reached while reading the first character. If the end of file is reached later in the
line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before
returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

A.2.30 Library IOExts

Library with some useful extensions to the IO monad.

151

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams
of the new process (stdin,stdout,stderr) are returned as handles so that they can be
explicitly manipulated. They should be closed with IO.hClose since they are not closed
automatically when the process terminates.

evalCmd :: String → [String] → String → IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and
provides the input via the process’ stdin input stream. The exit code of the process and
the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams
of the new process is returned as one handle which is both readable and writable. Thus,
writing to the handle produces input to the process and output from the process can
be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be
used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO
"myaction.lock" act) ensures that the action "act" is not executed by two processes on
the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to
ground terms before applying this operation.

152

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an
associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial value.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

A.2.31 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

• JSString :: String → JSExp

JSString

– string constant

• JSInt :: Int → JSExp

JSInt

– integer constant

• JSBool :: Bool → JSExp

JSBool

– Boolean constant

• JSIVar :: Int → JSExp

JSIVar

– indexed variable

153

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx

– array access to index array variable

• JSOp :: String → JSExp → JSExp → JSExp

JSOp

– infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall

– function call

• JSApply :: JSExp → JSExp → JSExp

JSApply

– function call where the function is an expression

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda

– (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign

– assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf

– conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch

– switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall

154

– procedure call

• JSReturn :: JSExp → JSStat

JSReturn

– return statement

• JSVarDecl :: Int → JSStat

JSVarDecl

– local variable declaration

data JSBranch

Exported constructors:

• JSCase :: String → [JSStat] → JSBranch

JSCase

– case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault

– default branch

data JSFDecl

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

155

A.2.32 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise Nothing
is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

156

Computes the union of two lists according to the given equivalence relation

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the
list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

diagonal :: [[a]] → [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)
lists.

permutations :: [a] → [[a]]

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that satisfy
the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: [a] → [a] → [[a]]

157

Breaks the second list argument into pieces separated by the first list argument, con-
suming the delimiter. An empty delimiter is invalid, and will cause an error to be
raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True
for a separator element. The resulting components do not contain the separators. Two
adjacent separators result in an empty component in the output.

split (==a) "aabbaca" == ["","","bb","c",""] split (==a) "" == [""]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits
[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]
== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

158

sum :: [Int] → Int

Returns the sum of a list of integers.

product :: [Int] → Int

Returns the product of a list of integers.

maximum :: [a] → a

Returns the maximum of a non-empty list.

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]
== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a
function to each element of a list, passing an accumulating parameter from left to right,
and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a
function to each element of a list, passing an accumulating parameter from right to left,
and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

159

A.2.33 Library Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just _.

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is
Nothing.

fromMaybe :: a → Maybe a → a

Extract the argument from the Just constructor or return the provided default value if
the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list
of elements.

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is
interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

Monadic sequence for Maybe.

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

Monadic map for Maybe.

mplus :: Maybe a → Maybe a → Maybe a

Combine two Maybes, returning the first Just value, if any.

160

A.2.34 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In
contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to provide
sockets that are addressed by symbolic names rather than numbers.
In standard applications, the server side uses the operations listenOn and socketAccept to provide
some service on a named socket, and the client side uses the operation connectToSocket to request
a service.

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to
connectToSocket, this action waits until the socket has been registered with its sym-
bolic name.

161

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of
the connection. This action waits (possibly forever) until the socket with the symbolic
name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the
symbolic name is not registered, an error is reported.

A.2.35 Library Parser

Library with functional logic parser combinators.
Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective
of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

162

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser
p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with
representation) at least once.

A.2.36 Library Ports

Library for distributed programming with ports. This paper9 contains a description of the basic
ideas behind this library.

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.

Exported constructors:

data SP_Msg

A "stream port" is an adaption of the port concept to model the communication with
bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream
(e.g., opened by openProcessPort) where the communication is performed via the fol-
lowing stream port messages.

Exported constructors:

• SP_Put :: String → SP_Msg

SP_Put s

– write the argument s on the output stream

• SP_GetLine :: String → SP_Msg

SP_GetLine s

– unify the argument s with the next text line of the input stream

• SP_GetChar :: Char → SP_Msg

SP_GetChar c

9http://www.informatik.uni-kiel.de/~mh/papers/PPDP99.html

163

– unify the argument c with the next character of the input stream

• SP_EOF :: Bool → SP_Msg

SP_EOF b

– unify the argument b with True if we are at the end of the input stream, otherwise with
False

• SP_Close :: SP_Msg

SP_Close

– close the input/output streams

Exported functions:

openPort :: Port a → [a] → Bool

Opens an internal port for communication.

send :: a → Port a → Bool

Sends a message to a port.

doSend :: a → Port a → IO ()

I/O action that sends a message to a port.

ping :: Int → Port a → IO (Maybe Int)

Checks whether port p is still reachable.

timeoutOnStream :: Int → [a] → Maybe [a]

Checks for instantiation of a stream within some amount of time.

openProcessPort :: String → IO (Port SP_Msg)

Opens a new connection to a process that executes a shell command.

openNamedPort :: String → IO [a]

Opens an external port with a symbolic name.

connectPortRepeat :: Int → IO a → Int → String → IO (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPort, this action waits
until the external port has been registered with its symbolic name.

connectPortWait :: String → IO (Port a)

Waits for connection to an external port and return the connected port. This action
waits (possibly forever) until the external port is registered.

164

connectPort :: String → IO (Port a)

Connects to an external port. The external port must be already registered, otherwise
an error is reported.

choiceSPEP :: Port SP_Msg → [a] → Either String [a]

This function implements a committed choice over the receiving of messages via a stream
port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a → [b] → Bool) → a → Port b → Bool

Creates a new object (of type State -> [msg] -> Bool) with an initial state and a port
to which messages for this object can be sent.

newNamedObject :: (a → [b] → Bool) → a → String → IO ()

Creates a new object (of type State -> [msg] -> Bool) with a symbolic port name to
which messages for this object can be sent.

runNamedServer :: ([a] → IO b) → String → IO b

Runs a new server (of type [msg] -> IO a) on a named port to which messages can be
sent.

A.2.37 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library
linear-time, bounded implementation by Olaf Chitil. Note that the implementation of fill and
fillBreak is not linear-time bounded Support of ANSI escape codes for formatting and colorisation
of documents in text terminals (see https://en.wikipedia.org/wiki/ANSIescapecode)

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

pPrint :: Doc → String

Standard printing with a column length of 80.

empty :: Doc

The empty document

165

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any
newline (\n) characters. If the string contains newline characters, the function string
should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting
level. Document (linesep s) behaves like (text s) if the line break is undone by
group.

hardline :: Doc

The document hardline advances to the next line and indents to the current nesting
level. hardline cannot be undone by group.

line :: Doc

The document line advances to the next line and indents to the current nesting level.
Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The document linebreak advances to the next line and indents to the current nesting
level. Document linebreak behaves like (text "") if the line break is undone by group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, other-
wise it behaves like line. softline = group line

softbreak :: Doc

The document softbreak behaves like (text "") if the resulting output fits the page,
otherwise it behaves like line. softbreak = group linebreak

group :: Doc → Doc

The combinator group is used to specify alternative layouts. The document (group x)
undoes all line breaks in document x. The resulting line is added to the current line if
that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-
creased by i (See also hang, align and indent).

166

nest 2 (text "hello" $$ text "world") $$ text "!"

outputs as:

hello
world

!

hang :: Int → Doc → Doc

The combinator hang implements hanging indentation. The document (hang i d) ren-
ders document d with a nesting level set to the current column plus i. The following
example uses hanging indentation for some text:

test = hang 4
(fillSep

(map text
(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator
indents these
words !

The hang combinator is implemented as:

hang i x = align (nest i x)

align :: Doc → Doc

The document (align d) renders document d with the nesting level set to the
current column. It is used for example to implement hang‘.

As an example, we will put a document right above another one, regardless of the current
nesting level:

x $$ y = align (x $$ y)
test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice
world

167

indent :: Int → Doc → Doc

The document (indent i d) indents document d with i spaces.

test = indent 4 (fillSep (map text
(words "the indent combinator indents these words !")))

Which lays out with a page width of 20 as:

the indent
combinator
indents these
words !

combine :: Doc → Doc → Doc → Doc

The document (combine c d1 d2) combines document d1 and d2 with document c in
between using (<>) with identity empty. Thus, the following equations hold.

combine c d1 empty == d1
combine c empty d2 == d2
combine c d1 d2 == d1 <> c <> d2 if neither d1 nor d2 are empty

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative
operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between
with identity empty.

($$) :: Doc → Doc → Doc

The document (x $$ y) concatenates document x and y with a line in between with
identity empty.

(<$+$>) :: Doc → Doc → Doc

The document (x <$+$> y) concatenates document x and y with a blank line in be-
tween with identity empty.

(</>) :: Doc → Doc → Doc

The document (x </> y) concatenates document x and y with a softline in between
with identity empty. This effectively puts x and y either next to each other (with a
space in between) or underneath each other.

168

(<$$>) :: Doc → Doc → Doc

The document (x <$$> y) concatenates document x and y with a linebreak in be-
tween with identity empty.

(<//>) :: Doc → Doc → Doc

The document (x <//> y) concatenates document x and y with a softbreak in be-
tween with identity empty. This effectively puts x and y either right next to each other
or underneath each other.

(<$!$>) :: Doc → Doc → Doc

The document (x <$!$> y) concatenates document x and y with a hardline in be-
tween with identity empty. This effectively puts x and y underneath each other.

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Func-
tion f should be like (<+>), ($$) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with ($$). If a group
undoes the line breaks inserted by vsep, all documents are separated with a space.

someText = map text (words ("text to lay out"))
test = text "some" <+> vsep someText

This is layed out as:

some text
to
lay
out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

some text
to
lay
out

169

vsepBlank :: [Doc] → Doc

The document vsep xs concatenates all documents xs vertically with (<$+$>). If a
group undoes the line breaks inserted by vsepBlank, all documents are separated with
a space.

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (</>) as
long as its fits the page, than inserts a line and continues doing that for all documents
in xs. fillSep xs = foldr (</>) empty xs

sep :: [Doc] → Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),
if it fits the page, or vertically with ($$). sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a
group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<//>) as
long as its fits the page, than inserts a linebreak and continues doing that for all
documents in xs. fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),
if it fits the page, or vertically with (<$$>). cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last
document.

someText = map text ["words","in","a","tuple"]
test = parens (align (cat (punctuate comma someText)))

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

170

(words,
in,
a,
tuple)

(If you want put the commas in front of their elements instead of at the end, you should
use tupled or, in general, encloseSep.)

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSep l r s xs) concatenates the documents xs seperated by s
and encloses the resulting document by l and r. The documents are rendered horizon-
tally if that fits the page. Otherwise they are aligned vertically. All seperators are put
in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs
test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10
,200
,3000]

encloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSepSpaced l r s xs) concatenates the documents xs seper-
ated by s and encloses the resulting document by l and r. In addition, after each
occurrence of s, after l, and before r, a space is inserted. The documents are rendered
horizontally if that fits the page. Otherwise they are aligned vertically. All seperators
are put in front of the elements.

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r s xs) concatenates the documents xs seperated by
s and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

171

The document (fillEncloseSep l r s xs) concatenates the documents xs seperated
by s and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are aligned
vertically. All seperators are put in front of the elements.

fillEncloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSepSpaced l r s xs) concatenates the documents xs
seperated by s and encloses the resulting document by l and r. In addition, after
each occurrence of s, after l, and before r, a space is inserted.

The documents are rendered horizontally if that fits the page. Otherwise, they are
aligned vertically. All seperators are put in front of the elements.

list :: [Doc] → Doc

The document (list xs) comma seperates the documents xs and encloses them in
square brackets. The documents are rendered horizontally if that fits the page. Other-
wise they are aligned vertically. All comma seperators are put in front of the elements.

listSpaced :: [Doc] → Doc

Spaced version of list

set :: [Doc] → Doc

The document (set xs) comma seperates the documents xs and encloses them in
braces. The documents are rendered horizontally if that fits the page. Otherwise they
are aligned vertically. All comma seperators are put in front of the elements.

setSpaced :: [Doc] → Doc

Spaced version of set

tupled :: [Doc] → Doc

The document (tupled xs) comma seperates the documents xs and encloses them in
parenthesis. The documents are rendered horizontally if that fits the page. Otherwise
they are aligned vertically. All comma seperators are put in front of the elements.

tupledSpaced :: [Doc] → Doc

Spaced version of tupled

semiBraces :: [Doc] → Doc

The document (semiBraces xs) seperates the documents xs with semi colons and en-
closes them in braces. The documents are rendered horizontally if that fits the page.
Otherwise they are aligned vertically. All semi colons are put in front of the elements.

semiBracesSpaced :: [Doc] → Doc

172

Spaced version of semiBraces

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using
(<>). enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes.

bquotes :: Doc → Doc

Document (bquotes x) encloses document x with back quotes "‘".

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

parensIf :: Bool → Doc → Doc

Document (parensIf x) encloses document x in parenthesis,"(" and ")", iff the con-
dition is true.

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character should not be
a newline (\n), the function line should be used for line breaks.

string :: String → Doc

The document (string s) concatenates all characters in s using line for newline char-
acters and char for all other characters. It is used instead of text whenever the text
contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

173

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote.

semi :: Doc

The document semi contains a semi colon, ";".

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

174

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

larrow :: Doc

The document larrow contains a left arrow sign, "<-".

rarrow :: Doc

The document rarrow contains a right arrow sign, "->".

doubleArrow :: Doc

The document doubleArrow contains an double arrow sign, "=>".

doubleColon :: Doc

The document doubleColon contains a double colon sign, "::".

bar :: Doc

The document bar contains a vertical bar sign, "|".

at :: Doc

The document at contains an at sign, "@".

tilde :: Doc

The document tilde contains a tilde sign, "~".

fill :: Int → Doc → Doc

The document (fill i d) renders document d. It than appends spaces until the width
is equal to i. If the width of d is already larger, nothing is appended. This combinator is
quite useful in practice to output a list of bindings. The following example demonstrates
this.

175

types = [("empty","Doc")
,("nest","Int -> Doc -> Doc")
,("linebreak","Doc")]

ptype (name,tp)
= fill 6 (text name) <+> text "::" <+> text tp

test = text "let" <+> align (vcat (map ptype types))

Which is layed out as:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak :: Doc

Note that fill is not guaranteed to be linear-time bounded since it has to compute the
width of a document before pretty printing it

fillBreak :: Int → Doc → Doc

The document (fillBreak i d) first renders document d. It than appends spaces
until the width is equal to i. If the width of d is already larger than i, the nesting
level is increased by i and a line is appended. When we redefine ptype in the previous
example to use fillBreak, we get a useful variation of the previous output:

ptype (name,tp)
= fillBreak 6 (text name) <+> text "::" <+> text tp

The output will now be:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak

:: Doc

Note that fillBreak is not guaranteed to be linear-time bounded since it has to compute
the width of a document before pretty printing it

bold :: Doc → Doc

The document (bold d) displays document d with bold text

faint :: Doc → Doc

The document (faint d) displays document d with faint text

176

blinkSlow :: Doc → Doc

The document (blinkSlow d) displays document d with slowly blinking text (rarely
supported)

blinkRapid :: Doc → Doc

The document (blinkRapid d) displays document d with rapidly blinking text (rarely
supported)

italic :: Doc → Doc

The document (italic d) displays document d with italicized text (rarely supported)

underline :: Doc → Doc

The document (underline d) displays document d with underlined text

crossout :: Doc → Doc

The document (crossout d) displays document d with crossed out text

inverse :: Doc → Doc

The document (inverse d) displays document d with inversed coloring, i.e. use text
color of d as background color and background color of d as text color

black :: Doc → Doc

The document (black d) displays document d with black text color

red :: Doc → Doc

The document (red d) displays document d with red text color

green :: Doc → Doc

The document (green d) displays document d with green text color

yellow :: Doc → Doc

The document (yellow d) displays document d with yellow text color

blue :: Doc → Doc

The document (blue d) displays document d with blue text color

magenta :: Doc → Doc

The document (magenta d) displays document d with magenta text color

cyan :: Doc → Doc

The document (cyan d) displays document d with cyan text color

177

white :: Doc → Doc

The document (white d) displays document d with white text color

bgBlack :: Doc → Doc

The document (bgBlack d) displays document d with black background color

bgRed :: Doc → Doc

The document (bgRed d) displays document d with red background color

bgGreen :: Doc → Doc

The document (bgGreen d) displays document d with green background color

bgYellow :: Doc → Doc

The document (bgYellow d) displays document d with yellow background color

bgBlue :: Doc → Doc

The document (bgBlue d) displays document d with blue background color

bgMagenta :: Doc → Doc

The document (bgMagenta d) displays document d with magenta background color

bgCyan :: Doc → Doc

The document (bgCyan d) displays document d with cyan background color

bgWhite :: Doc → Doc

The document (bgWhite d) displays document d with white background color

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

A.2.38 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

178

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that
the returned values are very implementation dependent so that one should interpret
them with care!

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful
to get more precise data of memory usage.

179

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical
operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,
the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this
evaluation. During the evaluation, the garbage collector is turned off to get the total
space usage.

evalTime :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time needed for this evaluation on standard error. Included for backward compatibility
only, use profileTime!

evalSpace :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time and space needed for this evaluation on standard error. During the evaluation,
the garbage collector is turned off. Included for backward compatibility only, use pro-
fileSpace!

A.2.39 Library Prolog

A library defining a representation for Prolog programs together with a simple pretty printer. It
does not cover all aspects of Prolog but might be useful for applications generating Prolog programs.

180

Exported types:

data PlClause

A Prolog clause is either a program clause consisting of a head and a body, or a directive
or a query without a head.

Exported constructors:

• PlClause :: String → [PlTerm] → [PlGoal] → PlClause

• PlDirective :: [PlGoal] → PlClause

• PlQuery :: [PlGoal] → PlClause

data PlGoal

A Prolog goal is a literal, a negated goal, or a conditional.

Exported constructors:

• PlLit :: String → [PlTerm] → PlGoal

• PlNeg :: [PlGoal] → PlGoal

• PlCond :: [PlGoal] → [PlGoal] → [PlGoal] → PlGoal

data PlTerm

A Prolog term is a variable, atom, number, or structure.

Exported constructors:

• PlVar :: String → PlTerm

• PlAtom :: String → PlTerm

• PlInt :: Int → PlTerm

• PlFloat :: Float → PlTerm

• PlStruct :: String → [PlTerm] → PlTerm

Exported functions:

plList :: [PlTerm] → PlTerm

A Prolog list of Prolog terms.

showPlProg :: [PlClause] → String

Shows a Prolog program in standard Prolog syntax.

showPlClause :: PlClause → String

181

showPlGoals :: [PlGoal] → String

showPlGoal :: PlGoal → String

showPlTerm :: PlTerm → String

A.2.40 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a
property is defined by a line of the form prop=value where prop starts with a letter. All other lines
(e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the property
file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.41 Library Read

Library with some functions for reading special tokens.
This library is included for backward compatibility. You should use the library ReadNumeric which
provides a better interface for these functions.

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the
the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks
and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and
the the integer is read up to the first non-heaxdecimal digit.

182

A.2.42 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. If the string does not
start with an integer token, Nothing is returned, otherwise the result is Just (v, s),
where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. If the string does not start with
a natural number token, Nothing is returned, otherwise the result is Just (v, s) where
v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain
leadings blanks and the number is read up to the first non-hexadecimal digit. If the
string does not start with a hexadecimal number token, Nothing is returned, otherwise
the result is Just (v, s) where v is the value of the number and s is the remaing string
without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. If the string does not
start with an octal number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

readBin :: String → Maybe (Int,String)

Read a binary number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-binary digit. If the string does not
start with a binary number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

A.2.43 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

183

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. This function is similar to
the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. Note that this function differs
from the prelude function show since it prefixes constructors with their module name in
order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!). In case of a successful parse,
the result is a one element list containing a pair of the data term and the remaining
unparsed string.

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. In case of a successful parse, the result
is a one element list containing a pair of the data term and the remaining unparsed string.

readQTerm :: String → a

184

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and
returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and
returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which
might be useful to modify the file with a standard text editor.

A.2.44 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is
described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-
national Conference on Principles and Practice of Declarative Programming (PPDP’09),
pp. 73-82, ACM Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-
determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.
Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are
values of the arguments a1,...,an (i.e., the arguments are evaluated "outside" this capsule so that
the non-determinism caused by evaluating these arguments is not captured in this capsule but yields
several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound inside
this capsule (but causes a suspension until they are bound). The set of values returned by a set
function is represented by an abstract type Values on which several operations are defined in this
module. Actually, it is a multiset of values, i.e., duplicates are not removed.
Restrictions:

1. The set is a multiset, i.e., it might contain multiple values.

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its
evaluation will not terminate even if only some elements (e.g., for a containment test) are
demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be
evaluated.

Since this implementation is restricted and prototypical, the interface is not stable and might change.

185

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set2 :: (a → b → c) → a → b → Values c

Combinator to transform a binary function into a corresponding set function.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

Combinator to transform a function of arity 4 into a corresponding set function.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

Combinator to transform a function of arity 7 into a corresponding set function.

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: a → Values a → Bool

Is some value an element of a multiset of values?

186

choose :: Values a → (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the cho-
sen value and the remaining multiset of values. Thus, if we consider the operation
chooseValue by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)
contains the same elements as the value set s.

chooseValue :: Values a → a

Chooses (non-deterministically) some value in a multiset of values and returns the chosen
value. Thus, (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue
s) contains the same elements as the value set s.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value.
It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected
value. Thus, selectValue has always at most one value. It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)
if all values in the argument set are identical. It returns a single value even for infinite
value sets (in contrast to select or choose).

mapValues :: (a → b) → Values a → Values b

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

minValue :: (a → a → Bool) → Values a → a

187

Returns the minimal element of a non-empty multiset of values with respect to a given
total ordering on the elements.

maxValue :: (a → a → Bool) → Values a → a

Returns the maximal element of a non-empty multiset of value with respect to a given
total ordering on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the
list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a
consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As a
consequence, the multiset of values is completely evaluated. In order to ensure that the
result of this operation is independent of the evaluation order, the given ordering must
be a total order.

A.2.45 Library Socket

Library to support network programming with sockets. In standard applications, the server side
uses the operations listenOn and socketAccept to provide some service on a socket, and the client
side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

188

Creates a server side socket bound to a free port. The port number and the socket is
returned.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.46 Library State

This library provides an implementation of the state monad.

Exported types:

type State a b = a → (b,a)

Exported functions:

bindS :: (a → (b,a)) → (b → a → (c,a)) → a → (c,a)

bindS :: (a → (b,a)) → (a → (c,a)) → a → (c,a)

returnS :: a → b → (a,b)

getS :: a → (a,a)

189

putS :: a → a → ((),a)

modifyS :: (a → a) → a → ((),a)

sequenceS :: [a → (b,a)] → a → ([b],a)

sequenceS :: [a → (b,a)] → a → ((),a)

mapS :: (a → b → (c,b)) → [a] → b → ([c],b)

mapS :: (a → b → (c,b)) → [a] → b → ((),b)

runState :: (a → (b,a)) → a → (b,a)

evalState :: (a → (b,a)) → a → b

execState :: (a → (b,a)) → a → a

liftS :: (a → b) → (c → (a,c)) → c → (b,c)

liftS2 :: (a → b → c) → (d → (a,d)) → (d → (b,d)) → d → (c,d)

A.2.47 Library System

Library to access parts of the system environment.

190

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not
supported in KiCS2 (there it always returns 0), but only included for compatibility
reasons.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not
included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for undefined
environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent
shell commands (see system) and visible to subsequent calls to getEnviron (but it is
not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently
executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit
status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given
by the argument. An exit code of zero means successful execution.

191

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.48 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day hour
minute second timezone) where timezone is an integer representing the timezone as a
difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

192

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC
time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs
in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).
Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operation is
independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., "September 23, 2006".

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

193

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.49 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Bool → a → a

194

Spawns a constraint and returns the second argument. This function can be considered
as defined by spawnConstraint c x | c = x. However, the evaluation of the constraint
and the right-hand side are performed concurrently, i.e., a suspension of the constraint
does not imply a blocking of the right-hand side and the right-hand side might be
evaluated before the constraint is successfully solved. Thus, a computation might return
a result even if some of the spawned constraints are suspended (use the PAKCS option
+suspend to show such suspended goals).

isVar :: a → Bool

Tests whether the first argument evaluates to a currently unbound variable (use with
care!).

identicalVar :: a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable
(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True

whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

isGround :: a → Bool

Tests whether the argument evaluates to a ground value (use with care!).

compareAnyTerm :: a → a → Ordering

Comparison of any data terms, possibly containing variables. Data constructors are
compared in the order of their definition in the datatype declarations and recursively in
the arguments. Variables are compared in some internal order.

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-
dard prefix notation. Thus, showAnyTerm evaluates its argument to normal
form. This function is similar to the function ReadShowTerm.showTerm but it also
transforms logic variables into a string representation that can be read back by
Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and
binding status of logic variables so that it should be used with care!

showAnyQTerm :: a → String

Transforms the normal form of a term into a string representation in standard prefix
notation. Thus, showAnyQTerm evaluates its argument to normal form. This function
is similar to the function ReadShowTerm.showQTerm but it also transforms logic variables
into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,
the result depends on the evaluation and binding status of logic variables so that it
should be used with care!

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

195

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm. In case of a successful parse, the result is a one
element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm.

readsAnyQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm. In case of a successful parse, the re-
sult is a one element list containing a pair of the data term and the remaining unparsed
string.

readAnyQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation without module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation with module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String → [(a,String)]

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression. In case of a
successful parse, the result is a one element list containing a pair of the expression and
the remaining unparsed string.

readAnyQExpression :: String → a

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression.

196

A.2.50 Library Test.EasyCheck

EasyCheck is a library for automated, property-based testing of Curry programs. The ideas behind
EasyCheck are described in this paper The tool currycheck automatically executes tests defined
with this library. EasyCheck supports the definition of unit tests (also for I/O operations) and
property tests parameterized over some arguments.
Note that this module defines the interface of EasyCheck to define properties. The operations to
actually execute the tests are contained in the accompanying library Test.EasyCheckExec.

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Test

Abstract type to represent a single test for a property to be checked. A test consists
of the result computed for this test, the arguments used for this test, and the labels
possibly assigned to this test by annotating properties.

Exported constructors:

data Result

Data type to represent the result of checking a property.

Exported constructors:

• Undef :: Result

• Ok :: Result

• Falsified :: [String] → Result

• Ambigious :: [Bool] → [String] → Result

data Prop

Abstract type to represent properties to be checked. Basically, it contains all tests to
be executed to check the property.

Exported constructors:

197

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html

Exported functions:

returns :: IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

ioTestOf :: PropIO → Bool → String → IO (Maybe String)

Extracts the tests of an I/O property (used by the test runner).

testsOf :: Prop → [Test]

Extracts the tests of a property (used by the test runner).

result :: Test → Result

Extracts the result of a test.

args :: Test → [String]

Extracts the arguments of a test.

stamp :: Test → [String]

Extracts the labels of a test.

updArgs :: ([String] → [String]) → Test → Test

Updates the arguments of a test.

test :: a → ([a] → Bool) → Prop

Constructs a property to be tested from an arbitrary expression (first argument) and
a predicate that is applied to the list of non-deterministic values. The given predi-
cate determines whether the constructed property is satisfied or falsified for the given
expression.

(-=-) :: a → a → Prop

198

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: a → a → Prop

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: a → a → Prop

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: a → a → Prop

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

(<~~>) :: a → a → Prop

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: a → (a → Bool) → Prop

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: a → Prop

199

The property failing x is satisfied if x has no value.

successful :: a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: a → Int → Prop

The property x #< n is satisfied if x has less than n values.

(#>) :: a → Int → Prop

The property x #> n is satisfied if x has more than n values.

for :: a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

forAllValues :: (a → Prop) → [b] → (b → a) → Prop

Only for internal use by the test runner.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

collect :: a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

200

collectAs :: String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOfSearchTree :: SearchTree a → [a]

Extracts values of a search tree according to a given strategy (here: randomized diago-
nalization of levels with flattening).

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Conse-
quently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

201

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which
is neutral in the default can be implemented much more efficient

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized
time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

Exported functions:

empty :: Queue a

The empty queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqLength :: Queue a → Int

Returns the number of elements in the queue.

202

deqHead :: Queue a → a

The first element of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

deqLast :: Queue a → a

The last element of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then Nothing

else Just (deqLast q,deqInit q) but more efficient.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.
In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the
order predicate le should not satisfy (le x x) for some key x.
Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like
(<). This version was ported from a corresponding Haskell library

203

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of
key, the last corresponding element of the list is taken.

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added
starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM_C combines the new element with
the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM_C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something
which isn’t there

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete
something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

204

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right
argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. ad-
dToFM_C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be
taken from the second map.

intersectFM C :: (a → b → c) → FM d a → FM d b → FM d c

Filters only those keys that are bound in both of the given maps and combines the
elements as in addToFM_C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

205

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return
default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key
ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key
ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive
order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given
irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially
given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that
will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown
which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two provide
the same ordering predicate as used in the original finite map.

206

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).
In this library, graphs are composed and decomposed in an inductive way.
The key idea is as follows:
A graph is either empty or it consists of node context and a graph g’ which are put together by a
constructor (:&).
This constructor (:&), however, is not a constructor in the sense of abstract data type, but
more basically a defined constructing funtion.
A context is a node together withe the edges to and from this node into the nodes in the graph g’.
For examples of how to use this library, cf. the module GraphAlgorithms.

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled
with ()).

Unlabeled node

type LNode a = (Int,a)

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,
a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges
from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

207

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that
node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation
of Graph is hidden.

Exported constructors:

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

208

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the Context for an arbitrarily-chosen Node and the remaining
Graph.

In order to use graphs as abstract data structures, we also need means to decompose a
graph. This decompostion should work as much like pattern matching as possible. The
normal matching is done by the function matchAny, which takes a graph and yields a
graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty Graph.

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a Graph from the list of LNodes and LEdges.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a Graph from a list of Contexts.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled Graph from the list of Nodes and Edges.

insNode :: (Int,a) → Graph a b → Graph a b

Insert a LNode into the Graph.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a LEdge into the Graph.

delNode :: Int → Graph a b → Graph a b

Remove a Node from the Graph.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an Edge from the Graph.

insNodes :: [(Int,a)] → Graph a b → Graph a b

Insert multiple LNodes into the Graph.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple LEdges into the Graph.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple Nodes from the Graph.

209

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple Edges from the Graph.

isEmpty :: Graph a b → Bool

test if the given Graph is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a Graph into the MContext found
for the given node and the remaining Graph.

noNodes :: Graph a b → Int

The number of Nodes in a Graph.

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum Node in a Graph.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given Node. In contrast to "match", "context" causes an error
if the Node is not present in the Graph.

lab :: Graph a b → Int → Maybe a

Find the label for a Node.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a Node.

suc :: Graph a b → Int → [Int]

Find all Nodes that have a link from the given Node.

pre :: Graph a b → Int → [Int]

Find all Nodes that link to to the given Node.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given Node.

lpre :: Graph a b → Int → [(Int,b)]

Find all Nodes that link to the given Node and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound LEdges for the given Node.

inn :: Graph a b → Int → [(Int,Int,b)]

210

Find all inward-bound LEdges for the given Node.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the Node.

indeg :: Graph a b → Int → Int

The inward-bound degree of the Node.

deg :: Graph a b → Int → Int

The degree of the Node.

gelem :: Int → Graph a b → Bool

True if the Node is present in the Graph.

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The Node in a Context.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

The label in a Context.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The LNode from a Context.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to or from in a Context.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to in a Context.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked from in a Context.

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

211

All outward-directed LEdges in a Context.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed LEdges in a Context.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a Context.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a Context.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a Context.

labNodes :: Graph a b → [(Int,a)]

A list of all LNodes in the Graph.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all LEdges in the Graph.

nodes :: Graph a b → [Int]

List all Nodes in the Graph.

edges :: Graph a b → [(Int,Int)]

List all Edges in the Graph.

newNodes :: Int → Graph a b → [Int]

List N available Nodes, ie Nodes that are not used in the Graph.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the Node labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the Edge labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

212

A.3.5 Library Random

Library for pseudo-random number generation in Curry.
This library provides operations for generating pseudo-random number sequences. For any given
seed, the sequences generated by the operations in this module should be identical to the sequences
generated by the java.util.Random package.
The algorithm is a linear congruential pseudo-random number generator described in Donald E.
Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms, section 3.2.1.

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, uniformly distributed 32-bits integer values. All
232 possible integer values are produced with (approximately) equal probability.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom, uniformly distributed sequence of values between 0 (inclusive)
and the specified value (exclusive). Each value is a 32-bits positive integer. All n possible
values are produced with (approximately) equal probability.

nextBoolean :: Int → [Bool]

Returns a pseudorandom, uniformly distributed sequence of boolean values. The values
True and False are produced with (approximately) equal probability.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should
only be used as a seed for pseudorandom number sequence and not as a random number
since the precision is limited to milliseconds

shuffle :: Int → [a] → [a]

Computes a random permutation of the given list.

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:
Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e., one
has to provide two explicit order predicates ("lessThan" and "eq"below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates
generalize the red black tree. They define 1) equality when inserting into the tree

213

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is
((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a
multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for
the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty
tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sortBy :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

214

A.3.7 Library SCC

Computing strongly connected components
Copyright (c) 2000 - 2003, Wolfgang Lux See LICENSE for the full license.
The function scc computes the strongly connected components of a list of entities in two steps.
First, the list is topologically sorted "downwards" using the defines relation. Then the resulting list
is sorted "upwards" using the uses relation and partitioned into the connected components. Both
relations are computed within this module using the bound and free names of each declaration.
In order to avoid useless recomputations, the code in the module first decorates the declarations
with their bound and free names and a unique number. The latter is only used to provide a trivial
ordering so that the declarations can be used as set elements.

Exported functions:

scc :: (a → [b]) → (a → [b]) → [a] → [[a]]

Computes the strongly connected components of a list of entities. To be flexible, we
distinguish the nodes and the entities defined in this node.

A.3.8 Library SearchTree

This library defines a representation of a search space as a tree and various search strategies on this
tree. This module implements strong encapsulation as discussed in the JFLP’04 paper.

Exported types:

type Strategy a = SearchTree a → ValueSequence a

A search strategy maps a search tree into some sequence of values. Using the abtract
type of sequence of values (rather than list of values) enables the use of search strategies
for encapsulated search with search trees (strong encapsulation) as well as with set
functions (weak encapsulation).

data SearchTree

A search tree is a value, a failure, or a choice between two search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: Int → SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

215

http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html

Exported functions:

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

Internal operation to return the search tree for some expression. Note that this operation
is not purely declarative since the ordering in the resulting search tree depends on the
ordering of the program rules.

Note that in PAKCS the search tree is just a degenerated tree representing all values of
the argument expression and it is computed at once (i.e., not lazily!).

isDefined :: a → Bool

Returns True iff the argument is defined, i.e., has a value.

showSearchTree :: SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Returns the size (number of Value/Fail/Or nodes) of the search tree.

limitSearchTree :: Int → SearchTree a → SearchTree a

Limit the depth of a search tree. Branches which a depth larger than the first argument
are replace by Fail (-1).

dfsStrategy :: SearchTree a → ValueSequence a

Depth-first search strategy.

bfsStrategy :: SearchTree a → ValueSequence a

Breadth-first search strategy.

idsStrategy :: SearchTree a → ValueSequence a

Iterative-deepening search strategy.

idsStrategyWith :: Int → (Int → Int) → SearchTree a → ValueSequence a

Parameterized iterative-deepening search strategy. The first argument is the initial
depth bound and the second argument is a function to increase the depth in each itera-
tion.

diagStrategy :: SearchTree a → ValueSequence a

Diagonalization search strategy.

allValuesWith :: (SearchTree a → ValueSequence a) → SearchTree a → [a]

216

Return all values in a search tree via some given search strategy.

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search.

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search.

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return all values in a search tree via iterative-deepening search. The first argument is
the initial depth bound and the second argument is a function to increase the depth in
each iteration.

allValuesDiag :: SearchTree a → [a]

Return all values in a search tree via diagonalization search strategy.

getAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO [a]

Gets all values of an expression w.r.t. a search strategy. A search strategy is an operation
to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results.

printAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints all values of an expression w.r.t. a search strategy. A search strategy is an opera-
tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all printed values are computed on a copy of the expression, i.e., the
evaluation of the expression does not share any results.

printValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints the values of an expression w.r.t. a search strategy on demand by the user. Thus,
the user must type <enter></enter> before another value is computed and printed.
A search strategy is an operation to traverse a search tree and collect all values, e.g.,
dfsStrategy or bfsStrategy. Conceptually, all printed values are computed on a copy
of the expression, i.e., the evaluation of the expression does not share any results.

someValue :: a → a

Returns some value for an expression.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

217

someValueWith :: (SearchTree a → ValueSequence a) → a → a

Returns some value for an expression w.r.t. a search strategy. A search strategy
is an operation to traverse a search tree and collect all values, e.g., dfsStrategy or
bfsStrategy.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

A.3.9 Library SearchTreeTraversal

Implements additional traversals on search trees.

Exported functions:

depthDiag :: SearchTree a → [a]

diagonalized depth first search.

rndDepthDiag :: Int → SearchTree a → [a]

randomized variant of diagonalized depth first search.

levelDiag :: SearchTree a → [a]

diagonalization of devels.

rndLevelDiag :: Int → SearchTree a → [a]

randomized diagonalization of levels.

rndLevelDiagFlat :: Int → Int → SearchTree a → [a]

randomized diagonalization of levels with flattening.

A.3.10 Library SetRBT

Library with an implementation of sets as red-black trees.
All the operations on sets are generic, i.e., one has to provide an explicit order predicate (<)
(less-than) on elements.

Exported types:

type SetRBT a = RedBlackTree a

218

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

isEmptySetRBT :: RedBlackTree a → Bool

Test for an empty set.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences
in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements
of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all
elements of the first set contained in the second set into a new set, which order is taken
from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

A.3.11 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

219

Exported functions:

sort :: [a] → [a]

The default sorting operation, mergeSort, with standard ordering <=.

sortBy :: (a → a → Bool) → [a] → [a]

The default sorting operation: mergeSort

sorted :: [a] → Bool

sorted xs is satisfied if the elements xs are in ascending order.

sortedBy :: (a → a → Bool) → [a] → Bool

sortedBy leq xs is satisfied if all adjacent elements of the list xs satisfy the ordering
predicate leq.

permSort :: [a] → [a]

Permutation sort with standard ordering <=. Sorts a list by finding a sorted permutation
of the input. This is not a usable way to sort a list but it can be used as a specification
of other sorting algorithms.

permSortBy :: (a → a → Bool) → [a] → [a]

Permutation sort with ordering as first parameter. Sorts a list by finding a sorted
permutation of the input. This is not a usable way to sort a list but it can be used as a
specification of other sorting algorithms.

insertionSort :: [a] → [a]

Insertion sort with standard ordering <=. The list is sorted by repeated sorted insertion
of the elements into the already sorted part of the list.

insertionSortBy :: (a → a → Bool) → [a] → [a]

Insertion sort with ordering as first parameter. The list is sorted by repeated sorted
insertion of the elements into the already sorted part of the list.

quickSort :: [a] → [a]

Quicksort with standard ordering <=. The classical quicksort algorithm on lists.

quickSortBy :: (a → a → Bool) → [a] → [a]

Quicksort with ordering as first parameter. The classical quicksort algorithm on lists.

mergeSort :: [a] → [a]

Bottom-up mergesort with standard ordering <=.

mergeSortBy :: (a → a → Bool) → [a] → [a]

220

Bottom-up mergesort with ordering as first parameter.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-
guished and Umlauts are sorted as vocals.

A.3.12 Library TableRBT

Library with an implementation of tables as red-black trees:
A table is a finite mapping from keys to values. All the operations on tables are generic, i.e., one has
to provide an explicit order predicate ("cmp" below) on elements. Each inner node in the red-black
tree contains a key-value association.

Exported types:

type TableRBT a b = RedBlackTree (a,b)

221

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.13 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here10 for a
description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into a list
of children of the same type and recombine new children to a new value of the original
type.

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.
10http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

222

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children
can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.
The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible. On
each member of the family of the result the given function will yield Nothing. Proceeds
bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as
long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

223

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.3.14 Library ValueSequence

This library defines a data structure for sequence of values. It is used in search trees (module
SearchTree) as well as in set functions (module SetFunctions). Using sequence of values (rather
than standard lists of values) is necessary to get the behavior of set functions w.r.t. finite failures
right, as described in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated
Search in Functional Logic Programs Proc. 15th International Conference on Principles
and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Note that this is a simple implementation for PAKCS in order to provide some functionality used
by other modules. In particular, the intended semantics of failures is not provided in this imple-
mentation.

Exported types:

data ValueSequence

A value sequence is an abstract sequence of values. It also contains failure elements in
order to implement the semantics of set functions w.r.t. failures in the intended manner
(only in KiCS2).

Exported constructors:

Exported functions:

emptyVS :: ValueSequence a

An empty sequence of values.

addVS :: a → ValueSequence a → ValueSequence a

Adds a value to a sequence of values.

224

failVS :: Int → ValueSequence a

Adds a failure to a sequence of values. The argument is the encapsulation level of the
failure.

(|++|) :: ValueSequence a → ValueSequence a → ValueSequence a

Concatenates two sequences of values.

vsToList :: ValueSequence a → [a]

Transforms a sequence of values into a list of values.

A.3.15 Library Rewriting.CriticalPairs

Library for representation and computation of critical pairs.

Exported types:

type CPair a = (Term a,Term a)

A critical pair represented as a pair of terms and parameterized over the kind of function
symbols, e.g., strings.

Exported functions:

showCPair :: (a → String) → (Term a,Term a) → String

Transforms a critical pair into a string representation.

showCPairs :: (a → String) → [(Term a,Term a)] → String

Transforms a list of critical pairs into a string representation.

cPairs :: [(Term a,Term a)] → [(Term a,Term a)]

Returns the critical pairs of a term rewriting system.

isOrthogonal :: [(Term a,Term a)] → Bool

Checks whether a term rewriting system is orthogonal.

isWeakOrthogonal :: [(Term a,Term a)] → Bool

Checks whether a term rewriting system is weak-orthogonal.

A.3.16 Library Rewriting.DefinitionalTree

Library for representation and computation of definitional trees and representation of the reduction
strategy phi.

225

Exported types:

data DefTree

Representation of a definitional tree, parameterized over the kind of function symbols,
e.g., strings.

Exported constructors:

• Leaf :: (Term a,Term a) → DefTree a

Leaf r

– The leaf with rule r.

• Branch :: (Term a) → [Int] → [DefTree a] → DefTree a

Branch pat p dts

– The branch with pattern pat, inductive position p and definitional subtrees dts.

• Or :: (Term a) → [DefTree a] → DefTree a

Or pat dts

– The or node with pattern pat and definitional subtrees dts.

Exported functions:

dtRoot :: DefTree a → Either Int a

Returns the root symbol (variable or constructor) of a definitional tree.

dtPattern :: DefTree a → Term a

Returns the pattern of a definitional tree.

hasDefTree :: [DefTree a] → Term a → Bool

Checks whether a term has a definitional tree with the same constructor pattern in the
given list of definitional trees.

selectDefTrees :: [DefTree a] → Term a → [DefTree a]

Returns a list of definitional trees with the same constructor pattern for a term from
the given list of definitional trees.

fromDefTrees :: DefTree a → Int → [DefTree a] → DefTree a

Returns the definitional tree with the given index from the given list of definitional trees
or the provided default definitional tree if the given index is not in the given list of
definitional trees.

idtPositions :: [(Term a,Term a)] → [[Int]]

226

Returns a list of all inductive positions in a term rewriting system.

defTrees :: [(Term a,Term a)] → [DefTree a]

Returns a list of definitional trees for a term rewriting system.

defTreesL :: [[(Term a,Term a)]] → [DefTree a]

Returns a list of definitional trees for a list of term rewriting systems.

loDefTrees :: [DefTree a] → Term a → Maybe ([Int],[DefTree a])

Returns the position and the definitional trees from the given list of definitional trees for
the leftmost outermost defined constructor in a term or Nothing if no such pair exists.

phiRStrategy :: Int → [(Term a,Term a)] → Term a → [[Int]]

The reduction strategy phi. It uses the definitional tree with the given index for all
constructor terms if possible or at least the first one.

dotifyDefTree :: (a → String) → DefTree a → String

Transforms a definitional tree into a graphical representation by using the DOT graph
description language.

writeDefTree :: (a → String) → DefTree a → String → IO ()

Writes the graphical representation of a definitional tree with the DOT graph description
language to a file with the given filename.

A.3.17 Library Rewriting.Files

Library to read and transform a curry program into an equivalent representation, where every
function gets assigned the corresponding term rewriting system and every type has a corresponding
type declaration.

Exported types:

type TRSData = FM (String,String) [(Term (String,String),Term (String,String))]

Mappings from a function name to the corresponding term rewriting system represented
as a finite map from qualified names to term rewriting systems.

type TypeData = [CTypeDecl]

Information about types represented as a list of type declarations.

type RWData = (FM (String,String) [(Term (String,String),Term

(String,String))],[CTypeDecl])

Representation of term rewriting system data and type data as a pair.

227

Exported functions:

showQName :: (String,String) → String

Transforms a qualified name into a string representation.

readQName :: String → (String,String)

Transforms a string into a qualified name.

condQName :: (String,String)

Returns the qualified name for an if-then-else-constructor.

condTRS :: [(Term (String,String),Term (String,String))]

Returns the term rewriting system for an if-then-else-function.

readCurryProgram :: String → IO (Either String (FM (String,String) [(Term

(String,String),Term (String,String))],[CTypeDecl]))

Tries to read and transform a curry program into an equivalent representation, where
every function gets assigned the corresponding term rewriting system and every type
has a corresponding type declaration.

fromCurryProg :: CurryProg → (FM (String,String) [(Term (String,String),Term

(String,String))],[CTypeDecl])

Transforms an abstract curry program into an equivalent representation, where every
function gets assigned the corresponding term rewriting system and every type has a
corresponding type declaration.

fromFuncDecl :: CFuncDecl → ((String,String),[(Term (String,String),Term

(String,String))])

Transforms an abstract curry function declaration into a pair with function name and
corresponding term rewriting system.

fromRule :: (String,String) → CRule → ((Term (String,String),Term

(String,String)),[(Term (String,String),Term (String,String))])

Transforms an abstract curry rule for the function with the given name into a pair of a
rule and a term rewriting system.

fromLiteral :: CLiteral → Term (String,String)

Transforms an abstract curry literal into a term.

fromPattern :: (String,String) → CPattern → (Term (String,String),FM Int (Term

(String,String)))

Transforms an abstract curry pattern for the function with the given name into a pair
of a term and a substitution.

228

fromRhs :: (String,String) → CRhs → (Term (String,String),FM Int (Term

(String,String)),[(Term (String,String),Term (String,String))])

Transforms an abstract curry right-hand side of a rule for the function with the given
name into a tuple of a term, a substitution and a term rewriting system.

fromExpr :: (String,String) → CExpr → (Term (String,String),FM Int (Term

(String,String)),[(Term (String,String),Term (String,String))])

Transforms an abstract curry expression for the function with the given name into a
tuple of a term, a substitution and a term rewriting system.

A.3.18 Library Rewriting.Narrowing

Library for representation and computation of narrowings on first-order terms and representation
of narrowing strategies.

Exported types:

type NStrategy a = [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

A narrowing strategy represented as a function that takes a term rewriting system and
a term and returns a list of triples consisting of a position, a rule and a substitution,
parameterized over the kind of function symbols, e.g., strings.

data Narrowing

Representation of a narrowing on first-order terms, parameterized over the kind of func-
tion symbols, e.g., strings.

Exported constructors:

• NTerm :: (Term a) → Narrowing a

NTerm t

– The narrowed term t.

• NStep :: (Term a) → [Int] → (FM Int (Term a)) → (Narrowing a) → Narrowing

a

NStep t p sub n

– The narrowing of term t at position p with substitution sub to narrowing n.

data NarrowingTree

Representation of a narrowing tree for first-order terms, parameterized over the kind of
function symbols, e.g., strings.

Exported constructors:

229

• NTree :: (Term a) → [([Int],FM Int (Term a),NarrowingTree a)] →
NarrowingTree a

NTree t ns

– The narrowing of term t to a new term with a list of narrowing steps ns.

data NOptions

Representation of narrowing options for solving term equations, parameterized over the
kind of function symbols, e.g., strings.

Exported constructors:

• NOptions :: Bool → ([(Term a,Term a)] → Term a → [[Int]]) → NOptions a

Exported functions:

normalize :: NOptions a → Bool

rStrategy :: NOptions a → [(Term a,Term a)] → Term a → [[Int]]

defaultNOptions :: NOptions a

The default narrowing options.

showNarrowing :: (a → String) → Narrowing a → String

Transforms a narrowing into a string representation.

stdNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The standard narrowing strategy.

imNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The innermost narrowing strategy.

omNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The outermost narrowing strategy.

loNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The leftmost outermost narrowing strategy.

230

lazyNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The lazy narrowing strategy.

wnNStrategy :: [(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]

The weakly needed narrowing strategy.

narrowBy :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int (Term

a))]) → [(Term a,Term a)] → Int → Term a → [(FM Int (Term a),Term a)]

Narrows a term with the given strategy and term rewriting system by the given number
of steps.

narrowByL :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int (Term

a))]) → [[(Term a,Term a)]] → Int → Term a → [(FM Int (Term a),Term a)]

Narrows a term with the given strategy and list of term rewriting systems by the given
number of steps.

narrowingBy :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]) → [(Term a,Term a)] → Int → Term a → [Narrowing a]

Returns a list of narrowings for a term with the given strategy, the given term rewriting
system and the given number of steps.

narrowingByL :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]) → [[(Term a,Term a)]] → Int → Term a → [Narrowing a]

Returns a list of narrowings for a term with the given strategy, the given list of term
rewriting systems and the given number of steps.

narrowingTreeBy :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM Int

(Term a))]) → [(Term a,Term a)] → Int → Term a → NarrowingTree a

Returns a narrowing tree for a term with the given strategy, the given term rewriting
system and the given number of steps.

narrowingTreeByL :: ([(Term a,Term a)] → Term a → [([Int],(Term a,Term a),FM

Int (Term a))]) → [[(Term a,Term a)]] → Int → Term a → NarrowingTree a

Returns a narrowing tree for a term with the given strategy, the given list of term
rewriting systems and the given number of steps.

solveEq :: NOptions a → ([(Term a,Term a)] → Term a → [([Int],(Term a,Term

a),FM Int (Term a))]) → [(Term a,Term a)] → Term a → [FM Int (Term a)]

Solves a term equation with the given strategy, the given term rewriting system and
the given options. The term has to be of the form TermCons c [l, r] with c being a
constructor like =. The term l and the term r are the left-hand side and the right-hand
side of the term equation.

231

solveEqL :: NOptions a → ([(Term a,Term a)] → Term a → [([Int],(Term a,Term

a),FM Int (Term a))]) → [[(Term a,Term a)]] → Term a → [FM Int (Term a)]

Solves a term equation with the given strategy, the given list of term rewriting systems
and the given options. The term has to be of the form TermCons c [l, r] with c being
a constructor like =. The term l and the term r are the left-hand side and the right-hand
side of the term equation.

dotifyNarrowingTree :: (a → String) → NarrowingTree a → String

Transforms a narrowing tree into a graphical representation by using the DOT graph
description language.

writeNarrowingTree :: (a → String) → NarrowingTree a → String → IO ()

Writes the graphical representation of a narrowing tree with the DOT graph description
language to a file with the given filename.

A.3.19 Library Rewriting.Position

Library for representation of positions in first-order terms.

Exported types:

type Pos = [Int]

A position in a term represented as a list of integers greater than zero.

Exported functions:

showPos :: [Int] → String

Transforms a position into a string representation.

eps :: [Int]

The root position of a term.

above :: [Int] → [Int] → Bool

Checks whether the first position is above the second position.

below :: [Int] → [Int] → Bool

Checks whether the first position is below the second position.

leftOf :: [Int] → [Int] → Bool

Checks whether the first position is left from the second position.

rightOf :: [Int] → [Int] → Bool

Checks whether the first position is right from the second position.

232

disjoint :: [Int] → [Int] → Bool

Checks whether two positions are disjoint.

positions :: Term a → [[Int]]

Returns a list of all positions in a term.

(.>) :: [Int] → [Int] → [Int]

Concatenates two positions.

(|>) :: Term a → [Int] → Term a

Returns the subterm of a term at the given position if the position exists within the
term.

replaceTerm :: Term a → [Int] → Term a → Term a

Replaces the subterm of a term at the given position with the given term if the position
exists within the term.

A.3.20 Library Rewriting.Rules

Library for representation of rules and term rewriting systems.

Exported types:

type Rule a = (Term a,Term a)

A rule represented as a pair of terms and parameterized over the kind of function sym-
bols, e.g., strings.

type TRS a = [(Term a,Term a)]

A term rewriting system represented as a list of rules and parameterized over the kind
of function symbols, e.g., strings.

Exported functions:

showRule :: (a → String) → (Term a,Term a) → String

Transforms a rule into a string representation.

showTRS :: (a → String) → [(Term a,Term a)] → String

Transforms a term rewriting system into a string representation.

rRoot :: (Term a,Term a) → Either Int a

Returns the root symbol (variable or constructor) of a rule.

rCons :: (Term a,Term a) → [a]

233

Returns a list without duplicates of all constructors in a rule.

rVars :: (Term a,Term a) → [Int]

Returns a list without duplicates of all variables in a rule.

maxVarInRule :: (Term a,Term a) → Maybe Int

Returns the maximum variable in a rule or Nothing if no variable exists.

minVarInRule :: (Term a,Term a) → Maybe Int

Returns the minimum variable in a rule or Nothing if no variable exists.

maxVarInTRS :: [(Term a,Term a)] → Maybe Int

Returns the maximum variable in a term rewriting system or Nothing if no variable
exists.

minVarInTRS :: [(Term a,Term a)] → Maybe Int

Returns the minimum variable in a term rewriting system or Nothing if no variable
exists.

renameRuleVars :: Int → (Term a,Term a) → (Term a,Term a)

Renames the variables in a rule by the given number.

renameTRSVars :: Int → [(Term a,Term a)] → [(Term a,Term a)]

Renames the variables in every rule of a term rewriting system by the given number.

normalizeRule :: (Term a,Term a) → (Term a,Term a)

Normalizes a rule by renaming all variables with an increasing order, starting from the
minimum possible variable.

normalizeTRS :: [(Term a,Term a)] → [(Term a,Term a)]

Normalizes all rules in a term rewriting system by renaming all variables with an in-
creasing order, starting from the minimum possible variable.

isVariantOf :: (Term a,Term a) → (Term a,Term a) → Bool

Checks whether the first rule is a variant of the second rule.

isLeftLinear :: [(Term a,Term a)] → Bool

Checks whether a term rewriting system is left-linear.

isLeftNormal :: [(Term a,Term a)] → Bool

Checks whether a term rewriting system is left-normal.

isRedex :: [(Term a,Term a)] → Term a → Bool

234

Checks whether a term is reducible with some rule of the given term rewriting system.

isPattern :: [(Term a,Term a)] → Term a → Bool

Checks whether a term is a pattern, i.e., an root-reducible term where the argaccording
to the given term rewriting system.

isConsBased :: [(Term a,Term a)] → Bool

Checks whether a term rewriting system is constructor-based.

isDemandedAt :: Int → (Term a,Term a) → Bool

Checks whether the given argument position of a rule is demanded. Returns True if the
corresponding argument term is a constructor term.

A.3.21 Library Rewriting.Strategy

Library for representation and computation of reductions on first-order terms and representation of
reduction strategies.

Exported types:

type RStrategy a = [(Term a,Term a)] → Term a → [[Int]]

A reduction strategy represented as a function that takes a term rewriting system and a
term and returns the redex positions where the term should be reduced, parameterized
over the kind of function symbols, e.g., strings.

data Reduction

Representation of a reduction on first-order terms, parameterized over the kind of func-
tion symbols, e.g., strings.

Exported constructors:

• NormalForm :: (Term a) → Reduction a

NormalForm t

– The normal form with term t.

• RStep :: (Term a) → [[Int]] → (Reduction a) → Reduction a

RStep t ps r

– The reduction of term t at positions ps to reduction r.

235

Exported functions:

showReduction :: (a → String) → Reduction a → String

Transforms a reduction into a string representation.

redexes :: [(Term a,Term a)] → Term a → [[Int]]

Returns the redex positions of a term according to the given term rewriting system.

seqRStrategy :: ([Int] → [Int] → Ordering) → [(Term a,Term a)] → Term a →
[[Int]]

Returns a sequential reduction strategy according to the given ordering function.

parRStrategy :: ([Int] → [Int] → Ordering) → [(Term a,Term a)] → Term a →
[[Int]]

Returns a parallel reduction strategy according to the given ordering function.

liRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The leftmost innermost reduction strategy.

loRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The leftmost outermost reduction strategy.

riRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The rightmost innermost reduction strategy.

roRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The rightmost outermost reduction strategy.

piRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The parallel innermost reduction strategy.

poRStrategy :: [(Term a,Term a)] → Term a → [[Int]]

The parallel outermost reduction strategy.

reduce :: ([(Term a,Term a)] → Term a → [[Int]]) → [(Term a,Term a)] → Term a

→ Term a

Reduces a term with the given strategy and term rewriting system.

reduceL :: ([(Term a,Term a)] → Term a → [[Int]]) → [[(Term a,Term a)]] → Term

a → Term a

Reduces a term with the given strategy and list of term rewriting systems.

236

reduceBy :: ([(Term a,Term a)] → Term a → [[Int]]) → [(Term a,Term a)] → Int

→ Term a → Term a

Reduces a term with the given strategy and term rewriting system by the given number
of steps.

reduceByL :: ([(Term a,Term a)] → Term a → [[Int]]) → [[(Term a,Term a)]] →
Int → Term a → Term a

Reduces a term with the given strategy and list of term rewriting systems by the given
number of steps.

reduceAt :: [(Term a,Term a)] → [Int] → Term a → Term a

Reduces a term with the given term rewriting system at the given redex position.

reduceAtL :: [(Term a,Term a)] → [[Int]] → Term a → Term a

Reduces a term with the given term rewriting system at the given redex positions.

reduction :: ([(Term a,Term a)] → Term a → [[Int]]) → [(Term a,Term a)] → Term

a → Reduction a

Returns the reduction of a term with the given strategy and term rewriting system.

reductionL :: ([(Term a,Term a)] → Term a → [[Int]]) → [[(Term a,Term a)]] →
Term a → Reduction a

Returns the reduction of a term with the given strategy and list of term rewriting
systems.

reductionBy :: ([(Term a,Term a)] → Term a → [[Int]]) → [(Term a,Term a)] →
Int → Term a → Reduction a

Returns the reduction of a term with the given strategy, the given term rewriting system
and the given number of steps.

reductionByL :: ([(Term a,Term a)] → Term a → [[Int]]) → [[(Term a,Term a)]] →
Int → Term a → Reduction a

Returns the reduction of a term with the given strategy, the given list of term rewriting
systems and the given number of steps.

A.3.22 Library Rewriting.Substitution

Library for representation of substitutions on first-order terms.

Exported types:

type Subst a = FM Int (Term a)

A substitution represented as a finite map from variables to terms and parameterized
over the kind of function symbols, e.g., strings.

237

Exported functions:

showSubst :: (a → String) → FM Int (Term a) → String

Transforms a substitution into a string representation.

emptySubst :: FM Int (Term a)

The empty substitution.

extendSubst :: FM Int (Term a) → Int → Term a → FM Int (Term a)

Extends a substitution with a new mapping from the given variable to the given term.
An already existing mapping with the same variable will be thrown away.

listToSubst :: [(Int,Term a)] → FM Int (Term a)

Returns a substitution that contains all the mappings from the given list. For multiple
mappings with the same variable, the last corresponding mapping of the given list is
taken.

lookupSubst :: FM Int (Term a) → Int → Maybe (Term a)

Returns the term mapped to the given variable in a substitution or Nothing if no such
mapping exists.

applySubst :: FM Int (Term a) → Term a → Term a

Applies a substitution to the given term.

applySubstEq :: FM Int (Term a) → (Term a,Term a) → (Term a,Term a)

Applies a substitution to both sides of the given term equation.

applySubstEqs :: FM Int (Term a) → [(Term a,Term a)] → [(Term a,Term a)]

Applies a substitution to every term equation in the given list.

restrictSubst :: FM Int (Term a) → [Int] → FM Int (Term a)

Returns a new substitution with only those mappings from the given substitution whose
variable is in the given list of variables.

composeSubst :: FM Int (Term a) → FM Int (Term a) → FM Int (Term a)

Composes the first substitution phi with the second substitution sigma. The resulting
substitution sub fulfills the property sub(t) = phi(sigma(t)) for a term t. Mappings
in the first substitution shadow those in the second.

A.3.23 Library Rewriting.Term

Library for representation of first-order terms.
This library is the basis of other libraries for the manipulation of first-order terms, e.g., unification
of terms. Therefore, this library also defines other structures, like term equations.

238

Exported types:

type VarIdx = Int

A variable represented as an integer greater than or equal to zero.

type TermEq a = (Term a,Term a)

A term equation represented as a pair of terms and parameterized over the kind of
function symbols, e.g., strings.

type TermEqs a = [(Term a,Term a)]

Multiple term equations represented as a list of term equations and parameterized over
the kind of function symbols, e.g., strings.

data Term

Representation of a first-order term, parameterized over the kind of function symbols,
e.g., strings.

Exported constructors:

• TermVar :: Int → Term a

TermVar v

– The variable term with variable v.

• TermCons :: a → [Term a] → Term a

TermCons c ts

– The constructor term with constructor c and argument terms ts.

Exported functions:

showVarIdx :: Int → String

Transforms a variable into a string representation.

showTerm :: (a → String) → Term a → String

Transforms a term into a string representation.

showTermEq :: (a → String) → (Term a,Term a) → String

Transforms a term equation into a string representation.

showTermEqs :: (a → String) → [(Term a,Term a)] → String

Transforms a list of term equations into a string representation.

tConst :: a → Term a

239

Returns a term with the given constructor and no argument terms.

tOp :: Term a → a → Term a → Term a

Returns an infix operator term with the given constructor and the given left and right
argument term.

tRoot :: Term a → Either Int a

Returns the root symbol (variable or constructor) of a term.

tCons :: Term a → [a]

Returns a list without duplicates of all constructors in a term.

tConsAll :: Term a → [a]

Returns a list of all constructors in a term. The resulting list may contain duplicates.

tVars :: Term a → [Int]

Returns a list without duplicates of all variables in a term.

tVarsAll :: Term a → [Int]

Returns a list of all variables in a term. The resulting list may contain duplicates.

isConsTerm :: Term a → Bool

Checks whether a term is a constructor term.

isVarTerm :: Term a → Bool

Checks whether a term is a variable term.

isGround :: Term a → Bool

Checks whether a term is a ground term (contains no variables).

isLinear :: Term a → Bool

Checks whether a term is linear (contains no variable more than once).

isNormal :: Term a → Bool

Checks whether a term is normal (behind a variable is not a constructor).

maxVarInTerm :: Term a → Maybe Int

Returns the maximum variable in a term or Nothing if no variable exists.

minVarInTerm :: Term a → Maybe Int

Returns the minimum variable in a term or Nothing if no variable exists.

normalizeTerm :: Term a → Term a

240

Normalizes a term by renaming all variables with an increasing order, starting from the
minimum possible variable.

renameTermVars :: Int → Term a → Term a

Renames the variables in a term by the given number.

mapTerm :: (a → b) → Term a → Term b

Transforms a term by applying a transformation on all constructors.

eqConsPattern :: Term a → Term a → Bool

Checks whether the constructor pattern of the first term is equal to the constructor
pattern of the second term. Returns True if both terms have the same constructor and
the same arity.

A.3.24 Library Rewriting.Unification

Library for representation of unification on first-order terms.
This library implements a unification algorithm using reference tables.

Exported functions:

unify :: [(Term a,Term a)] → Either (UnificationError a) (FM Int (Term a))

Unifies a list of term equations. Returns either a unification error or a substitution.

unifiable :: [(Term a,Term a)] → Bool

Checks whether a list of term equations can be unified.

A.3.25 Library Rewriting.UnificationSpec

Library for specifying the unification on first-order terms.
This library implements a general unification algorithm. Because the algorithm is easy to under-
stand, but rather slow, it serves as a specification for more elaborate implementations.

Exported types:

data UnificationError

Representation of a unification error, parameterized over the kind of function symbols,
e.g., strings.

Exported constructors:

• Clash :: (Term a) → (Term a) → UnificationError a

Clash t1 t2

241

– The constructor term t1 is supposed to be equal to the constructor term t2 but has a
different constructor.

• OccurCheck :: Int → (Term a) → UnificationError a

OccurCheck v t

– The variable v is supposed to be equal to the term t in which it occurs as a subterm.

Exported functions:

showUnificationError :: (a → String) → UnificationError a → String

Transforms a unification error into a string representation.

unify :: [(Term a,Term a)] → Either (UnificationError a) (FM Int (Term a))

Unifies a list of term equations. Returns either a unification error or a substitution.

unifiable :: [(Term a,Term a)] → Bool

Checks whether a list of term equations can be unified.

A.4 Libraries for Database Access and Manipulation

A.4.1 Library Database

Library for accessing and storing data in databases. The contents of a database is represented in
this library as dynamic predicates that are defined by facts than can change over time and can
be persistently stored. All functions in this library distinguishes between queries that access the
database and transactions that manipulates data in the database. Transactions have a monadic
structure. Both queries and transactions can be executed as I/O actions. However, arbitrary I/O
actions cannot be embedded in transactions.
A dynamic predicate p with arguments of type t1,...,tn must be declared by:
p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be
declared by:
p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Exported types:

data Query

Abstract datatype to represent database queries.

Exported constructors:

data TError

242

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

data Transaction

Abstract datatype for representing transactions.

Exported constructors:

Exported functions:

queryAll :: (a → Dynamic) → Query [a]

A database query that returns all answers to an abstraction on a dynamic expression.

queryOne :: (a → Dynamic) → Query (Maybe a)

A database query that returns a single answer to an abstraction on a dynamic expression.
It returns Nothing if no answer exists.

queryOneWithDefault :: a → (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expression.
It returns the first argument if no answer exists.

queryJustOne :: (a → Dynamic) → Query a

243

A database query that returns a single answer to an abstraction on a dynamic expression.
It fails if no answer exists.

dynamicExists :: Dynamic → Query Bool

A database query that returns True if there exists the argument facts (without free
variables!) and False, otherwise.

transformQ :: (a → b) → Query a → Query b

Transforms a database query from one result type to another according to a given
mapping.

runQ :: Query a → IO a

Executes a database query on the current state of dynamic predicates. If other processes
made changes to persistent predicates, these changes are read and made visible to the
currently running program.

showTError :: TError → String

Transforms a transaction error into a string.

addDB :: Dynamic → Transaction ()

Adds new facts (without free variables!) about dynamic predicates. Conditional dy-
namics are added only if the condition holds.

deleteDB :: Dynamic → Transaction ()

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are deleted only if the condition holds.

getDB :: Query a → Transaction a

Returns the result of a database query in a transaction.

returnT :: a → Transaction a

The empty transaction that directly returns its argument.

doneT :: Transaction ()

The empty transaction that returns nothing.

errorT :: TError → Transaction a

Abort a transaction with a specific transaction error.

failT :: String → Transaction a

Abort a transaction with a general error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

244

Sequential composition of transactions.

(|>>) :: Transaction a → Transaction b → Transaction b

Sequential composition of transactions.

sequenceT :: [Transaction a] → Transaction [a]

Executes a sequence of transactions and collects all results in a list.

sequenceT :: [Transaction a] → Transaction ()

Executes a sequence of transactions and ignores the results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Maps a transaction function on a list of elements. The results of all transactions are
collected in a list.

mapT :: (a → Transaction b) → [a] → Transaction ()

Maps a transaction function on a list of elements. The results of all transactions are
ignored.

runT :: Transaction a → IO (Either a TError)

Executes a possibly composed transaction on the current state of dynamic predicates as
a single transaction.

Before the transaction is executed, the access to all persistent predicates is locked (i.e., no
other process can perform a transaction in parallel). After the successful transaction, the
access is unlocked so that the updates performed in this transaction become persistent
and visible to other processes. Otherwise (i.e., in case of a failure or abort of the
transaction), the changes of the transaction to persistent predicates are ignored and
Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should be
handled (execept for an explicit failT that leads to an abort of the transaction). If a
transaction is externally interrupted (e.g., by killing the process), some locks might never
be removed. However, they can be explicitly removed by deleting the corresponding lock
files reported at startup time.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates as
a single transaction. Similarly to runT but a run-time error is raised if the execution of
the transaction fails.

runTNA :: Transaction a → IO (Either a TError)

Executes a possibly composed transaction as a Non-Atomic(!) sequence of its individual
database updates. Thus, the argument is not executed as a single transaction in contrast
to runT, i.e., no predicates are locked and individual updates are not undone in case of
a transaction error. This operation could be applied to execute a composed transaction
without the overhead caused by (the current implementation of) transactions if one is
sure that locking is not necessary (e.g., if the transaction contains only database reads
and transaction error raising).

245

A.4.2 Library Dynamic

Library for dynamic predicates. 11 _dyn.html"> This paper contains a description of the basic
ideas behind this library.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A dynamic predicate p with arguments of type t1,...,tn must be declared by:
p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be
declared by:
p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Remark: This library has been revised to the library Database. Thus, it might not be further
supported in the future.

Exported types:

data Dynamic

The general type of dynamic predicates.

Exported constructors:

Exported functions:

dynamic :: a

dynamic is only used for the declaration of a dynamic predicate and should not be used
elsewhere.

persistent :: String → a

persistent is only used for the declaration of a persistent dynamic predicate and should
not be used elsewhere.

(<>) :: Dynamic → Dynamic → Dynamic

Combine two dynamics.

(|>) :: Dynamic → Bool → Dynamic

Restrict a dynamic with a condition.

(|&>) :: Dynamic → Bool → Dynamic

Restrict a dynamic with a constraint.

assert :: Dynamic → IO ()

11http://www.informatik.uni-kiel.de/~mh/papers/JFLP04

246

Asserts new facts (without free variables!) about dynamic predicates. Conditional
dynamics are asserted only if the condition holds.

retract :: Dynamic → IO Bool

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are retracted only if the condition holds. Returns True if all facts to be retracted exist,
otherwise False is returned.

getKnowledge :: IO (Dynamic → Bool)

Returns the knowledge at a particular point of time about dynamic predicates. If other
processes made changes to persistent predicates, these changes are read and made visible
to the currently running program.

getDynamicSolutions :: (a → Dynamic) → IO [a]

Returns all answers to an abstraction on a dynamic expression. If other processes made
changes to persistent predicates, these changes are read and made visible to the currently
running program.

getDynamicSolution :: (a → Dynamic) → IO (Maybe a)

Returns an answer to an abstraction on a dynamic expression. Returns Nothing if no
answer exists. If other processes made changes to persistent predicates, these changes
are read and made visible to the currently running program.

isKnown :: Dynamic → IO Bool

Returns True if there exists the argument facts (without free variables!) and False,
otherwise.

transaction :: IO a → IO (Maybe a)

Perform an action (usually containing updates of various dynamic predicates) as a single
transaction. This is the preferred way to execute any changes to persistent dynamic
predicates if there might be more than one process that may modify the definition of
such predicates in parallel.

Before the transaction is executed, the access to all persistent predicates is locked (i.e., no
other process can perform a transaction in parallel). After the successful transaction, the
access is unlocked so that the updates performed in this transaction become persistent
and visible to other processes. Otherwise (i.e., in case of a failure or abort of the
transaction), the changes of the transaction to persistent predicates are ignored and
Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should
be handled (execept for abortTransaction). If a transaction is externally interrupted
(e.g., by killing the process), some locks might never be removed. However, they can be
explicitly removed by deleting the corresponding lock files reported at startup time.

Nested transactions are not supported and lead to a failure.

247

transactionWithErrorCatch :: IO a → IO (Either a IOError)

Perform an action (usually containing updates of various dynamic predicates) as a sin-
gle transaction. This is similar to transaction but an execution error is caught and
returned instead of printing it.

abortTransaction :: IO a

Aborts the current transaction. If a transaction is aborted, the remaining actions of the
transaction are not executed and all changes to persistent dynamic predicates made in
this transaction are ignored.

abortTransaction should only be used in a transaction. Although the execution of abort-
Transaction always fails (basically, it writes an abort record in log files, unlock them
and then fails), the failure is handled inside transaction.

A.4.3 Library KeyDatabase

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Query that returns all keys of entries in the database.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Query that returns all infos of entries in the database.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Query that returns all key/info pairs of the database.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

248

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes an entry with a given key in the database. No error is raised if the given key
does not exist.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes all entries with the given keys in the database. No error is raised if some of the
given keys does not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores a new entry in the database and return the key of the new entry.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key
already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries in the database.

A.4.4 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.
This module reimplements the interface of the module KeyDatabase based on the SQLite database
engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust
the value of the constant path<code>to</code>sqlite3.
Programs that use the KeyDatabase module can be adjusted to use this module instead by re-
placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the
declarations of database predicates to use the function persistentSQLite instead of dynamic or
persistent. This module redefines the types Dynamic, Query, and Transaction and although both
implementations can be used in the same program (by importing modules qualified) they cannot
be mixed.
Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,
groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

249

http://sqlite.org/

Exported types:

type Key = Int

type KeyPred a = Int → a → Dynamic

data Query

Queries can read but not write to the database.

Exported constructors:

data Transaction

Transactions can modify the database and are executed atomically.

Exported constructors:

data Dynamic

Result type of database predicates.

Exported constructors:

data ColVal

Abstract type for value restrictions

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

250

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

Exported functions:

runQ :: Query a → IO a

Runs a database query in the IO monad.

transformQ :: (a → b) → Query a → Query b

Applies a function to the result of a database query.

runT :: Transaction a → IO (Either a TError)

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as
soon as the transaction is started. After one transaction is started, no other database
connection will be able to write to the database or start a transaction. Other connections
can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might
also be possible to allow multiple simultaneous transactions that lock tables on the first
database access (which is the default in SQLite). However this leads to unpredictable
order in which locks are taken when multiple databases are involved. The current
implementation fixes the locking order by sorting databases by their name and locking
them in order immediately when a transaction begins.

More information on 12 _transaction.html">transactions in SQLite is available online.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates as
a single transaction. Similar to runT but a run-time error is raised if the execution of
the transaction fails.

getDB :: Query a → Transaction a

Lifts a database query to the transaction type such that it can be composed with other
transactions. Run-time errors that occur during the execution of the given query are
transformed into transaction errors.

12http://sqlite.org/lang

251

returnT :: a → Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to
ignore results when composing transactions.

errorT :: TError → Transaction a

Aborts a transaction with an error.

failT :: String → Transaction a

Aborts a transaction with a user-defined error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Combines two transactions into a single transaction that executes both in sequence. The
first transaction is executed, its result passed to the function which computes the second
transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.

(|>>) :: Transaction a → Transaction b → Transaction b

Combines two transactions to execute them in sequence. The result of the first transac-
tion is ignored.

sequenceT :: [Transaction a] → Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.

sequenceT :: [Transaction a] → Transaction ()

Executes a list of transactions sequentially, ignoring their results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-
action sequentially, and collects their results.

mapT :: (a → Transaction b) → [a] → Transaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-
actions sequentially, and ignores their results.

persistentSQLite :: String → String → [String] → Int → a → Dynamic

252

This function is used instead of dynamic or persistent to declare predicates whose
facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when
the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a
tuple with a matching arity. Other record types are not supported. If no column names
are provided a table with a single column called info is created. Columns of name rowid
are not supported and lead to a run-time error.

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Returns a list of all stored keys. Do not use this function unless the database is small.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Returns a list of all info parts of stored entries. Do not use this function unless the
database is small.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.

(@=) :: Int → a → ColVal

Constructs a value restriction for the column given as first argument

someDBKeys :: (Int → a → Dynamic) → [ColVal] → Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven
value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int → a → Dynamic) → [ColVal] → Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions
for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int → a → Dynamic) → [ColVal] → Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe
to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int → a → Dynamic) → [Int] → [ColVal] → Query

[(Int,b)]

Returns a list of column projections on those entries that match the given value re-
strictions for columns. Safe to use even on large databases if the number of results is
small.

253

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is
not present.

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is
not present.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes the information stored under the given key. If the given key does not exist this
transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes the information stored under the given keys. No error is raised if (some of) the
keys do not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Updates the information stored under the given key. The transaction is aborted with a
KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores new information in the database and yields the newly generated key.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key
already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries from the database associated with a predicate.

closeDBHandles :: IO ()

Closes all database connections. Should be called when no more database access will be
necessary.

showTError :: TError → String

Transforms a transaction error into a string.

A.4.5 Library KeyDB

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.
Remark: This library has been revised to the library KeyDatabase. Thus, it might not be further
supported in the future.

254

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → IO Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → IO [Int]

Returns all keys of entries in the database.

getDBInfo :: (Int → a → Dynamic) → Int → IO a

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → IO [a]

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → IO ()

Deletes an entry with a given key in the database.

updateDBEntry :: (Int → a → Dynamic) → Int → a → IO ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → IO Int

Stores a new entry in the database and return the key of the new entry.

cleanDB :: (Int → a → Dynamic) → IO ()

Deletes all entries in the database.

A.4.6 Library Database.CDBI.Connection

This module defines basis data types and functions for accessing database systems using SQL.
Currently, only SQLite3 is supported, but this is easy to extend. It also provides execution of SQL-
Queries with types. Allowed datatypes for these queries are defined and the conversion to standard
SQL-Queries is provided.

255

Exported types:

type SQLResult a = Either DBError a

The result of SQL-related actions. It is either a DBError or some value.

type DBAction a = Connection → IO (Either DBError a)

A DBAction takes a connection and returns an IO (SQLResult a).

data DBError

DBErrors are composed of an DBErrorKind and a String describing the error more
explicitly.

Exported constructors:

• DBError :: DBErrorKind → String → DBError

data DBErrorKind

The different kinds of errors.

Exported constructors:

• TableDoesNotExist :: DBErrorKind

• ParameterError :: DBErrorKind

• ConstraintViolation :: DBErrorKind

• SyntaxError :: DBErrorKind

• NoLineError :: DBErrorKind

• LockedDBError :: DBErrorKind

• UnknownError :: DBErrorKind

data SQLValue

Data type for SQL values, used during the communication with the database.

Exported constructors:

• SQLString :: String → SQLValue

• SQLInt :: Int → SQLValue

• SQLFloat :: Float → SQLValue

• SQLChar :: Char → SQLValue

• SQLBool :: Bool → SQLValue

256

• SQLDate :: ClockTime → SQLValue

• SQLNull :: SQLValue

data SQLType

Type identifiers for SQLValues, necessary to determine the type of the value a column
should be converted to.

Exported constructors:

• SQLTypeString :: SQLType

• SQLTypeInt :: SQLType

• SQLTypeFloat :: SQLType

• SQLTypeChar :: SQLType

• SQLTypeBool :: SQLType

• SQLTypeDate :: SQLType

data Connection

Data type for database connections. Currently, only connections to a SQLite3 database
are supported, but other types of connections could easily be added. List of functions
that would need to be implemented: A function to connect to the database, discon-
nect, writeConnection readRawConnection, parseLines, begin, commit, rollback and
getColumnNames

Exported constructors:

• SQLiteConnection :: Handle → Connection

Exported functions:

fromSQLResult :: Either DBError a → a

Gets the value of an SQLResult. If there is no result value but a database error, the
error is raised.

printSQLResults :: Either DBError [a] → IO ()

Print an SQLResult list, i.e., print either the DBError or the list of result elements.

runInTransaction :: (Connection → IO (Either DBError a)) → Connection → IO

(Either DBError a)

Run a DBAction as a transaction. In case of an Error it will rollback all changes,
otherwise the changes are committed.

257

(>+=) :: (Connection → IO (Either DBError a)) → (a → Connection → IO (Either

DBError b)) → Connection → IO (Either DBError b)

Connect two DBActions. When executed this function will execute the first DBAction
and then execute the second applied to the first result An Error will stop either action.

(>+) :: (Connection → IO (Either DBError a)) → (Connection → IO (Either

DBError b)) → Connection → IO (Either DBError b)

Connect two DBActions, but ignore the result of the first.

fail :: DBError → Connection → IO (Either DBError a)

Failing action.

ok :: a → Connection → IO (Either DBError a)

Successful action.

select :: String → [SQLValue] → [SQLType] → Connection → IO (Either DBError

[[SQLValue]])

execute a query where the result of the execution is returned

execute :: String → [SQLValue] → Connection → IO (Either DBError ())

execute a query without a result

executeMultipleTimes :: String → [[SQLValue]] → Connection → IO (Either

DBError ())

execute a query multiple times with different SQLValues without a result

connectSQLite :: String → IO Connection

Connect to a SQLite Database

disconnect :: Connection → IO ()

Disconnect from a database.

begin :: Connection → IO ()

Begin a Transaction.

commit :: Connection → IO ()

Commit a Transaction.

rollback :: Connection → IO ()

Rollback a Transaction.

runWithDB :: String → (Connection → IO a) → IO a

258

Executes an action dependent on a connection on a database by connecting to the
datebase. The connection will be kept open and re-used for the next action to this
database.

executeRaw :: String → [String] → Connection → IO (Either DBError [[String]])

Execute a SQL statement. The statement may contain ? placeholders and a list of
parameters which should be inserted at the respective positions. The result is a list of
list of strings where every single list represents a row of the result.

getColumnNames :: String → Connection → IO (Either DBError [String])

Returns a list with the names of every column in a table The parameter is the name of
the table and a connection

valueToString :: SQLValue → String

A.4.7 Library Database.CDBI.Criteria

This module provides datatypes, constructor functions and translation functions to specify SQL
criteria including options(group-by, having, order-by)

Exported types:

type CColumn = Column ()

Type for columns used inside a constraint.

type CValue = Value ()

Type for values used inside a constraint.

data Criteria

Criterias for queries that can have a constraint and a group-by clause

Exported constructors:

• Criteria :: Constraint → (Maybe GroupBy) → Criteria

data Specifier

specifier for queries

Exported constructors:

• Distinct :: Specifier

• All :: Specifier

259

data Option

datatype to represent order-by statement

Exported constructors:

data GroupBy

datatype to represent group-by statement

Exported constructors:

data Condition

datatype for conditions inside a having-clause

Exported constructors:

• Con :: Constraint → Condition

• Fun :: String → Specifier → Constraint → Condition

• HAnd :: [Condition] → Condition

• HOr :: [Condition] → Condition

• Neg :: Condition → Condition

data Value

A datatype to compare values. Can be either a SQLValue or a Column with an additional
Integer (rename-number). The Integer is for dealing with renamed tables in queries
(i.e. Students as 1Students). If the Integer n is 0 the column will be named as usual
("Table"."Column"), otherwise it will be named "nTable"."Column" in the query This
is for being able to do complex "where exists" constraints

Exported constructors:

• Val :: SQLValue → Value a

• Col :: (Column a) → Int → Value a

data ColVal

A datatype thats a combination between a Column and a Value (Needed for update
queries)

Exported constructors:

• ColVal :: (Column ()) → (Value ()) → ColVal

data Constraint

260

Constraints for queries Every constructor with at least one value has a function as
a constructor and only that function will be exported to assure type-safety Most of
these are just like the Sql-where-commands Exists needs the table-name, an integer and
maybe a constraint (where exists (select from table where constraint)) The integer n
will rename the table if it has a different value than 0 (where exists (select from table
as ntable where...))

Exported constructors:

• IsNull :: (Value ()) → Constraint

• IsNotNull :: (Value ()) → Constraint

• BinaryRel :: RelOp → (Value ()) → (Value ()) → Constraint

• Between :: (Value ()) → (Value ()) → (Value ()) → Constraint

• IsIn :: (Value ()) → [Value ()] → Constraint

• Not :: Constraint → Constraint

• And :: [Constraint] → Constraint

• Or :: [Constraint] → Constraint

• Exists :: String → Int → Constraint → Constraint

• None :: Constraint

Exported functions:

emptyCriteria :: Criteria

An empty criteria

int :: Int → Value Int

Constructor for a Value Val of type Int

float :: Float → Value Float

Constructor for a Value Val of type Float

char :: Char → Value Char

Constructor for a Value Val of type Char

string :: String → Value String

Constructor for a Value Val of type String

bool :: Bool → Value Bool

Constructor for a Value Val of type Bool

261

date :: ClockTime → Value ClockTime

Constructor for a Value Val of type ClockTime

idVal :: Int → Value a

Constructor for Values of ID-types Should just be used internally!

col :: Column a → Value a

Constructor for a Value Col without a rename-number

colNum :: Column a → Int → Value a

Constructor for a Value Col with a rename-number

colVal :: Column a → Value a → ColVal

A constructor for ColVal needed for typesafety

colValAlt :: String → String → SQLValue → ColVal

Alternative ColVal constructor without typesafety

isNull :: Value a → Constraint

IsNull construnctor

isNotNull :: Value a → Constraint

IsNotNull construnctor

equal :: Value a → Value a → Constraint

Equal construnctor

(.=.) :: Value a → Value a → Constraint

Infix Equal

notEqual :: Value a → Value a → Constraint

NotEqual construnctor

(./=.) :: Value a → Value a → Constraint

Infix NotEqual

greaterThan :: Value a → Value a → Constraint

GreatherThan construnctor

(.>.) :: Value a → Value a → Constraint

Infix GreaterThan

262

lessThan :: Value a → Value a → Constraint

LessThan construnctor

(.<.) :: Value a → Value a → Constraint

Infix LessThan

greaterThanEqual :: Value a → Value a → Constraint

GreaterThanEqual construnctor

(.>=.) :: Value a → Value a → Constraint

Infix GreaterThanEqual

lessThanEqual :: Value a → Value a → Constraint

LessThanEqual construnctor

(.<=.) :: Value a → Value a → Constraint

Infix LessThanEqual

like :: Value a → Value a → Constraint

Like construnctor

(.~.) :: Value a → Value a → Constraint

Infix Like

between :: Value a → Value a → Value a → Constraint

Between construnctor

isIn :: Value a → [Value a] → Constraint

IsIn construnctor

(.<->.) :: Value a → [Value a] → Constraint

Infix IsIn

ascOrder :: Value a → Option

Constructor for the option: Ascending Order by Column

descOrder :: Value a → Option

Constructor for the option: Descending Order by Column

groupBy :: Value a → GroupByTail → GroupBy

263

groupByCol :: Value a → GroupByTail → GroupByTail

Constructor to specifiy more than one column for group-by

having :: Condition → GroupByTail

noHave :: GroupByTail

Constructor for empty having-Clause

condition :: Constraint → Condition

sumIntCol :: Specifier → Value Int → Value Int → (Value () → Value () →
Constraint) → Condition

having-clauses.

sumFloatCol :: Specifier → Value Float → Value Float → (Value () → Value () →
Constraint) → Condition

Constructor for aggregation function sum for columns of type float in having-clauses.

avgIntCol :: Specifier → Value Int → Value Float → (Value () → Value () →
Constraint) → Condition

Constructor for aggregation function avg for columns of type Int in having-clauses.

avgFloatCol :: Specifier → Value Float → Value Float → (Value () → Value () →
Constraint) → Condition

Constructor for aggregation function avg for columns of type float in having-clauses.

countCol :: Specifier → Value a → Value Int → (Value () → Value () →
Constraint) → Condition

minCol :: Specifier → Value a → Value a → (Value () → Value () → Constraint)

→ Condition

Constructor for aggregation function min in having-clauses.

maxCol :: Specifier → Value a → Value a → (Value () → Value () → Constraint)

→ Condition

Constructor for aggregation function max in having-clauses.

toCColumn :: Column a → Column ()

264

toCValue :: Value a → Value ()

trCriteria :: Criteria → String

trOption :: [Option] → String

trCondition :: Condition → String

trConstraint :: Constraint → String

trValue :: Value a → String

trColumn :: String → Int → String

trSpecifier :: Specifier → String

A.4.8 Library Database.CDBI.Description

This module contains basic datatypes and operations to represent a relational data model in a type-
safe manner. This representation is used by the library Database.CDBI.ER to provide type safety
when working with relational databases. The tool erd2cdbi generates from an entity-relationship
model a Curry program that represents all entities and relationships by the use of this module.

Exported types:

type Table = String

A type representing tablenames

data EntityDescription

The datatype EntityDescription is a description of a database entity type including the
name, the types the entity consists of, a function transforming an instance of this entity
to a list of SQLValues, a second function doing the same but converting the key value
always to SQLNull to ensure that keys are auto incrementing and a function transforming
a list of SQLValues to an instance of this entity

265

Exported constructors:

• ED :: String → [SQLType] → (a → [SQLValue]) → (a → [SQLValue]) →
([SQLValue] → a) → EntityDescription a

data CombinedDescription

Entity-types can be combined (For Example Student and Lecture could be combined to
Data StuLec = StuLec Student Lecture). If a description for this new type is written
CDBI can look up that type in the database The description is a list of Tuples consisting
of a String (The name of the entity type that will be combined), a "rename-number" n
which will rename the table to "table as ntable" and a list of SQLTypes (The types that
make up that entity type). Furthermore there has to be a function that transform a list
of SQLValues into this combined type, and two functions that transform the combined
type into a list of SQLValues, the first one for updates, the second one for insertion. The
list of sqlvalues needs to match what is returned by the database.

Exported constructors:

• CD :: [(String,Int,[SQLType])] → ([SQLValue] → a) → (a → [[SQLValue]]) →
(a → [[SQLValue]]) → CombinedDescription a

data Column

A datatype representing column names. The first string is the simple name of the
column (for example the column Name of the row Student). The second string is the
name of the column combined with the name of the row (for example Student.Name).
These names should always be in quotes (for example "Student"."Name") so no errors
emerge (the name "Group" for example would result in errors if not in quotes). Has a
phantom-type for the value the column represents.

Exported constructors:

• Column :: String → String → Column a

data ColumnDescription

Datatype representing columns for selection. This datatype has to be distinguished from
type Column which is just for definition of conditions. The type definition consists of the
complete name (including tablename), the SQLType of the column and two functions
for the mapping from SQLValue into the resulttype and the other way around

Exported constructors:

• ColDesc :: String → SQLType → (a → SQLValue) → (SQLValue → a) →
ColumnDescription a

266

Exported functions:

combineDescriptions :: EntityDescription a → Int → EntityDescription b → Int →
(a → b → c) → (c → (a,b)) → CombinedDescription c

A constructor for CombinedDescription.

addDescription :: EntityDescription a → Int → (a → b → b) → (b → a) →
CombinedDescription b → CombinedDescription b

Adds another ED to an already existing CD.

getTable :: EntityDescription a → String

getTypes :: EntityDescription a → [SQLType]

getToValues :: EntityDescription a → a → [SQLValue]

getToInsertValues :: EntityDescription a → a → [SQLValue]

getToEntity :: EntityDescription a → [SQLValue] → a

getColumnSimple :: Column a → String

getColumnFull :: Column a → String

getColumnName :: ColumnDescription a → String

getColumnTableName :: ColumnDescription a → String

getColumnTyp :: ColumnDescription a → SQLType

getColumnValueBuilder :: ColumnDescription a → a → SQLValue

267

getColumnValueSelector :: ColumnDescription a → SQLValue → a

toValueOrNull :: (a → SQLValue) → Maybe a → SQLValue

sqlIntOrNull :: Maybe Int → SQLValue

sqlFloatOrNull :: Maybe Float → SQLValue

sqlCharOrNull :: Maybe Char → SQLValue

sqlStringOrNull :: Maybe String → SQLValue

sqlString :: String → SQLValue

sqlBoolOrNull :: Maybe Bool → SQLValue

sqlDateOrNull :: Maybe ClockTime → SQLValue

intOrNothing :: SQLValue → Maybe Int

floatOrNothing :: SQLValue → Maybe Float

charOrNothing :: SQLValue → Maybe Char

stringOrNothing :: SQLValue → Maybe String

fromStringOrNull :: SQLValue → String

boolOrNothing :: SQLValue → Maybe Bool

dateOrNothing :: SQLValue → Maybe ClockTime

268

A.4.9 Library Database.CDBI.ER

This is the main CDBI-module. It provides datatypes and functions to do Database-Queries working
with Entities (ER-Model)

Exported functions:

insertEntry :: a → EntityDescription a → Connection → IO (Either DBError ())

Inserts an entry into the database.

saveEntry :: a → EntityDescription a → Connection → IO (Either DBError ())

Saves an entry to the database (only for backward compatibility).

insertEntries :: [a] → EntityDescription a → Connection → IO (Either DBError

())

Inserts several entries into the database.

saveMultipleEntries :: [a] → EntityDescription a → Connection → IO (Either

DBError ())

Saves multiple entries to the database (only for backward compatibility).

restoreEntries :: [a] → EntityDescription a → Connection → IO (Either DBError

())

Stores entries with their current keys in the database. It is an error if entries with the
same key are already in the database. Thus, this operation is useful only to restore a
database with saved data.

getEntries :: Specifier → EntityDescription a → Criteria → [Option] → Maybe

Int → Connection → IO (Either DBError [a])

Gets entries from the database.

getColumn :: [SetOp] → [SingleColumnSelect a] → [Option] → Maybe Int →
Connection → IO (Either DBError [a])

Gets a single Column from the database.

getColumnTuple :: [SetOp] → [TupleColumnSelect a b] → [Option] → Maybe Int →
Connection → IO (Either DBError [(a,b)])

Gets two Columns from the database.

getColumnTriple :: [SetOp] → [TripleColumnSelect a b c] → [Option] → Maybe Int

→ Connection → IO (Either DBError [(a,b,c)])

Gets three Columns from the database.

269

getColumnFourTuple :: [SetOp] → [FourColumnSelect a b c d] → [Option] → Maybe

Int → Connection → IO (Either DBError [(a,b,c,d)])

Gets four Columns from the database.

getColumnFiveTuple :: [SetOp] → [FiveColumnSelect a b c d e] → [Option] →
Maybe Int → Connection → IO (Either DBError [(a,b,c,d,e)])

Gets five Columns from the database.

getEntriesCombined :: Specifier → CombinedDescription a → [Join] → Criteria →
[Option] → Maybe Int → Connection → IO (Either DBError [a])

Gets combined entries from the database.

insertEntryCombined :: a → CombinedDescription a → Connection → IO (Either

DBError ())

Inserts combined entries.

saveEntryCombined :: a → CombinedDescription a → Connection → IO (Either

DBError ())

Saves combined entries (for backward compatibility).

updateEntries :: EntityDescription a → [ColVal] → Constraint → Connection → IO

(Either DBError ())

Updates entries depending on wether they fulfill the criteria or not

updateEntry :: a → EntityDescription a → Connection → IO (Either DBError ())

Updates an entry by ID. Works for Entities that have a primary key as first value.
Function will update the entry in the database with the ID of the entry that is given as
parameter with the values of the entry given as parameter

updateEntryCombined :: a → CombinedDescription a → Connection → IO (Either

DBError ())

Same as updateEntry but for combined Data

deleteEntries :: EntityDescription a → Maybe Constraint → Connection → IO

(Either DBError ())

Deletes entries depending on wether they fulfill the criteria or not

A.4.10 Library Database.CDBI.QueryTypes

This module contains datatype declarations, constructor functions selectors and translation func-
tions for complex select queries in particular for those selecting (1 to 5) single columns.

270

Exported types:

type ColumnTupleCollection a b = (ColumnSingleCollection a,ColumnSingleCollection

b)

Datatype to select two different columns which can be of different types and from dif-
ferent tables.

type ColumnTripleCollection a b c = (ColumnSingleCollection

a,ColumnSingleCollection b,ColumnSingleCollection c)

Datatype to select three different columns which can be of different types and from
different tables.

type ColumnFourTupleCollection a b c d = (ColumnSingleCollection

a,ColumnSingleCollection b,ColumnSingleCollection c,ColumnSingleCollection d)

Datatype to select four different columns which can be of different types and from
different tables.

type ColumnFiveTupleCollection a b c d e = (ColumnSingleCollection

a,ColumnSingleCollection b,ColumnSingleCollection c,ColumnSingleCollection

d,ColumnSingleCollection e)

Datatype to select five different columns which can be of different types and from dif-
ferent tables.

data SetOp

Exported constructors:

• Union :: SetOp

• Intersect :: SetOp

• Except :: SetOp

data Join

datatype for joins

Exported constructors:

• Cross :: Join

• Inner :: Constraint → Join

data TableClause

data structure to represent a table-clause (tables and joins) in a way that at least one
table has to be specified

271

Exported constructors:

• TC :: String → Int → (Maybe (Join,TableClause)) → TableClause

data ColumnSingleCollection

Datatype representing a single column in a select-clause. Can be just a column con-
nected with an alias and an optional aggregation function(String) or a Case-when-then-
statement

Exported constructors:

• ResultColumnDescription :: (ColumnDescription a) → Int → String →
ColumnSingleCollection a

• Case :: Condition → (Value (),Value ()) → (SQLType,SQLValue → a) →
ColumnSingleCollection a

data SingleColumnSelect

Datatype to describe all parts of a select-query without Setoperators order-by and limit
(selecthead) for a single column.

Exported constructors:

• SingleCS :: Specifier → (ColumnSingleCollection a) → TableClause →
Criteria → SingleColumnSelect a

data TupleColumnSelect

Datatype to describe all parts of a select-query without Setoperators order-by and limit
(selecthead) for two columns.

Exported constructors:

• TupleCS :: Specifier → (ColumnSingleCollection a,ColumnSingleCollection b)

→ TableClause → Criteria → TupleColumnSelect a b

data TripleColumnSelect

Datatype to describe all parts of a select-query without Setoperators order-by and limit
(selecthead) for three columns.

Exported constructors:

• TripleCS :: Specifier → (ColumnSingleCollection a,ColumnSingleCollection

b,ColumnSingleCollection c) → TableClause → Criteria → TripleColumnSelect

a b c

data FourColumnSelect

272

Datatype to describe all parts of a select-query without Setoperators order-by and limit
(selecthead) for four columns.

Exported constructors:

• FourCS :: Specifier → (ColumnSingleCollection a,ColumnSingleCollection

b,ColumnSingleCollection c,ColumnSingleCollection d) → TableClause →
Criteria → FourColumnSelect a b c d

data FiveColumnSelect

Datatype to describe all parts of a select-query without Setoperators order-by and limit
(selecthead) for five columns.

Exported constructors:

• FiveCS :: Specifier → (ColumnSingleCollection a,ColumnSingleCollection

b,ColumnSingleCollection c,ColumnSingleCollection d,ColumnSingleCollection

e) → TableClause → Criteria → FiveColumnSelect a b c d e

Exported functions:

innerJoin :: Constraint → Join

Constructorfunction for an inner join

crossJoin :: Join

Constructorfunction for cross join

sum :: Specifier → ColumnDescription a → (String,ColumnDescription Float)

Constructor for aggregation function sum in select-clauses. A pseudo-
ResultColumnDescription of type float is created for correct return type.

avg :: Specifier → ColumnDescription a → (String,ColumnDescription Float)

Constructor for aggregation function avg in select-clauses. A pseudo-
ResultColumnDescription of type float is created for correct return type.

count :: Specifier → ColumnDescription a → (String,ColumnDescription Int)

Constructor for aggregation function count in select-clauses. A pseudo-
ResultColumnDescription of type float is created for correct return type.

minV :: ColumnDescription a → (String,ColumnDescription a)

Constructor for aggregation function min in select-clauses.

maxV :: ColumnDescription a → (String,ColumnDescription a)

Constructor for aggregation function max in select-clauses.

273

none :: ColumnDescription a → (String,ColumnDescription a)

Constructor function in case no aggregation function is specified.

caseResultInt :: (SQLType,SQLValue → Int)

caseResultFloat :: (SQLType,SQLValue → Float)

caseResultString :: (SQLType,SQLValue → String)

caseResultBool :: (SQLType,SQLValue → Bool)

caseResultChar :: (SQLType,SQLValue → Char)

caseThen :: Condition → Value a → Value a → (SQLType,SQLValue → a) →
ColumnSingleCollection a

Constructor function for representation of statement: CASE WHEN condition THEN
val1 ELSE val2 END. It does only work for the same type in then and else branch.

singleCol :: ColumnDescription a → Int → (ColumnDescription a →
(String,ColumnDescription b)) → ColumnSingleCollection b

Constructorfunction for ColumnSingleCollection.

tupleCol :: ColumnSingleCollection a → ColumnSingleCollection b →
(ColumnSingleCollection a,ColumnSingleCollection b)

tripleCol :: ColumnSingleCollection a → ColumnSingleCollection b →
ColumnSingleCollection c → (ColumnSingleCollection a,ColumnSingleCollection

b,ColumnSingleCollection c)

fourCol :: ColumnSingleCollection a → ColumnSingleCollection b →
ColumnSingleCollection c → ColumnSingleCollection d → (ColumnSingleCollection

a,ColumnSingleCollection b,ColumnSingleCollection c,ColumnSingleCollection d)

274

fiveCol :: ColumnSingleCollection a → ColumnSingleCollection b →
ColumnSingleCollection c → ColumnSingleCollection d → ColumnSingleCollection

e → (ColumnSingleCollection a,ColumnSingleCollection b,ColumnSingleCollection

c,ColumnSingleCollection d,ColumnSingleCollection e)

getSingleType :: SingleColumnSelect a → [SQLType]

getSingleValFunc :: SingleColumnSelect a → SQLValue → a

getTupleTypes :: TupleColumnSelect a b → [SQLType]

getTupleValFuncs :: TupleColumnSelect a b → (SQLValue → a,SQLValue → b)

getTripleTypes :: TripleColumnSelect a b c → [SQLType]

getTripleValFuncs :: TripleColumnSelect a b c → (SQLValue → a,SQLValue →
b,SQLValue → c)

getFourTupleTypes :: FourColumnSelect a b c d → [SQLType]

getFourTupleValFuncs :: FourColumnSelect a b c d → (SQLValue → a,SQLValue →
b,SQLValue → c,SQLValue → d)

getFiveTupleTypes :: FiveColumnSelect a b c d e → [SQLType]

getFiveTupleValFuncs :: FiveColumnSelect a b c d e → (SQLValue → a,SQLValue →
b,SQLValue → c,SQLValue → d,SQLValue → e)

trSingleSelectQuery :: SingleColumnSelect a → String

275

trTupleSelectQuery :: TupleColumnSelect a b → String

trTripleSelectQuery :: TripleColumnSelect a b c → String

trFourTupleSelectQuery :: FourColumnSelect a b c d → String

trFiveTupleSelectQuery :: FiveColumnSelect a b c d e → String

trSetOp :: SetOp → String

trLimit :: Maybe Int → String

asTable :: String → Int → String

trJoinPart1 :: Join → String

trJoinPart2 :: Join → String

A.4.11 Library Database.ERD

This module contains the definition of data types to represent entity/relationship diagrams and an
I/O operation to read them from a term file.

Exported types:

type ERDName = String

type EName = String

type AName = String

276

type Null = Bool

type RName = String

type Role = String

data ERD

Data type to represent entity/relationship diagrams.

Exported constructors:

• ERD :: String → [Entity] → [Relationship] → ERD

data Entity

Exported constructors:

• Entity :: String → [Attribute] → Entity

data Attribute

Exported constructors:

• Attribute :: String → Domain → Key → Bool → Attribute

data Key

Exported constructors:

• NoKey :: Key

• PKey :: Key

• Unique :: Key

data Domain

Exported constructors:

277

• IntDom :: (Maybe Int) → Domain

• FloatDom :: (Maybe Float) → Domain

• CharDom :: (Maybe Char) → Domain

• StringDom :: (Maybe String) → Domain

• BoolDom :: (Maybe Bool) → Domain

• DateDom :: (Maybe CalendarTime) → Domain

• UserDefined :: String → (Maybe String) → Domain

• KeyDom :: String → Domain

data Relationship

Exported constructors:

• Relationship :: String → [REnd] → Relationship

data REnd

Exported constructors:

• REnd :: String → String → Cardinality → REnd

data Cardinality

Cardinality of a relationship w.r.t. some entity. The cardinality is either a fixed number
(e.g., (Exactly 1) representing the cardinality (1,1)) or an interval (e.g., (Between 1
(Max 4)) representing the cardinality (1,4), or (Between 0 Infinite) representing the
cardinality (0,n)).

Exported constructors:

• Exactly :: Int → Cardinality

• Between :: Int → MaxValue → Cardinality

data MaxValue

The upper bound of a cardinality which is either a finite number or infinite.

Exported constructors:

• Max :: Int → MaxValue

• Infinite :: MaxValue

278

Exported functions:

readERDTermFile :: String → IO ERD

Read an ERD specification from a file containing a single ERD term.

A.4.12 Library Database.ERDGoodies

This module contains some useful operations on the data types representing entity/relationship
diagrams

Exported functions:

erdName :: ERD → String

The name of an ERD.

entityName :: Entity → String

The name of an entity.

isEntityNamed :: String → Entity → Bool

Is this an entity with a given name?

hasForeignKey :: String → Entity → Bool

Has the entity an attribute with a foreign key for a given entity name?

foreignKeyAttributes :: String → [Attribute] → [Attribute]

Returns the attributes that are a foreign key of a given entity name.

entityAttributes :: Entity → [Attribute]

The attributes of an entity

attributeName :: Attribute → String

The name of an attribute.

attributeDomain :: Attribute → Domain

The domain of an attribute.

hasDefault :: Domain → Bool

Has an attribute domain a default value?

isForeignKey :: Attribute → Bool

isNullAttribute :: Attribute → Bool

279

Has an attribute a null value?

cardMinimum :: Cardinality → Int

The minimum value of a cardinality.

cardMaximum :: Cardinality → Int

The maximum value of a cardinality (provided that it is not infinite).

showERD :: Int → ERD → String

A simple pretty printer for ERDs.

combineIds :: [String] → String

Combines a non-empty list of identifiers into a single identifier. Used in ERD trans-
formation and code generation to create names for combined objects, e.g., relationships
and foreign keys.

storeERDFromProgram :: String → IO String

Writes the ERD defined in a Curry program (as a top-level operation of type
Database.ERD.ERD) in a term file and return the name of the term file.

writeERDTermFile :: ERD → IO ()

Writes an ERD term into a file with name ERDMODELNAME.erdterm and prints the name
of the generated file.

A.5 Libraries for Web Applications

A.5.1 Library Bootstrap3Style

This library contains some operations to generate web pages rendered with Bootstrap

Exported functions:

bootstrapForm :: String → [String] → String → (String,[HtmlExp]) → [[HtmlExp]]

→ [[HtmlExp]] → Int → [HtmlExp] → [HtmlExp] → [HtmlExp] → [HtmlExp] →
HtmlForm

An HTML form rendered with bootstrap.

bootstrapPage :: String → [String] → String → (String,[HtmlExp]) → [[HtmlExp]]

→ [[HtmlExp]] → Int → [HtmlExp] → [HtmlExp] → [HtmlExp] → [HtmlExp] →
HtmlPage

An HTML page rendered with bootstrap.

titledSideMenu :: String → [[HtmlExp]] → [HtmlExp]

280

http://twitter.github.com/bootstrap/

defaultButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Default input button.

smallButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Small input button.

primButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Primary input button.

hrefButton :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as a button.

hrefBlock :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as a block level button.

hrefInfoBlock :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as an info block level button.

glyphicon :: String → HtmlExp

homeIcon :: HtmlExp

userIcon :: HtmlExp

loginIcon :: HtmlExp

logoutIcon :: HtmlExp

A.5.2 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index access
(e.g., "A-Z") to these entities.

281

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields
True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple
text layout.

A.5.3 Library HTML

Library for HTML and CGI programming. This paper contains a description of the basic ideas
behind this library.
The installation of a cgi script written with this library can be done by the command

curry makecgi -m initialForm -o /home/joe/public_html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,
/home/joe/public_html/prog.cgi is the desired location of the compiled cgi script, and
initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where
curry is the shell command calling the Curry system PAKCS or KiCS2).

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the
corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

data HtmlExp

282

http://www.informatik.uni-kiel.de/~mh/papers/PADL01.html

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s

– a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs

– a structure with a tag, attributes, and HTML expressions inside the structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref

– an input element (described by the first argument) with a cgi reference

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr

– an input element (first arg) with an associated event handler (tpyically, a submit button)

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of
HTML forms.

Exported constructors:

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs

– an HTML form with title t, optional parameters (e.g., cookies) ps, and contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c

– an answer in an arbitrary format where t is the content type (e.g., "text/plain") and c
is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)
are its name and value and optional parameters (expiration date, domain, path (e.g.,
the path "/" makes the cookie valid for all documents on the server), security) which
are collected in a list.

283

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params

– a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s

– a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s

– a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s

– a JavaScript statement to be executed when the form is submitted (i.e., <form ...
onsubmit="s">)

• FormTarget :: String → FormParam

FormTarget s

– a name of a target frame where the output of the script should be represented (should
only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc

– the encoding scheme of this form

• FormMeta :: [(String,String)] → FormParam

FormMeta as

– meta information (in form of attributes) for this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he

– HTML expression to be included in form header

• MultipleHandlers :: FormParam

MultipleHandlers

284

– indicates that the event handlers of the form can be multiply used (i.e., are not deleted
if the form is submitted so that they are still available when going back in the browser;
but then there is a higher risk that the web server process might overflow with unused
events); the default is a single use of event handlers, i.e., one cannot use the back button
in the browser and submit the same form again (which is usually a reasonable behavior
to avoid double submissions of data).

• BodyAttr :: (String,String) → FormParam

BodyAttr ps

– optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

The data type for representing HTML pages. The constructor arguments are the title,
the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc

– the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s

– a URL for a CSS file for this page

285

• PageJScript :: String → PageParam

PageJScript s

– a URL for a Javascript file for this page

• PageMeta :: [(String,String)] → PageParam

PageMeta as

– meta information (in form of attributes) for this page

• PageLink :: [(String,String)] → PageParam

PageLink as

– link information (in form of attributes) for this page

• PageBodyAttr :: (String,String) → PageParam

PageBodyAttr attr

– optional attribute for the body element of the page (more than one occurrence is allowed)

Exported functions:

defaultEncoding :: String

The default encoding used in generated web pages.

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

A URL for a CSS file for a HTML form.

formMetaInfo :: [(String,String)] → FormParam

Meta information for a HTML form. The argument is a list of attributes included in
the meta-tag in the header for this form.

formBodyAttr :: (String,String) → FormParam

Optional attribute for the body element of the HTML form. More than one occurrence
is allowed, i.e., all such attributes are collected.

form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages with the default encoding and a default
background.

286

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as
the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser together
with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together
with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

answerEncText :: String → String → HtmlForm

A textual result instead of an HTML form as a result for active web pages where the
encoding is given as the first parameter.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

Adds sound to given HTML form. The functions adds two different declarations for
sound, one invented by Microsoft for the internet explorer, one introduced for netscape.
As neither is an official part of HTML, addsound might not work on all systems and
browsers. The greatest chance is by using sound files in MID-format.

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

pageMetaInfo :: [(String,String)] → PageParam

287

Meta information for a HTML page. The argument is a list of attributes included in
the meta-tag in the header for this page.

pageLinkInfo :: [(String,String)] → PageParam

Link information for a HTML page. The argument is a list of attributes included in the
link-tag in the header for this page.

pageBodyAttr :: (String,String) → PageParam

Optional attribute for the body element of the web page. More than one occurrence is
allowed, i.e., all such attributes are collected.

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page with the default encoding.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like
<,>,&,") which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain
special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

288

h4 :: [HtmlExp] → HtmlExp

Header 4

h5 :: [HtmlExp] → HtmlExp

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

section :: [HtmlExp] → HtmlExp

Section

header :: [HtmlExp] → HtmlExp

Header

footer :: [HtmlExp] → HtmlExp

Footer

emphasize :: [HtmlExp] → HtmlExp

Emphasize

strong :: [HtmlExp] → HtmlExp

Strong (more emphasized) text.

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

nav :: [HtmlExp] → HtmlExp

Navigation

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

289

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,") are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

anchor :: String → [HtmlExp] → HtmlExp

An anchored text with a hypertext reference inside a document.

ulist :: [[HtmlExp]] → HtmlExp

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a
table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

290

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class
defined in a style definition (see styleSheet) or in an external style sheet (see form and
page parameters FormCSS and PageCSS).

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined
in an external style sheet.

blockstyle :: String → [HtmlExp] → HtmlExp

Provides a style for a block of HTML elements. The style argument is the name of a
style class defined in an external style sheet. This element is used (in contrast to "style")
for larger blocks of HTML elements since a line break is placed before and after these
elements.

inline :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a single HTML element. Although this construction
has no rendering, it is sometimes useful for programming when several HTML elements
must be put together.

block :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a block. A line break is placed before and after these
elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

291

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,
otherwise "" is returned.

checkedbox :: CgiRef → String → HtmlExp

A checkbox that is initially checked with a reference and a value. The value is returned
if checkbox is on, otherwise "" is returned.

radio main :: CgiRef → String → HtmlExp

A main button of a radio (initially "on") with a reference and a value. The value is
returned of this button is on. A complete radio button suite always consists of a main
button (radiomain) and some further buttons (radioothers) with the same reference.
Initially, the main button is selected (or nothing is selected if one uses radiomainoff
instead of radio_main). The user can select another button but always at most one
button of the radio can be selected. The value corresponding to the selected button is
returned in the environment for this radio reference.

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially "off") with a reference and a value. The value is
returned of this button is on.

radio other :: CgiRef → String → HtmlExp

A further button of a radio (initially "off") with a reference (identical to the main button
of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are shown
in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item in
this list. The names are shown in the selection and the value is returned for the selected
name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

292

A selection button with a reference and a list of name/value/flag pairs. The names are
shown in the selection and the value is returned if the corresponding name is selected.
If flag is True, the corresonding name is initially selected. If more than one name has
been selected, all values are returned in one string where the values are separated by
newline (<code>\n</code>) characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be used
with care since it may cause conflicts with the CGI-based implementation of this library.

htmlQuote :: String → String

Quotes special characters (<,>,&,", umlauts) in a string as HTML special characters.

htmlIsoUmlauts :: String → String

Translates umlauts in iso-8859-1 encoding into HTML special characters.

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

addClass :: HtmlExp → String → HtmlExp

Adds a class attribute to an HTML element.

showHtmlExps :: [HtmlExp] → String

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

Transforms a single HTML expression into string representation.

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script
is called with URL "http://.../script.cgi?parameter", then "parameter" is returned by
this I/O action. Note that an URL parameter should be "URL encoded" to avoid the
appearance of characters with a special meaning. Use the functions "urlencoded2string"
and "string2urlencoded" to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

293

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are
represented in the form of name/value pairs since no other components are important
here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives
a message containing the environment of the client’s web browser, translates the HTML
form w.r.t. this environment into a string representation of the complete HTML doc-
ument and sends the string representation back to the client’s browser by binding the
corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives
a message containing the environment of the client’s web browser, translates the HTML
form w.r.t. this environment into a string representation of the complete HTML doc-
ument and sends the string representation back to the client’s browser by binding the
corresponding message argument.

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

htmlSpecialChars2tex :: String → String

Convert special HTML characters into their LaTeX representation, if necessary.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-
ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-
ument. The variable "packages" holds the packages to add to the latex document e.g.
"ngerman"

294

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX
document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX
document where each list entry appears on a separate page. The variable "packages"
holds the packages to add to the latex document (e.g., "ngerman").

germanLatexDoc :: [HtmlExp] → String

show german latex document

intForm :: IO HtmlForm → IO ()

Execute an HTML form in "interactive" mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in "interactive" mode with various parameters.

A.5.4 Library HtmlCgi

Library to support CGI programming in the HTML library. It is only intended as an auxiliary library
to implement dynamic web pages according to the HTML library. It contains a simple script that
is installed for a dynamic web page and which sends the user input to the real application server
implementing the application.

Exported types:

data CgiServerMsg

The messages to comunicate between the cgi script and the server program. CgiSubmit
env cgienv nextpage - pass the environment and show next page, where env are the values
of the environment variables of the web script (e.g., QUERYSTRING, REMOTEHOST,
REMOTE_ADDR), cgienv are the values in the current form submitted by the client,
and nextpage is the answer text to be shown in the next web page

Exported constructors:

• CgiSubmit :: [(String,String)] → [(String,String)] → CgiServerMsg

• GetLoad :: CgiServerMsg

GetLoad

– get info about the current load of the server process

295

• SketchStatus :: CgiServerMsg

SketchStatus

– get a sketch of the status of the server

• SketchHandlers :: CgiServerMsg

SketchHandlers

– get a sketch of all event handlers of the server

• ShowStatus :: CgiServerMsg

ShowStatus

– show the status of the server with all event handlers

• CleanServer :: CgiServerMsg

CleanServer

– clean up the server (with possible termination)

• StopCgiServer :: CgiServerMsg

StopCgiServer

– stop the server

Exported functions:

readCgiServerMsg :: Handle → IO (Maybe CgiServerMsg)

Reads a line from a handle and check whether it is a syntactically correct cgi server
message.

submitForm :: IO ()

runCgiServerCmd :: String → CgiServerMsg → IO ()

Executes a specific command for a cgi server.

noHandlerPage :: String → String → String

cgiServerRegistry :: String

The name of the file to register all cgi servers.

registerCgiServer :: String → String → IO ()

unregisterCgiServer :: String → IO ()

296

A.5.5 Library HtmlParser

This module contains a very simple parser for HTML documents.

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is
a well structured document, the list of HTML expressions should contain exactly one
element.

A.5.6 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted
to the local environment.

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC

– recipient of a carbon copy

• BCC :: String → MailOption

BCC

– recipient of a blind carbon copy

• TO :: String → MailOption

TO

– recipient of the email

297

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are
allowed, e.g., more than one CC option for multiple recipient of carbon copies.

Important note: The implementation of this operation is based on the command "mailx"
and must be adapted according to your local environment!

A.5.7 Library Markdown

Library to translate markdown documents into HTML or LaTeX. The slightly restricted subset of
the markdown syntax recognized by this implementation is documented in this page.

Exported types:

type MarkdownDoc = [MarkdownElem]

A markdown document is a list of markdown elements.

data MarkdownElem

The data type for representing the different elements occurring in a markdown document.

Exported constructors:

• Text :: String → MarkdownElem

Text s

– a simple text in a markdown document

• Emph :: String → MarkdownElem

Emph s

– an emphasized text in a markdown document

• Strong :: String → MarkdownElem

Strong s

– a strongly emphaszed text in a markdown document

• Code :: String → MarkdownElem

Code s

– a code string in a markdown document

298

http://en.wikipedia.org/wiki/Markdown
http://www.informatik.uni-kiel.de/~pakcs/markdown_syntax.html

• HRef :: String → String → MarkdownElem

HRef s u

– a reference to URL u with text s in a markdown document

• Par :: [MarkdownElem] → MarkdownElem

Par md

– a paragraph in a markdown document

• CodeBlock :: String → MarkdownElem

CodeBlock s

– a code block in a markdown document

• UList :: [[MarkdownElem]] → MarkdownElem

UList mds

– an unordered list in a markdown document

• OList :: [[MarkdownElem]] → MarkdownElem

OList mds

– an ordered list in a markdown document

• Quote :: [MarkdownElem] → MarkdownElem

Quote md

– a quoted paragraph in a markdown document

• HRule :: MarkdownElem

HRule

– a hoirzontal rule in a markdown document

• Header :: Int → String → MarkdownElem

Header l s

– a level l header with title s in a markdown document

Exported functions:

fromMarkdownText :: String → [MarkdownElem]

Parse markdown document from its textual representation.

removeEscapes :: String → String

Remove the backlash of escaped markdown characters in a string.

299

markdownEscapeChars :: String

Escape characters supported by markdown.

markdownText2HTML :: String → [HtmlExp]

Translate a markdown text into a (partial) HTML document.

markdownText2CompleteHTML :: String → String → String

Translate a markdown text into a complete HTML text that can be viewed as a stan-
dalone document by a browser. The first argument is the title of the document.

markdownText2LaTeX :: String → String

Translate a markdown text into a (partial) LaTeX document. All characters with a
special meaning in LaTeX, like dollar or ampersand signs, are quoted.

markdownText2LaTeXWithFormat :: (String → String) → String → String

Translate a markdown text into a (partial) LaTeX document where the first argument is
a function to translate the basic text occurring in markdown elements to a LaTeX string.
For instance, one can use a translation operation that supports passing mathematical
formulas in LaTeX style instead of quoting all special characters.

markdownText2CompleteLaTeX :: String → String

Translate a markdown text into a complete LaTeX document that can be formatted as
a standalone document.

formatMarkdownInputAsPDF :: IO ()

Format the standard input (containing markdown text) as PDF.

formatMarkdownFileAsPDF :: String → IO ()

Format a file containing markdown text as PDF.

A.5.8 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the
program "wget" is in your path, otherwise the implementation must be adapted to the
local installation.

300

A.5.9 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs).
The ideas behind the application and implementation of WUIs are described in a paper that is
available via this web page.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data struc-
ture into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific
code attached (for future extensions).

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the
behavior of this WUI type (rendering, error message, and constraints on inputs). The
second component is a "show" function returning an HTML expression for the edit fields
and a WUI state containing the CgiRefs to extract the values from the edit fields. The
third component is "read" function to extract the values from the edit fields for a given
cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.
The second component of the result contains an HTML edit expression together with a
WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

301

http://www.informatik.uni-kiel.de/~pakcs/WUI

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must
be a transformation mapping values from the old type to the new type. This function
must be bijective and operationally invertible (i.e., the inverse must be computable by
narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in
components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a
mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and
width of the text area.

302

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be
contained in the value list and is preselected. The first argument is a mapping from
values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The
current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings
that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML
expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current
values should be contained in the value list and are preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current
value should be contained in the value list and is preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of
HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary constructor.
The second and third arguments are the WUI specifications for the argument types.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

303

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

304

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

305

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but
renders both components as a single tuple provided that the components are already
rendered as tuples, i.e., by the rendering function renderTuple. This combinator is
useful to define combinators for large tuples.

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a
table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in a
table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the
potential values. Nothing corresponds to a selection of False in the Boolean WUI. The
value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is
shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and
Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since
other types with more alternatives can be easily reduced to this case.

306

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are
shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are
horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a
tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are
vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update
form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing "holes" for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form. In addition to wui2html, we can provide a skeleton form used to
show illegal inputs.

A.5.10 Library WUIjs

A library to support the type-oriented construction of Web User Interfaces (WUIs).
The ideas behind the application and implementation of WUIs are described in a paper that is
available via this web page.
In addition to the original library, this version provides also support for JavaScript.

307

http://www.informatik.uni-kiel.de/~pakcs/WUI

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data struc-
ture into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific
JavaScript code attached.

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the
behavior of this WUI type (rendering, error message, and constraints on inputs). The
second component is a "show" function returning an HTML expression for the edit fields
and a WUI state containing the CgiRefs to extract the values from the edit fields. The
third component is "read" function to extract the values from the edit fields for a given
cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.
The second component of the result contains an HTML edit expression together with a
WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

308

Puts a new condition into a WUI specification.

withConditionJS :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

withConditionJSName :: WuiSpec a → (a → Bool,String) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must
be a transformation mapping values from the old type to the new type. This function
must be bijective and operationally invertible (i.e., the inverse must be computable by
narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in
components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a
mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and
width of the text area.

309

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be
contained in the value list and is preselected. The first argument is a mapping from
values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The
current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings
that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML
expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current
values should be contained in the value list and are preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current
value should be contained in the value list and is preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of
HTML expressions that are shown after the True and False radio buttons, respectively.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but
renders both components as a single tuple provided that the components are already
rendered as tuples, i.e., by the rendering function renderTuple. This combinator is
useful to define combinators for large tuples.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

310

WUI combinator for constructors of arity 2. The first argument is the binary constructor.
The second and third arguments are the WUI specifications for the argument types.

wCons2JS :: Maybe ([JSExp] → JSExp) → (a → b → c) → WuiSpec a → WuiSpec b →
WuiSpec c

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons3JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons4JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons5JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

311

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons6JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons7JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h)

→ WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons8JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

→ WuiSpec g → WuiSpec h → WuiSpec i

312

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

wCons9JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h → i

→ j) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec

f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

wCons10JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

313

wCons11JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k → l) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

wCons12JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h

→ i → j → k → l → m) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d →
WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j →
WuiSpec k → WuiSpec l → WuiSpec m

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a
table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in a
table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the
potential values. Nothing corresponds to a selection of False in the Boolean WUI. The
value WUI is shown after the Boolean WUI.

314

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is
shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and
Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since
other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are
shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are
horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a
tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are
vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update
form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing "holes" for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form. In addition to wui2html, we can provide a skeleton form used to
show illegal inputs.

315

A.5.11 Library XML

Library for processing XML data.
Warning: the structure of this library is not stable and might be changed in the future!

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

• XText :: String → XmlExp

XText

– a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem

– an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc

– the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl

– the url of the DTD for a document

316

Exported functions:

tagOf :: XmlExp → String

Returns the tag of an XML element (or empty for a textual element).

elemsOf :: XmlExp → [XmlExp]

Returns the child elements an XML element.

textOf :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function
when transforming XML expressions into other data structures.

For instance, textOf [XText "xy", XElem "a" [] [], XText "bc"] == "xy bc"

textOfXml :: [XmlExp] → String

Included for backward compatibility, better use textOf!

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-
sion, if possible. If file or parse errors occur, Nothing is returned.

readFileWithXmlDocs :: String → IO [XmlExp]

317

Reads a file with an arbitrary sequence of XML documents and returns the list of
corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well
structured document, the list of XML expressions should contain exactly one element.

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the XML
document.

A.5.12 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be repre-
sented as algebraic datatypes and vice versa. See here13 for a description of this library.

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions
13http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

318

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns
the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the rep-
resentation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

Takes an XML converter and an XML expression and returns a corresponding Curry
value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer values. Integer values must not be used in repe-
titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions
and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in
repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repetitions
and do not represent XML elements.

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element
that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

319

Takes a value and returns an XML converter for this value which is not represented as
XML data. Empty XML data must not be used in repetitions and does not represent
an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that rep-
resents an attribute. Attributes must not be used in repetitions and do not represent
an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

Creates a converter for arbitrary optional XML data. Optional XML data must not be
used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter
that represents repetitions of this data. Repetitions must not be used in other repetitions
and do not represent XML elements.

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used
in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in
repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be
used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

Creates an XML converter for string attributes. String attributes must not be used in
repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used
in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

320

Creates an XML converter for integer elements. Integer elements may be used in repe-
titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in
repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-
tions.

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in
repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given
value. The created element may be used in repetitions.

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.
The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.
The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions but does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

321

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions and does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions and does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

322

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions and does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

323

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions and does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The sequence
must not be used in repetitions and does not represent an XML element.

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable XML
data. The repetition may be used in other repetitions and does not represent an XML
element. This combinator is provided because converters for repeatable sequences cannot
be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repeti-
tions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

324

A.6 Libraries for Meta-Programming

A.6.1 Library AbstractCurry.Types

This library contains a definition for representing Curry programs in Curry and an I/O action to
read Curry programs and transform them into this abstract representation.
Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of
2003.
Assumption: an abstract Curry program is stored in file with extension .acy

Exported types:

type MName = String

A module name.

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-
ified to avoid name clashes. The first component is the module name and the second
component the unqualified name as it occurs in the source program. An exception are
locally defined names where the module name is the empty string (to avoid name clashes
with a globally defined name).

type CTVarIName = (Int,String)

The type for representing type variables. They are represented by (i,n) where i is a type
variable index which is unique inside a function and n is a name (if possible, the name
written in the source program).

type CField a = ((String,String),a)

Labeled record fields

type Arity = Int

Function arity

type CVarIName = (Int,String)

Data types for representing object variables. Object variables occurring in expressions
are represented by (Var i) where i is a variable index.

data CVisibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: CVisibility

• Private :: CVisibility

325

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this
data type has the form

(CurryProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are imported,
typedecls: Type declarations functions: Function declarations opdecls: Operator prece-
dence declarations

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually
numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type
parameters and a list of constructor declarations.

Exported constructors:

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

• CNewType :: (String,String) → CVisibility → [(Int,String)] → CConsDecl →
CTypeDecl

data CConsDecl

326

A constructor declaration consists of the name of the constructor and a list of the
argument types of the constructor. The arity equals the number of types.

Exported constructors:

• CCons :: (String,String) → CVisibility → [CTypeExpr] → CConsDecl

• CRecord :: (String,String) → CVisibility → [CFieldDecl] → CConsDecl

data CFieldDecl

A record field declaration consists of the name of the the label, the visibility and its
corresponding type.

Exported constructors:

• CField :: (String,String) → CVisibility → CTypeExpr → CFieldDecl

data CTypeExpr

Type expression. A type expression is either a type variable, a function type, or a type
constructor application.

Note: the names of the predefined type constructors are "Int", "Float", "Bool", "Char",
"IO", "()" (unit type), "(,...,)" (tuple types), "[]" (list type)

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

data COpDecl

Data type for operator declarations. An operator declaration "fix p n" in Curry corre-
sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

Data type for operator associativity

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

327

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in AbstractCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

Thus, a function declaration consists of the name, arity, type, and a list of rules.

A function declaration with the constructor CmtFunc is similarly to CFunc but has a
comment as an additional first argument. This comment could be used by pretty printers
that generate a readable Curry program containing documentation comments.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

• CmtFunc :: String → (String,String) → Int → CVisibility → CTypeExpr →
[CRule] → CFuncDecl

data CRule

The general form of a function rule. It consists of a list of patterns (left-hand side) and
the right-hand side for these patterns.

Exported constructors:

• CRule :: [CPattern] → CRhs → CRule

data CRhs

Right-hand-side of a CRule or a case expression. It is either a simple unconditional
right-hand side or a list of guards with their corresponding right-hand sides, and a list
of local declarations.

Exported constructors:

• CSimpleRhs :: CExpr → [CLocalDecl] → CRhs

• CGuardedRhs :: [(CExpr,CExpr)] → [CLocalDecl] → CRhs

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

328

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CRhs → CLocalDecl

• CLocalVars :: [(Int,String)] → CLocalDecl

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

• CPLazy :: CPattern → CPattern

• CPRecord :: (String,String) → [((String,String),CPattern)] → CPattern

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CCaseType → CExpr → [(CPattern,CRhs)] → CExpr

• CTyped :: CExpr → CTypeExpr → CExpr

• CRecConstr :: (String,String) → [((String,String),CExpr)] → CExpr

329

• CRecUpdate :: CExpr → [((String,String),CExpr)] → CExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a
float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

• CStringc :: String → CLiteral

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

• CSLet :: [CLocalDecl] → CStatement

data CCaseType

Type of case expressions

Exported constructors:

• CRigid :: CCaseType

• CFlex :: CCaseType

Exported functions:

version :: String

Current version of AbstractCurry

preludeName :: String

The name of the standard prelude.

pre :: String → (String,String)

Converts a string into a qualified name of the Prelude.

330

A.6.2 Library AbstractCurry.Files

This library defines various I/O actions to read Curry programs and transform them into the
AbstractCurry representation and to write AbstractCurry files.
Assumption: an abstract Curry program is stored in file with extension .acy in the subdirectory
.curry

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract
Curry program. Thus, the argument is the file name without suffix ".curry" or ".lcurry")
and the result is a Curry term representing this program.

readCurryWithImports :: String → IO [CurryProg]

Read an AbstractCurry file with all its imports.

tryReadCurryWithImports :: String → IO (Either [String] [CurryProg])

tryReadCurryFile :: String → IO (Either String CurryProg)

tryParse :: String → IO (Either String CurryProg)

Try to parse an AbstractCurry file.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-
stract Curry program. Thus, the argument is the file name without suffix ".curry" or
".lcurry") and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads a typed Curry program from a file (with extension ".acy")
with respect to some parser options. This I/O action is used by the standard action
readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads an untyped Curry program from a file (with extension
".uacy") with respect to some parser options. For more details see function
readCurryWithParseOptions

abstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ".curry" or ".lcurry")
into the name of the file containing the corresponding AbstractCurry program.

331

untypedAbstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ".curry" or ".lcurry")
into the name of the file containing the corresponding untyped AbstractCurry program.

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ".acy" format. In
contrast to readCurry, this action does not parse a source program. Thus, the argument
must be the name of an existing file (with suffix ".acy") containing an AbstractCurry
program in ".acy" format and the result is a Curry term representing this program. It
is currently predefined only in Curry2Prolog.

tryReadACYFile :: String → IO (Maybe CurryProg)

Tries to read an AbstractCurry file and returns

• Left err , where err specifies the error occurred

• Right prog, where prog is the AbstractCurry program

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ".acy" format. The first argument must
be the name of the target file (with suffix ".acy").

A.6.3 Library AbstractCurry.Select

This library provides some useful operations to select components in AbstractCurry programs, i.e.,
it provides a collection of selector functions for AbstractCurry.

Exported functions:

progName :: CurryProg → String

imports :: CurryProg → [String]

Returns the imports (module names) of a given Curry program.

functions :: CurryProg → [CFuncDecl]

Returns the function declarations of a given Curry program.

constructors :: CurryProg → [CConsDecl]

Returns all constructors of given Curry program.

types :: CurryProg → [CTypeDecl]

Returns the type declarations of a given Curry program.

332

publicFuncNames :: CurryProg → [(String,String)]

Returns the names of all visible functions in given Curry program.

publicConsNames :: CurryProg → [(String,String)]

Returns the names of all visible constructors in given Curry program.

publicTypeNames :: CurryProg → [(String,String)]

Returns the names of all visible types in given Curry program.

typeName :: CTypeDecl → (String,String)

Returns the name of a given type declaration

typeVis :: CTypeDecl → CVisibility

Returns the visibility of a given type declaration

typeCons :: CTypeDecl → [CConsDecl]

Returns the constructors of a given type declaration.

consName :: CConsDecl → (String,String)

Returns the name of a given constructor declaration.

consVis :: CConsDecl → CVisibility

Returns the visibility of a given constructor declaration.

isBaseType :: CTypeExpr → Bool

Returns true if the type expression is a base type.

isPolyType :: CTypeExpr → Bool

Returns true if the type expression contains type variables.

isFunctionalType :: CTypeExpr → Bool

Returns true if the type expression is a functional type.

isIOType :: CTypeExpr → Bool

Returns true if the type expression is (IO t).

isIOReturnType :: CTypeExpr → Bool

Returns true if the type expression is (IO t) with t/=() and t is not functional

argTypes :: CTypeExpr → [CTypeExpr]

Returns all argument types from a functional type

333

resultType :: CTypeExpr → CTypeExpr

Return the result type from a (nested) functional type

tvarsOfType :: CTypeExpr → [(Int,String)]

Returns all type variables occurring in a type expression.

tconsOfType :: CTypeExpr → [(String,String)]

Returns all type constructors used in the given type.

modsOfType :: CTypeExpr → [String]

Returns all modules used in the given type.

funcName :: CFuncDecl → (String,String)

Returns the name of a given function declaration.

funcArity :: CFuncDecl → Int

funcComment :: CFuncDecl → String

Returns the documentation comment of a given function declaration.

funcVis :: CFuncDecl → CVisibility

Returns the visibility of a given function declaration.

funcType :: CFuncDecl → CTypeExpr

Returns the type of a given function declaration.

funcRules :: CFuncDecl → [CRule]

Returns the rules of a given function declaration.

ruleRHS :: CRule → CRhs

Returns the right-hand side of a rules.

ldeclsOfRule :: CRule → [CLocalDecl]

Returns the local declarations of given rule.

varsOfPat :: CPattern → [(Int,String)]

Returns list of all variables occurring in a pattern. Each occurrence corresponds to one
element, i.e., the list might contain multiple elements.

varsOfExp :: CExpr → [(Int,String)]

334

Returns list of all variables occurring in an expression. Each occurrence corresponds to
one element, i.e., the list might contain multiple elements.

varsOfRhs :: CRhs → [(Int,String)]

Returns list of all variables occurring in a right-hand side. Each occurrence corresponds
to one element, i.e., the list might contain multiple elements.

varsOfStat :: CStatement → [(Int,String)]

Returns list of all variables occurring in a statement. Each occurrence corresponds to
one element, i.e., the list might contain multiple elements.

varsOfLDecl :: CLocalDecl → [(Int,String)]

Returns list of all variables occurring in a local declaration. Each occurrence corresponds
to one element, i.e., the list might contain multiple elements.

varsOfFDecl :: CFuncDecl → [(Int,String)]

Returns list of all variables occurring in a function declaration. Each occurrence corre-
sponds to one element, i.e., the list might contain multiple elements.

varsOfRule :: CRule → [(Int,String)]

Returns list of all variables occurring in a rule. Each occurrence corresponds to one
element, i.e., the list might contain multiple elements.

funcNamesOfLDecl :: CLocalDecl → [(String,String)]

funcNamesOfFDecl :: CFuncDecl → [(String,String)]

funcNamesOfStat :: CStatement → [(String,String)]

isPrelude :: String → Bool

Tests whether a module name is the prelude.

A.6.4 Library AbstractCurry.Build

This library provides some useful operations to write programs that generate AbstractCurry pro-
grams in a more compact and readable way.

335

Exported functions:

(~>) :: CTypeExpr → CTypeExpr → CTypeExpr

A function type.

baseType :: (String,String) → CTypeExpr

A base type.

listType :: CTypeExpr → CTypeExpr

Constructs a list type from an element type.

tupleType :: [CTypeExpr] → CTypeExpr

Constructs a tuple type from list of component types.

ioType :: CTypeExpr → CTypeExpr

Constructs an IO type from a type.

maybeType :: CTypeExpr → CTypeExpr

Constructs a Maybe type from element type.

stringType :: CTypeExpr

The type expression of the String type.

intType :: CTypeExpr

The type expression of the Int type.

floatType :: CTypeExpr

The type expression of the Float type.

boolType :: CTypeExpr

The type expression of the Bool type.

charType :: CTypeExpr

The type expression of the Char type.

unitType :: CTypeExpr

The type expression of the unit type.

dateType :: CTypeExpr

The type expression of the Time.CalendarTime type.

cfunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

336

Constructs a function declaration from a given qualified function name, arity, visibility,
type expression and list of defining rules.

cmtfunc :: String → (String,String) → Int → CVisibility → CTypeExpr → [CRule]

→ CFuncDecl

Constructs a function declaration from a given comment, qualified function name, arity,
visibility, type expression and list of defining rules.

simpleRule :: [CPattern] → CExpr → CRule

Constructs a simple rule with a pattern list and an unconditional right-hand side.

simpleRuleWithLocals :: [CPattern] → CExpr → [CLocalDecl] → CRule

Constructs a simple rule with a pattern list, an unconditional right-hand side, and local
declarations.

guardedRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

Constructs a rule with a possibly guarded right-hand side and local declarations. A
simple right-hand side is constructed if there is only one True condition.

noGuard :: CExpr → (CExpr,CExpr)

Constructs a guarded expression with the trivial guard.

applyF :: (String,String) → [CExpr] → CExpr

An application of a qualified function name to a list of arguments.

applyE :: CExpr → [CExpr] → CExpr

An application of an expression to a list of arguments.

constF :: (String,String) → CExpr

A constant, i.e., an application without arguments.

applyV :: (Int,String) → [CExpr] → CExpr

An application of a variable to a list of arguments.

applyJust :: CExpr → CExpr

applyMaybe :: CExpr → CExpr → CExpr → CExpr

tupleExpr :: [CExpr] → CExpr

Constructs a tuple expression from list of component expressions.

337

letExpr :: [CLocalDecl] → CExpr → CExpr

cBranch :: CPattern → CExpr → (CPattern,CRhs)

Constructs from a pattern and an expression a branch for a case expression.

tuplePattern :: [CPattern] → CPattern

Constructs a tuple pattern from list of component patterns.

pVars :: Int → [CPattern]

Constructs, for given n, a list of n PVars starting from 0.

pInt :: Int → CPattern

Converts an integer into an AbstractCurry expression.

pFloat :: Float → CPattern

Converts a float into an AbstractCurry expression.

pChar :: Char → CPattern

Converts a character into a pattern.

pNil :: CPattern

Constructs an empty list pattern.

listPattern :: [CPattern] → CPattern

Constructs a list pattern from list of component patterns.

stringPattern :: String → CPattern

Converts a string into a pattern representing this string.

list2ac :: [CExpr] → CExpr

Converts a list of AbstractCurry expressions into an AbstractCurry representation of
this list.

cInt :: Int → CExpr

Converts an integer into an AbstractCurry expression.

cFloat :: Float → CExpr

Converts a float into an AbstractCurry expression.

cChar :: Char → CExpr

Converts a character into an AbstractCurry expression.

338

string2ac :: String → CExpr

Converts a string into an AbstractCurry represention of this string.

toVar :: Int → CExpr

Converts an index i into a variable named xi.

cvar :: String → CExpr

Converts a string into a variable with index 1.

cpvar :: String → CPattern

Converts a string into a pattern variable with index 1.

ctvar :: String → CTypeExpr

Converts a string into a type variable with index 1.

A.6.5 Library AbstractCurry.Pretty

Pretty-printing of AbstractCurry.
This library provides a pretty-printer for AbstractCurry modules.

Exported types:

data Qualification

Exported constructors:

data LayoutChoice

The choice for a generally preferred layout.

Exported constructors:

• PreferNestedLayout :: LayoutChoice

PreferNestedLayout

– prefer a layout where the arguments of long expressions are vertically aligned

• PreferFilledLayout :: LayoutChoice

PreferFilledLayout

– prefer a layout where the arguments of long expressions are filled as long as possible into
one line

data Options

Exported constructors:

339

Exported functions:

defaultOptions :: Options

The default options to pretty print a module. These are:

• page width: 78 characters

• indentation width: 2 characters

• qualification method: qualify all imported names (except prelude names)

• layout choice: prefer nested layout (see LayoutChoice)

These options can be changed by corresponding setters (setPageWith, setIndentWith,
set...Qualification, setLayoutChoice).

Note: If these default options are used for pretty-print operations other than
prettyCurryProg or ppCurryProg, then one has to set the current module name ex-
plicitly by setModName!

setPageWith :: Int → Options → Options

Sets the page width of the pretty printer options.

setIndentWith :: Int → Options → Options

Sets the indentation width of the pretty printer options.

setImportQualification :: Options → Options

Sets the qualification method to be used to print identifiers to "import qualification"
(which is the default). In this case, all identifiers imported from other modules (except
for the identifiers of the prelude) are fully qualified.

setNoQualification :: Options → Options

Sets the qualification method to be used to print identifiers to "unqualified". In this
case, no identifiers is printed with its module qualifier. This might lead to name conflicts
or unintended references if some identifiers in the pretty-printed module are in conflict
with imported identifiers.

setFullQualification :: Options → Options

Sets the qualification method to be used to print identifiers to "fully qualified". In this
case, every identifiers, including those of the processed module and the prelude, are fully
qualified.

setOnDemandQualification :: [CurryProg] → Options → Options

Sets the qualification method to be used to print identifiers to "qualification on demand".
In this case, an identifier is qualified only if it is necessary to avoid a name conflict, e.g.,
if a local identifier has the same names as an imported identifier. Since it is necessary
to know the names of all identifiers defined in the current module (to be pretty printed)
and imported from other modules, the first argument is the list of modules consisting
of the current module and all imported modules (including the prelude). The current
module must always be the head of this list.

340

setModName :: String → Options → Options

Sets the name of the current module in the pretty printer options.

setLayoutChoice :: LayoutChoice → Options → Options

Sets the preferred layout in the pretty printer options.

showCProg :: CurryProg → String

Shows a pretty formatted version of an abstract Curry Program. The options for pretty-
printing are the defaultOptions (and therefore the restrictions mentioned there apply
here too).

prettyCurryProg :: Options → CurryProg → String

Pretty-print the document generated by ppCurryProg, using the page width specified
by given options.

ppCurryProg :: Options → CurryProg → Doc

Pretty-print a CurryProg (the representation of a program, written in Curry, using
AbstractCurry) according to given options. This function will overwrite the module
name given by options with the name specified as the first component of CurryProg.
The list of imported modules is extended to all modules mentioned in the program if
qualified pretty printing is used. This is necessary to avoid errors w.r.t. names re-
exported by modules.

ppMName :: String → Doc

Pretty-print a module name (just a string).

ppExports :: Options → [CTypeDecl] → [CFuncDecl] → Doc

Pretty-print exports, i.e. all type and function declarations which are public. extract
the type and function declarations which are public and gather their qualified names in
a list.

ppImports :: Options → [String] → Doc

Pretty-print imports (list of module names) by prepending the word "import" to the
module name. If the qualification mode is Imports or Full, then the imports are
declared as qualified.

ppCOpDecl :: Options → COpDecl → Doc

Pretty-print operator precedence declarations.

ppCTypeDecl :: Options → CTypeDecl → Doc

Pretty-print type declarations, like data ... = ..., type ... = ... or newtype
... =

341

ppCFuncDecl :: Options → CFuncDecl → Doc

Pretty-print a function declaration.

ppCFuncDeclWithoutSig :: Options → CFuncDecl → Doc

Pretty-print a function declaration without signature.

ppCFuncSignature :: Options → (String,String) → CTypeExpr → Doc

Pretty-print a function signature according to given options.

ppCTypeExpr :: Options → CTypeExpr → Doc

Pretty-print a type expression.

ppCRules :: Options → (String,String) → [CRule] → Doc

Pretty-print a list of function rules, concatenated vertically.

ppCRule :: Options → (String,String) → CRule → Doc

Pretty-print a rule of a function. Given a function f x y = x * y, then x y = x * y
is a rule consisting of x y as list of patterns and x * y as right hand side.

ppCPattern :: Options → CPattern → Doc

Pretty-print a pattern expression.

ppCLiteral :: Options → CLiteral → Doc

Pretty-print given literal (Int, Float, ...).

ppCRhs :: Doc → Options → CRhs → Doc

Pretty-print the right hand side of a rule (or case expression), including the d sign,
where d is the relation (as doc) between the left hand side and the right hand side –
usually this is one of =, ->. If the right hand side contains local declarations, they will
be pretty printed too, further indented.

ppCExpr :: Options → CExpr → Doc

Pretty-print an expression.

ppCStatement :: Options → CStatement → Doc

ppQFunc :: Options → (String,String) → Doc

Pretty-print a function name or constructor name qualified according to given options.
Use ppQType or ppType for pretty-printing type names.

ppFunc :: (String,String) → Doc

Pretty-print a function name or constructor name non-qualified. Use ppQType or ppType
for pretty-printing type names.

ppQType :: Options → (String,String) → Doc

Pretty-print a type (QName) qualified according to given options.

ppType :: (String,String) → Doc

Pretty-print a type (QName) non-qualified.

342

A.6.6 Library FlatCurry.Types

This library supports meta-programming, i.e., the manipulation of Curry programs in Curry. For
this purpose, the library contains definitions of data types for the representation of so-called
FlatCurry programs.

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to
avoid name clashes. The first component is the module name and the second component
the unqualified name as it occurs in the source program.

type TVarIndex = Int

The data type for representing type variables. They are represented by (TVar i) where
i is a type variable index.

type VarIndex = Int

Data type for representing object variables. Object variables occurring in expressions
are represented by (Var i) where i is a variable index.

type Arity = Int

Arity of a function.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this
data type has the form

(Prog modname imports typedecls functions opdecls)

where modname is the name of this module, imports is the list of modules names that are
imported, and typedecls, functions, and opdecls are the list of data type, function,
and operator declarations contained in this module, respectively.

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

343

• Private :: Visibility

data TypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually
numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type
parameters and a list of constructor declarations.

Exported constructors:

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list of
the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function
type, or a type constructor application.

Note: the names of the predefined type constructors are "Int", "Float", "Bool", "Char",
"IO", "()" (unit type), "(,...,)" (tuple types), "[]" (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

344

data OpDecl

Data type for operator declarations. An operator declaration fix p n in Curry corre-
sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name k type (Rule [i1,...,ik] e))

and represents the function name with definition

name :: type
name x1...xk = e

where each ij is the index of the variable xj.

Note: the variable indices are unique inside each function declaration and are usually
numbered from 0

External functions are represented as

(Func name arity type (External s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

345

data Rule

A rule is either a list of formal parameters together with an expression or an "External"
tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or
rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

Data type for classifying combinations (i.e., a function/constructor applied to some
arguments).

Exported constructors:

• FuncCall :: CombType

FuncCall

– a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall

– a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall

– a partial call to a function (i.e., not all arguments are provided) where the parameter is
the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall

– a partial call to a constructor (i.e., not all arguments are provided) where the parameter
is the number of missing arguments

346

data Expr

Data type for representing expressions.

Remarks:

if-then-else expressions are represented as rigid case expressions:

(if e1 then e2 else e3)

is represented as

(case e1 of { True -> e2; False -> e3})

Higher-order applications are represented as calls to the (external) function apply. For
instance, the rule

app f x = f x

is represented as

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

A conditional rule is represented as a call to an external function cond where the first
argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = True

is represented as

(Rule [0]
(Comb FuncCall ("Prelude","cond")

[Comb FuncCall ("Prelude","=:=") [Var 0, Lit (Intc 2)],
Comb FuncCall ("Prelude","True") []]))

Exported constructors:

• Var :: Int → Expr

Var

– variable (represented by unique index)

• Lit :: Literal → Expr

Lit

– literal (Int/Float/Char constant)

347

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb

– application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

Let

– introduction of local variables via (recursive) let declarations

• Free :: [Int] → Expr → Expr

Free

– introduction of free local variables

• Or :: Expr → Expr → Expr

Or

– disjunction of two expressions (used to translate rules with overlapping left-hand sides)

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case

– case distinction (rigid or flex)

• Typed :: Expr → TypeExpr → Expr

Typed

– typed expression to represent an expression with a type declaration

data BranchExpr

Data type for representing branches in a case expression.

Branches "(m.c x1...xn) -> e" in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-
stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

348

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either
an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

Exported functions:

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,
names not defined in this module (except for names defined in the prelude) are prefixed
with their module name.

A.6.7 Library FlatCurry.Files

This library supports meta-programming, i.e., the manipulation of Curry programs in Curry. This
library defines I/O actions

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry
program. Thus, the argument is the module path (without suffix ".curry" or ".lcurry")
and the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which parses a Curry program with respect to some parser options and
returns the corresponding FlatCurry program. This I/O action is used by the standard
action readFlatCurry.

flatCurryFileName :: String → String

349

Transforms a name of a Curry program (with or without suffix ".curry" or ".lcurry")
into the name of the file containing the corresponding FlatCurry program.

flatCurryIntName :: String → String

Transforms a name of a Curry program (with or without suffix ".curry" or ".lcurry")
into the name of the file containing the corresponding FlatCurry program.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ".fcy" format. In contrast to
readFlatCurry, this action does not parse a source program. Thus, the argument must
be the name of an existing file (with suffix ".fcy") containing a FlatCurry program in
".fcy" format and the result is a FlatCurry term representing this program.

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry module, i.e., a FlatCurry program
containing only "Public" entities and function definitions without rules (i.e., external
functions). The argument is the file name without suffix ".curry" (or ".lcurry") and the
result is a FlatCurry term representing the interface of this module.

readFlatCurryIntWithParseOptions :: String → FrontendParams → IO Prog

I/O action which parses Curry program with respect to some parser options and re-
turns the FlatCurry interface of this program, i.e., a FlatCurry program containing
only "Public" entities and function definitions without rules (i.e., external functions).
The argument is the file name without suffix ".curry" (or ".lcurry") and the result is a
FlatCurry term representing the interface of this module.

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ".fcy" format. The first argument must be the
name of the target file (with suffix ".fcy").

lookupFlatCurryFileInLoadPath :: String → IO (Maybe String)

Returns the name of the FlatCurry file of a module in the load path, if this file exists.

getFlatCurryFileInLoadPath :: String → IO String

Returns the name of the FlatCurry file of a module in the load path, if this file exists.

A.6.8 Library FlatCurry.Goodies

This library provides selector functions, test and update operations as well as some useful auxiliary
functions for FlatCurry data terms. Most of the provided functions are based on general transfor-
mation functions that replace constructors with user-defined functions. For recursive datatypes the
transformations are defined inductively over the term structure. This is quite usual for transfor-
mations on FlatCurry terms, so the provided functions can be used to implement specific trans-
formations without having to explicitly state the recursion. Essentially, the tedious part of such
transformations - descend in fairly complex term structures - is abstracted away, which hopefully
makes the code more clear and brief.

350

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

351

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

352

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

353

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

354

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

355

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

funcType :: FuncDecl → TypeExpr

get type of function

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

356

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

357

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

358

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of variables in let declaration

letBody :: Expr → Expr

get body of let declaration

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

359

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → (a → TypeExpr → a) → Expr → a

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

360

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

updTypeds :: (Expr → TypeExpr → Expr) → Expr → Expr

update all typed expressions in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

is expression a partial constructor call?

isGround :: Expr → Bool

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

361

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

get literal from literal pattern

isConsPattern :: Pattern → Bool

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

A.6.9 Library FlatCurry.Pretty

This library provides pretty-printers for FlatCurry modules and all substructures (e.g., expressions).

362

Exported types:

data Options

Options for pretty printing

Exported constructors:

• Options :: Int → QualMode → String → Options

data QualMode

Qualification mode, determines whether identifiers are printed qualified or unqualified.
While QualNone and QualImports aim at readability, there may be ambiguities due to
shadowing. On the contrary, QualImports and QualAll produce correct output at the
cost of readability.

Exported constructors:

• QualNone :: QualMode

QualNone

– no qualification, only unqualified names

• QualImportsButPrelude :: QualMode

QualImportsButPrelude

– qualify all imports except those from the module Prelude

• QualImports :: QualMode

QualImports

– qualify all imports, including Prelude

• QualAll :: QualMode

QualAll

– qualify all names

Exported functions:

indentWidth :: Options → Int

qualMode :: Options → QualMode

currentModule :: Options → String

363

defaultOptions :: Options

Default Options for pretty-printing.

ppProg :: Options → Prog → Doc

pretty-print a FlatCurry module

ppHeader :: Options → String → [TypeDecl] → [FuncDecl] → Doc

pretty-print the module header

ppExports :: Options → [TypeDecl] → [FuncDecl] → Doc

pretty-print the export list

ppTypeExport :: Options → TypeDecl → Doc

pretty-print a type export

ppConsExports :: Options → [ConsDecl] → [Doc]

pretty-print the export list of constructors

ppFuncExports :: Options → [FuncDecl] → [Doc]

pretty-print the export list of functions

ppImports :: Options → [String] → Doc

pretty-print a list of import statements

ppImport :: Options → String → Doc

pretty-print a single import statement

ppOpDecls :: Options → [OpDecl] → Doc

pretty-print a list of operator fixity declarations

ppOpDecl :: Options → OpDecl → Doc

pretty-print a single operator fixity declaration

ppFixity :: Fixity → Doc

pretty-print the associativity keyword

ppTypeDecls :: Options → [TypeDecl] → Doc

pretty-print a list of type declarations

ppTypeDecl :: Options → TypeDecl → Doc

364

pretty-print a type declaration

ppConsDecls :: Options → [ConsDecl] → Doc

pretty-print the constructor declarations

ppConsDecl :: Options → ConsDecl → Doc

pretty print a single constructor

ppTypeExp :: Options → TypeExpr → Doc

pretty a top-level type expression

ppTypeExpr :: Options → Int → TypeExpr → Doc

pretty-print a type expression

ppTVarIndex :: Int → Doc

pretty-print a type variable

ppFuncDecls :: Options → [FuncDecl] → Doc

pretty-print a list of function declarations

ppFuncDecl :: Options → FuncDecl → Doc

pretty-print a function declaration

ppRule :: Options → Rule → Doc

pretty-print a function rule

ppExp :: Options → Expr → Doc

Pretty-print a top-level expression.

ppExpr :: Options → Int → Expr → Doc

pretty-print an expression

ppVarIndex :: Int → Doc

pretty-print a variable

ppLiteral :: Literal → Doc

pretty-print a literal

ppComb :: Options → Int → (String,String) → [Expr] → Doc

Pretty print a constructor or function call

ppDecls :: Options → [(Int,Expr)] → Doc

365

pretty-print a list of declarations

ppDecl :: Options → (Int,Expr) → Doc

pretty-print a single declaration

ppCaseType :: CaseType → Doc

Pretty print the type of a case expression

ppBranch :: Options → BranchExpr → Doc

Pretty print a case branch

ppPattern :: Options → Pattern → Doc

Pretty print a pattern

ppPrefixQOp :: Options → (String,String) → Doc

pretty-print a qualified prefix operator.

ppPrefixOp :: (String,String) → Doc

pretty-print a prefix operator unqualified.

ppInfixQOp :: Options → (String,String) → Doc

pretty-print an infix operator

ppQName :: Options → (String,String) → Doc

Pretty-print a qualified name

ppName :: (String,String) → Doc

Pretty-print a qualified name unqualified (e.g., for type definitions).

isInfixOp :: (String,String) → Bool

Check whether an operator is an infix operator

isConsId :: (String,String) → Bool

Check whether an identifier represents the : list constructor.

isListId :: (String,String) → Bool

Check whether an identifier represents a list

isTupleId :: (String,String) → Bool

Check whether an identifier represents a tuple

indent :: Options → Doc → Doc

Indentation

366

A.6.10 Library FlatCurry.Read

This library defines operations to read a FlatCurry programs or interfaces together with all its
imported modules in the current load path.

Exported functions:

readFlatCurryInPath :: [String] → String → IO Prog

Reads a FlatCurry program together in a given load path. The arguments are a load
path and the name of the module.

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is
the name of the main module, possibly with a directory prefix.

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.
The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The
argument is the name of the main module, possibly with a directory prefix. If there is
no interface file but a FlatCurry file (suffix ".fcy"), the FlatCurry file is read instead of
the interface.

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given
load path. The arguments are a load path and the name of the main module. If there
is no interface file but a FlatCurry file (suffix ".fcy"), the FlatCurry file is read instead
of the interface.

A.6.11 Library FlatCurry.Show

This library contains operations to transform FlatCurry programs into string representations, either
in a FlatCurry format or in a Curry-like syntax.
This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg,
showFlatType, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurryType,
showCurryExpr,...).

367

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.6.12 Library FlatCurry.XML

This library contains functions to convert FlatCurry programs into corresponding XML expressions
and vice versa. This can be used to store Curry programs in a way independent of a Curry system
or to use a Curry system, like PAKCS, as back end by other functional logic programming systems.

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

368

A.6.13 Library FlatCurry.FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-
hand side of a function definition).

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases
in this expression. If the expression has rigid as well as flex cases (which cannot be the
case for source level programs but might occur after some program transformations),
the result ConflictFR is returned.

A.6.14 Library FlatCurry.Compact

This module contains functions to reduce the size of FlatCurry programs by combining the main
module and all imports into a single program that contains only the functions directly or indirectly
called from a set of main functions.

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose

– for more output

• Main :: String → Option

Main

369

– optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports

– optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs

– optimize w.r.t. given list of initially required functions

• Required :: [RequiredSpec] → Option

Required

– list of functions that are implicitly required and, thus, should not be deleted if the
corresponding module is imported

• Import :: String → Option

Import

– module that should always be imported (useful in combination with option InitFuncs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun requires reqfun) specifies that the use of the function "fun" implies the application
of function "reqfun".

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function "fun" should be always present if the
corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be
generated by external functions like "==" or "=:=" on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from
a set of main functions and writes it into a FlatCurry file. This is done by merging all
imported FlatCurry modules and removing the imported functions that are definitely
not used.

370

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a
set of main functions. This is done by merging all imported FlatCurry modules (these
are loaded demand-driven so that modules that contains no potentially called functions
are not loaded) and removing the imported functions that are definitely not used.

A.6.15 Library FlatCurry.Annotated.Types

This library contains a version of FlatCurry’s abstract syntax tree which can be annotated with
arbitrary information due to a polymorphic type parameter. For instance, this could be used to
annotate function declarations and expressions with their corresponding type.
For more information about the abstract syntax tree of FlatCurry, see the documentation of the
respective module.

Exported types:

type Arity = Int

Arity of a function declaration

data AProg

Annotated FlatCurry program (corresponds to a module)

Exported constructors:

• AProg :: String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] →
AProg a

data AFuncDecl

Annotated function declaration

Exported constructors:

• AFunc :: (String,String) → Int → Visibility → TypeExpr → (ARule a) →
AFuncDecl a

data ARule

Annotated function rule

Exported constructors:

• ARule :: a → [(Int,a)] → (AExpr a) → ARule a

• AExternal :: a → String → ARule a

data AExpr

371

Annotated expression

Exported constructors:

• AVar :: a → Int → AExpr a

• ALit :: a → Literal → AExpr a

• AComb :: a → CombType → ((String,String),a) → [AExpr a] → AExpr a

• ALet :: a → [((Int,a),AExpr a)] → (AExpr a) → AExpr a

• AFree :: a → [(Int,a)] → (AExpr a) → AExpr a

• AOr :: a → (AExpr a) → (AExpr a) → AExpr a

• ACase :: a → CaseType → (AExpr a) → [ABranchExpr a] → AExpr a

• ATyped :: a → (AExpr a) → TypeExpr → AExpr a

data ABranchExpr

Annotated case branch

Exported constructors:

• ABranch :: (APattern a) → (AExpr a) → ABranchExpr a

data APattern

Annotated pattern

Exported constructors:

• APattern :: a → ((String,String),a) → [(Int,a)] → APattern a

• ALPattern :: a → Literal → APattern a

A.6.16 Library FlatCurry.Annotated.Pretty

This library provides pretty-printers for AnnotatedFlatCurry modules and all substructures (e.g.,
expressions). Note that annotations are ignored for pretty-printing.

Exported functions:

ppProg :: AProg a → Doc

pretty-print a FlatCurry module

ppHeader :: String → [TypeDecl] → [AFuncDecl a] → Doc

pretty-print the module header

372

ppExports :: [TypeDecl] → [AFuncDecl a] → Doc

pretty-print the export list

ppTypeExport :: TypeDecl → Doc

pretty-print a type export

ppConsExports :: [ConsDecl] → [Doc]

pretty-print the export list of constructors

ppFuncExports :: [AFuncDecl a] → [Doc]

pretty-print the export list of functions

ppImports :: [String] → Doc

pretty-print a list of import statements

ppImport :: String → Doc

pretty-print a single import statement

ppOpDecls :: [OpDecl] → Doc

pretty-print a list of operator fixity declarations

ppOpDecl :: OpDecl → Doc

pretty-print a single operator fixity declaration

ppFixity :: Fixity → Doc

pretty-print the associativity keyword

ppTypeDecls :: [TypeDecl] → Doc

pretty-print a list of type declarations

ppTypeDecl :: TypeDecl → Doc

pretty-print a type declaration

ppConsDecls :: [ConsDecl] → Doc

pretty-print the constructor declarations

ppConsDecl :: ConsDecl → Doc

pretty print a single constructor

ppTypeExp :: TypeExpr → Doc

pretty a top-level type expression

373

ppTypeExpr :: Int → TypeExpr → Doc

pretty-print a type expression

ppTVarIndex :: Int → Doc

pretty-print a type variable

ppFuncDecls :: [AFuncDecl a] → Doc

pretty-print a list of function declarations

ppFuncDecl :: AFuncDecl a → Doc

pretty-print a function declaration

ppRule :: ARule a → Doc

pretty-print a function rule

ppExp :: AExpr a → Doc

pretty-print a top-level expression

ppExpr :: Int → AExpr a → Doc

pretty-print an expression

ppAVarIndex :: (Int,a) → Doc

pretty-print an annotated variable

ppVarIndex :: Int → Doc

pretty-print a variable

ppLiteral :: Literal → Doc

pretty-print a literal

showEscape :: Char → String

Escape character literal

ppComb :: Int → ((String,String),a) → [AExpr b] → Doc

Pretty print a constructor or function call

ppDecls :: [((Int,a),AExpr b)] → Doc

pretty-print a list of declarations

ppDecl :: ((Int,a),AExpr b) → Doc

pretty-print a single declaration

374

ppCaseType :: CaseType → Doc

Pretty print the type of a case expression

ppBranch :: ABranchExpr a → Doc

Pretty print a case branch

ppPattern :: APattern a → Doc

Pretty print a pattern

ppPrefixOp :: (String,String) → Doc

pretty-print a prefix operator

ppInfixOp :: (String,String) → Doc

pretty-print an infix operator

ppQName :: (String,String) → Doc

Pretty-print a qualified name

isInfixOp :: (String,String) → Bool

Check whether an operator is an infix operator

isListId :: (String,String) → Bool

Check whether an identifier represents a list

isTupleId :: (String,String) → Bool

Check whether an identifier represents a tuple

indent :: Doc → Doc

Indentation

A.6.17 Library FlatCurry.Annotated.Goodies

This library provides selector functions, test and update operations as well as some useful auxiliary
functions for FlatCurry data terms. Most of the provided functions are based on general transfor-
mation functions that replace constructors with user-defined functions. For recursive datatypes the
transformations are defined inductively over the term structure. This is quite usual for transfor-
mations on FlatCurry terms, so the provided functions can be used to implement specific trans-
formations without having to explicitly state the recursion. Essentially, the tedious part of such
transformations - descend in fairly complex term structures - is abstracted away, which hopefully
makes the code more clear and brief.

375

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] → b) →
AProg a → b

transform program

progName :: AProg a → String

get name from program

progImports :: AProg a → [String]

get imports from program

progTypes :: AProg a → [TypeDecl]

get type declarations from program

progFuncs :: AProg a → [AFuncDecl a]

get functions from program

progOps :: AProg a → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([AFuncDecl a] → [AFuncDecl a]) → ([OpDecl] → [OpDecl]) → AProg

a → AProg a

update program

updProgName :: (String → String) → AProg a → AProg a

update name of program

updProgImports :: ([String] → [String]) → AProg a → AProg a

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → AProg a → AProg a

update type declarations of program

updProgFuncs :: ([AFuncDecl a] → [AFuncDecl a]) → AProg a → AProg a

update functions of program

376

updProgOps :: ([OpDecl] → [OpDecl]) → AProg a → AProg a

update infix operators of program

allVarsInProg :: AProg a → [Int]

get all program variables (also from patterns)

updProgExps :: (AExpr a → AExpr a) → AProg a → AProg a

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → AProg a → AProg a

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → AProg a → AProg a

update all qualified names in program

rnmProg :: String → AProg a → AProg a

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

377

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

378

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

379

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

380

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → ARule a → b) →
AFuncDecl a → b

transform function

funcName :: AFuncDecl a → (String,String)

get name of function

funcArity :: AFuncDecl a → Int

get arity of function

funcVisibility :: AFuncDecl a → Visibility

get visibility of function

funcType :: AFuncDecl a → TypeExpr

get type of function

funcRule :: AFuncDecl a → ARule a

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (ARule a → ARule a) → AFuncDecl a →
AFuncDecl a

update function

updFuncName :: ((String,String) → (String,String)) → AFuncDecl a → AFuncDecl a

update name of function

updFuncArity :: (Int → Int) → AFuncDecl a → AFuncDecl a

update arity of function

updFuncVisibility :: (Visibility → Visibility) → AFuncDecl a → AFuncDecl a

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → AFuncDecl a → AFuncDecl a

update type of function

updFuncRule :: (ARule a → ARule a) → AFuncDecl a → AFuncDecl a

update rule of function

381

isExternal :: AFuncDecl a → Bool

is function externally defined?

allVarsInFunc :: AFuncDecl a → [Int]

get variable names in a function declaration

funcArgs :: AFuncDecl a → [(Int,a)]

get arguments of function, if not externally defined

funcBody :: AFuncDecl a → AExpr a

get body of function, if not externally defined

funcRHS :: AFuncDecl a → [AExpr a]

rnmAllVarsInFunc :: (Int → Int) → AFuncDecl a → AFuncDecl a

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → AFuncDecl a →
AFuncDecl a

update all qualified names in function

updFuncArgs :: ([(Int,a)] → [(Int,a)]) → AFuncDecl a → AFuncDecl a

update arguments of function, if not externally defined

updFuncBody :: (AExpr a → AExpr a) → AFuncDecl a → AFuncDecl a

update body of function, if not externally defined

trRule :: (a → [(Int,a)] → AExpr a → b) → (a → String → b) → ARule a → b

transform rule

ruleArgs :: ARule a → [(Int,a)]

get rules arguments if it’s not external

ruleBody :: ARule a → AExpr a

get rules body if it’s not external

ruleExtDecl :: ARule a → String

get rules external declaration

isRuleExternal :: ARule a → Bool

is rule external?

382

updRule :: (a → a) → ([(Int,a)] → [(Int,a)]) → (AExpr a → AExpr a) → (String

→ String) → ARule a → ARule a

update rule

updRuleArgs :: ([(Int,a)] → [(Int,a)]) → ARule a → ARule a

update rules arguments

updRuleBody :: (AExpr a → AExpr a) → ARule a → ARule a

update rules body

updRuleExtDecl :: (String → String) → ARule a → ARule a

update rules external declaration

allVarsInRule :: ARule a → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → ARule a → ARule a

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → ARule a → ARule a

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: AExpr a → Int

get internal number of variable

383

literal :: AExpr a → Literal

get literal if expression is literal expression

combType :: AExpr a → CombType

get combination type of a combined expression

combName :: AExpr a → (String,String)

get name of a combined expression

combArgs :: AExpr a → [AExpr a]

get arguments of a combined expression

missingCombArgs :: AExpr a → Int

get number of missing arguments if expression is combined

letBinds :: AExpr a → [((Int,a),AExpr a)]

get indices of variables in let declaration

letBody :: AExpr a → AExpr a

get body of let declaration

freeVars :: AExpr a → [Int]

get variable indices from declaration of free variables

freeExpr :: AExpr a → AExpr a

get expression from declaration of free variables

orExps :: AExpr a → [AExpr a]

get expressions from or-expression

caseType :: AExpr a → CaseType

get case-type of case expression

caseExpr :: AExpr a → AExpr a

get scrutinee of case expression

caseBranches :: AExpr a → [ABranchExpr a]

isVar :: AExpr a → Bool

is expression a variable?

384

isLit :: AExpr a → Bool

is expression a literal expression?

isComb :: AExpr a → Bool

is expression combined?

isLet :: AExpr a → Bool

is expression a let expression?

isFree :: AExpr a → Bool

is expression a declaration of free variables?

isOr :: AExpr a → Bool

is expression an or-expression?

isCase :: AExpr a → Bool

is expression a case expression?

trExpr :: (a → Int → b) → (a → Literal → b) → (a → CombType →
((String,String),a) → [b] → b) → (a → [((Int,a),b)] → b → b) → (a →
[(Int,a)] → b → b) → (a → b → b → b) → (a → CaseType → b → [c] → b)

→ (APattern a → b → c) → (a → b → TypeExpr → b) → AExpr a → b

transform expression

updVars :: (a → Int → AExpr a) → AExpr a → AExpr a

update all variables in given expression

updLiterals :: (a → Literal → AExpr a) → AExpr a → AExpr a

update all literals in given expression

updCombs :: (a → CombType → ((String,String),a) → [AExpr a] → AExpr a) →
AExpr a → AExpr a

update all combined expressions in given expression

updLets :: (a → [((Int,a),AExpr a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all let expressions in given expression

updFrees :: (a → [(Int,a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all free declarations in given expression

updOrs :: (a → AExpr a → AExpr a → AExpr a) → AExpr a → AExpr a

update all or expressions in given expression

385

updCases :: (a → CaseType → AExpr a → [ABranchExpr a] → AExpr a) → AExpr a →
AExpr a

update all case expressions in given expression

updBranches :: (APattern a → AExpr a → ABranchExpr a) → AExpr a → AExpr a

update all case branches in given expression

updTypeds :: (a → AExpr a → TypeExpr → AExpr a) → AExpr a → AExpr a

update all typed expressions in given expression

isFuncCall :: AExpr a → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: AExpr a → Bool

is expression a partial function call?

isConsCall :: AExpr a → Bool

is expression a call of a constructor?

isConsPartCall :: AExpr a → Bool

is expression a partial constructor call?

isGround :: AExpr a → Bool

is expression fully evaluated?

allVars :: AExpr a → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → AExpr a → AExpr a

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → AExpr a → AExpr a

update all qualified names in expression

trBranch :: (APattern a → AExpr a → b) → ABranchExpr a → b

transform branch expression

branchPattern :: ABranchExpr a → APattern a

get pattern from branch expression

branchExpr :: ABranchExpr a → AExpr a

get expression from branch expression

386

updBranch :: (APattern a → APattern a) → (AExpr a → AExpr a) → ABranchExpr a

→ ABranchExpr a

update branch expression

updBranchPattern :: (APattern a → APattern a) → ABranchExpr a → ABranchExpr a

update pattern of branch expression

updBranchExpr :: (AExpr a → AExpr a) → ABranchExpr a → ABranchExpr a

update expression of branch expression

trPattern :: (a → ((String,String),a) → [(Int,a)] → b) → (a → Literal → b)

→ APattern a → b

transform pattern

patCons :: APattern a → (String,String)

get name from constructor pattern

patArgs :: APattern a → [(Int,a)]

get arguments from constructor pattern

patLiteral :: APattern a → Literal

get literal from literal pattern

isConsPattern :: APattern a → Bool

is pattern a constructor pattern?

updPattern :: (((String,String),a) → ((String,String),a)) → ([(Int,a)] →
[(Int,a)]) → (Literal → Literal) → APattern a → APattern a

update pattern

updPatCons :: ((String,String) → (String,String)) → APattern a → APattern a

update constructors name of pattern

updPatArgs :: ([(Int,a)] → [(Int,a)]) → APattern a → APattern a

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → APattern a → APattern a

update literal of pattern

patExpr :: APattern a → AExpr a

build expression from pattern

387

annRule :: ARule a → a

annExpr :: AExpr a → a

Extract the annotation of an annotated expression.

annPattern :: APattern a → a

Extract the annotation of an annotated pattern.

unAnnProg :: AProg a → Prog

unAnnFuncDecl :: AFuncDecl a → FuncDecl

unAnnRule :: ARule a → Rule

unAnnExpr :: AExpr a → Expr

unAnnPattern :: APattern a → Pattern

A.6.18 Library FlatCurry.Annotated.TypeSubst

Type substitutions on type-annotated AnnotatedFlatCurry

Exported types:

type AFCSubst = FM Int TypeExpr

The (abstract) data type for substitutions on TypeExpr.

Exported functions:

showAFCSubst :: FM Int TypeExpr → String

emptyAFCSubst :: FM Int TypeExpr

The empty substitution

lookupAFCSubst :: FM Int TypeExpr → Int → Maybe TypeExpr

Searches the substitution for a mapping from the given variable index to a term.

388

substFunc :: FM Int TypeExpr → AFuncDecl TypeExpr → AFuncDecl TypeExpr

Applies a substitution to a function.

substRule :: FM Int TypeExpr → ARule TypeExpr → ARule TypeExpr

Applies a substitution to a type expression.

substExpr :: FM Int TypeExpr → AExpr TypeExpr → AExpr TypeExpr

Applies a substitution to a type expression.

substSnd :: FM Int TypeExpr → (a,TypeExpr) → (a,TypeExpr)

substBranch :: FM Int TypeExpr → ABranchExpr TypeExpr → ABranchExpr TypeExpr

Applies a substitution to a branch expression.

substPattern :: FM Int TypeExpr → APattern TypeExpr → APattern TypeExpr

Applies a substitution to a pattern.

subst :: FM Int TypeExpr → TypeExpr → TypeExpr

Looks up a type in a substitution and converts the resulting Term to a TypeExpr.
Returns a given default value if the lookup fails.

A.6.19 Library FlatCurry.Annotated.TypeInference

Library to annotate the expressions of a FlatCurry program with type information.
It can be used by any other Curry program which processes or transforms FlatCurry programs. The
main operation to use is

inferProg :: Prog -> IO (Either String (AProg TypeExpr))

which annotates a FlatCurry program with type information.
The type inference works in several steps:

1. For each known function and constructor, either imported or defined in the module itself, the
respective type is inserted into a type environment (type assumption).

2. Every subexpression is annotated with a fresh type variable, whereas constructor and function
names are annotated with a fresh variant of the type in the type assumption.

3. Based on FlatCurry’s type inference rules, type equations are generated for a function’s rule.

4. The resulting equations are solved using unification and the resulting substitution is applied
to the function rule.

5. The inferred types are then normalized such that for every function rule the type variables
start with 0.

389

In addition, the function inferNewFunctions allows to infer the types of a list of functions whose
type is not known before. Consequently, this disallows polymorphic recursive functions. Those
functions are separated into strongly connected components before their types are inferred to allow
mutually recursive function definitions.
In case of any error, the type inference quits with an error message.

Exported types:

type TypeEnv = FM (String,String) TypeExpr

A type environment.

Exported functions:

inferProg :: Prog → IO (Either String (AProg TypeExpr))

Infers the type of a whole program.

inferProgFromProgEnv :: [(String,Prog)] → Prog → Either String (AProg TypeExpr)

Infers the type of a whole program w.r.t. a list of imported modules.

inferFunction :: Prog → (String,String) → IO (Either String (AFuncDecl

TypeExpr))

Infers the types of a single function specified by its qualified name.

inferNewFunctions :: Prog → [FuncDecl] → IO (Either String [AFuncDecl

TypeExpr])

Infers the types of a group of (possibly mutually recursive) functions. Note that the
functions are only monomorphically instantiated, i.e., polymorphic recursion is not sup-
ported. The given type may be too general, for instance a type variable only, and will
be specialised to the inferred type.

inferExpr :: Prog → Expr → IO (Either String (AExpr TypeExpr))

Infer the type of a single expression.

inferProgEnv :: FM (String,String) TypeExpr → Prog → Either String (AProg

TypeExpr)

Infers the type of a whole program. Uses the given type environment instead of gener-
ating a new one.

inferFunctionEnv :: FM (String,String) TypeExpr → Prog → (String,String) →
Either String (AFuncDecl TypeExpr)

Infers the types of a single function specified by its qualified name. Uses the given type
environment instead of generating a new one.

390

inferNewFunctionsEnv :: FM (String,String) TypeExpr → String → [FuncDecl] →
Either String [AFuncDecl TypeExpr]

Infers the types of a group of (possibly mutually recursive) functions. Note that the
functions are only monomorphically instantiated, i.e., polymorphic recursion is not sup-
ported. The given type may be too general, for instance a type variable only, and will
be specialised to the inferred type.

inferExprEnv :: FM (String,String) TypeExpr → Expr → Either String (AExpr

TypeExpr)

Infers the types of a single expression. Uses the given type environment instead of
generating a new one.

getTypeEnv :: Prog → IO (FM (String,String) TypeExpr)

Extract the type environment from the given Prog.

getTypeEnvFromProgEnv :: [(String,Prog)] → Prog → Either String (FM

(String,String) TypeExpr)

Extract the type environment from the given Prog by lookup in a module name -> Prog
environment.

A.6.20 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The
source string is classified into the following categories:

• moduleHead - module interface, imports, operators

• code - the part where the actual program is defined

• big comment - parts enclosed in {- ... -}

• small comment - from "–" to the end of a line

• text - a string, i.e. text enclosed in "..."

• letter - the given string is the representation of a character

• meta - containing information for meta programming

For an example to use the state scanner cf. addtypes, the tool to add function types to a given
program.

391

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

Exported functions:

isSmallComment :: Token → Bool

test for category "SmallComment"

isBigComment :: Token → Bool

test for category "BigComment"

isComment :: Token → Bool

test if given token is a comment (big or small)

isText :: Token → Bool

test for category "Text" (String)

isLetter :: Token → Bool

test for category "Letter" (Char)

isCode :: Token → Bool

test for category "Code"

isModuleHead :: Token → Bool

test for category "ModuleHead", ie imports and operator declarations

392

isMeta :: Token → Bool

test for category "Meta", ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to know
whether a given part of code is at the beginning of a line or in the middle. The state
scanner organizes the code in such a way that every string categorized as "Code" always
starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-
ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program
after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

393

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax
is intended to simplify the writing of texts whose source is readable and can be easily formatted,
e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only
internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.
Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two _ or * characters:

emphasize
emphasize
__strong__
strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).
If one wants to put a link under a text, one can put the text in square brackets directly followed by
the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or
_, in the output document, it should be escaped with a backslash, i.e., a backslash followed by a
special character in the source text is translated into the given character (this also holds for program
code, see below). For instance, the input text

word

produces the output "_word_". The following backslash escapes are recognized:

\ backslash
‘ backtick
* asterisk
_ underscore
{} curly braces
[] square brackets

394

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses
hash symbol
+ plus symbol
- minus symbol (dash)
. dot

blank
! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list
elements (where the star can be preceded by blanks). The individual list elements must contain the
same indentation, as in

* First list element
with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one
could nest lists. Thus, the input text

- Color:
+ Yellow
+ Read
+ Blue

- BW:
+ Black
+ White

is formatted as

• Color:

395

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by
a dot and at least one blank. All following lines belonging to the same numbered item must have
the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second
element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is
> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input
line by at least four spaces where all following lines must have at least the same indentation as the
first non-blank character of the first line:

f x y = let z = (x,y)
in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)
in (z,z)

To visualize the structure of a document, one can also put a line containing only blanks and at least
three dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

396

B.3 Headers

The are two forms to mark headers. In the first form, one can "underline" the main header in the
source text by equal signs and the second-level header by dashes:

First-level header
==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,
where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

397

C SQL Syntax Supported by CurryPP

This section contains a grammar in EBNF which specifies the SQL syntax recognized by the Curry
preprocessor in integrated SQL code (see Sect. 12.2). The grammar satisfies the LL(1) property
and is influenced by the SQLite dialect.14

--------------type of statements--------------------------------

statement ::= queryStatement | transactionStatement
queryStatement ::= (deleteStatement

| insertStatement
| selectStatement
| updateStatement)
’;’

------------- transaction -------------------------------------

transactionStatement ::= (BEGIN
|IN TRANSACTION ’(’ queryStatement

{ queryStatement }’)’
|COMMIT
|ROLLBACK) ’;’

-------------- delete --

deleteStatement ::= DELETE FROM tableSpecification
[WHERE condition]

-------------insert ---

insertStatement ::= INSERT INTO tableSpecification
insertSpecification

insertSpecification ::= [’(’ columnNameList ’)’] valuesClause

valuesClause ::= VALUES valueList

------------update--

updateStatement ::= UPDATE tableSpecification
SET (columnAssignment {’,’ columnAssignment}

[WHERE condition]
| embeddedCurryExpression)

columnAssignment ::= columnName ’=’ literal

-------------select statement ---------------------------------

14https://sqlite.org/lang.html

398

https://sqlite.org/lang.html

selectStatement ::= selectHead { setOperator selectHead }
[orderByClause]
[limitClause]

selectHead ::= selectClause fromClause
[WHERE condition]
[groupByClause [havingClause]]

setOperator ::= UNION | INTERSECT | EXCEPT

selectClause ::= SELECT [(DISTINCT | ALL)]
(selectElementList | ’*’)

selectElementList ::= selectElement { ’,’ selectElement }

selectElement ::= [tableIdentifier’.’] columnName
| aggregation
| caseExpression

aggregation ::= function ’(’ [DISTINCT] columnReference ’)’

caseExpression ::= CASE WHEN condition THEN operand
ELSE operand END

function ::= COUNT | MIN | MAX | AVG | SUM

fromClause ::= FROM tableReference { ’,’ tableReference }

groupByClause ::= GROUP BY columnList

havingClause ::= HAVING conditionWithAggregation

orderByClause ::= ORDER BY columnReference [sortDirection]
{’,’ columnReference

[sortDirection] }

sortDirection ::= ASC | DESC

limitClause = LIMIT integerExpression

-------------common elements-----------------------------------

columnList ::= columnReference { ’,’ columnReference }

columnReference ::= [tableIdentifier’.’] columnName

columnNameList ::= columnName { ’,’ columnName}

tableReference ::= tableSpecification [AS tablePseudonym]

399

[joinSpecification]
tableSpecification ::= tableName

condition ::= operand operatorExpression
[logicalOperator condition]

| EXISTS subquery [logicalOperator condition]
| NOT condition
| ’(’ condition ’)’
| satConstraint [logicalOperator condition]

operand ::= columnReference
| literal

subquery ::= ’(’ selectStatement ’)’

operatorExpression ::= IS NULL
| NOT NULL
| binaryOperator operand
| IN setSpecification
| BETWEEN operand operand
| LIKE quotes pattern quotes

setSpecification ::= literalList

binaryOperator ::= ’>’| ’<’ | ’>=’ | ’<=’ | ’=’ | ’!=’

logicalOperator ::= AND | OR

conditionWithAggregation ::=
aggregation [logicalOperator disaggregation]

| ’(’ conditionWithAggregation ’)’
| operand operatorExpression

[logicalOperator conditionWithAggregation]
| NOT conditionWithAggregation
| EXISTS subquery

[logicalOperator conditionWithAggregation]
| satConstraint

[logicalOperator conditionWithAggregation]

aggregation ::= function ’(’(ALL | DISTINCT) columnReference’)’
binaryOperator
operand

satConstraint ::= SATISFIES tablePseudonym
relation
tablePseudonym

joinSpecification ::= joinType tableSpecification

400

[AS tablePseudonym]
[joinCondition]
[joinSpecification]

joinType ::= CROSS JOIN | INNER JOIN

joinCondition ::= ON condition

-------------identifier and datatypes-------------------------

valueList ::= (embeddedCurryExpression | literalList)
{’,’ (embeddedCurryExpression | literalList)}

literalList ::= ’(’ literal { ’,’ literal } ’)’

literal ::= numericalLiteral
| quotes alphaNumericalLiteral quotes
| dateLiteral
| booleanLiteral
| embeddedCurryExpression
| NULL

numericalLiteral ::= integerExpression
|floatExpression

integerExpression ::= [-] digit { digit }

floatExpression := [-] digit { digit } ’.’ digit { digit }

alphaNumericalLiteral ::= character { character }
character ::= digit | letter

dateLiteral ::= year ’:’ month ’:’ day ’:’
hours ’:’ minutes ’:’ seconds

month ::= digit digit
day ::= digit digit
hours ::= digit digit
minutes ::= digit digit
seconds ::= digit digit
year ::= digit digit digit digit

booleanLiteral ::= TRUE | FALSE

embeddedCurryExpression ::= ’{’ curryExpression ’}’

pattern ::= (character | specialCharacter)
{(character | specialCharacter)}

specialCharacter ::= ’%’ | ’_’

401

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

letter ::= (a...z) | (A...Z)

tableIdentifier ::= tablePseudonym | tableName
columnName ::= letter [alphanumericalLiteral]
tableName ::= letter [alphanumericalLiteral]
tablePseudonym ::= letter
relation ::= letter [[alphanumericalLiteral] | ’_’]
quotes ::= (’"’|’’’)

402

D Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the
translation process of programs inside PAKCS is shown in Figure 7 on page 404. In this figure,
boxes denote different components of PAKCS and names in boldface denote files containing various
intermediate representations during the translation process (see Section E below). The PAKCS
distribution contains a front end for reading (parsing and type checking) Curry programs that can
be also used by other Curry implementations. The back end (formerly known as “Curry2Prolog”)
compiles Curry programs into Prolog programs. It also support constraint solvers for arithmetic
constraints over real numbers and finite domain constraints, and further libraries for GUI pro-
gramming, meta-programming etc. Currently, it does not implement encapsulated search in full
generality (only a strict version of findall is supported), and concurrent threads are not executed
in a fair manner.

403

Figure 7: Overview of PAKCS

404

E Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you use PAKCS, it is not necessary to know about these auxiliary files because they
are automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Appendix A.1.4). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is compiled with
PAKCS. It can be also explicitly generated by the front end of PAKCS:

pakcs frontend --flat -ipakcshome /lib prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

If the Curry module M is stored in the directory dir, the corresponding FlatCurry pro-
gram is stored in the directory “dir/.curry”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding FlatCurry program is stored in
“dir/.curry/D1/D2/M.fcy”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” representa-
tion, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access to
module interfaces. This file is implicitly generated when a program is compiled with PAKCS
and stored in the same directory as prog.fcy.

prog.pl: This file contains a Prolog program as the result of translating the Curry program with
PAKCS.

If the Curry module M is stored in the directory dir, the corresponding Prolog program
is stored in the directory “dir/.curry/pakcs”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding Prolog program is stored in
“dir/.curry/pakcs/D1/D2/prog.pl”.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster loading.
This file is stored in the same directory as prog.pl.

prog: This file contains the executable after compiling and saving a program with PAKCS (see
Section 2.2).

405

F External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-
tion should be added to the system, this function must be declared as external in the Curry source
code and then an implementation for this external function must be inserted in the corresponding
back end. An external function is defined as follows in the Curry source code:

1. Add a type declaration for the external function somewhere in the body of the appropriate
file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int → Int → Int
(+) external

The further modifications to be done for an inclusion of an external function has to be done in the
back end. A new external function is added to the back end of PAKCS by informing the compiler
about the existence of an external function and adding an implementation of this function in the
run-time system. Therefore, the following items must be added in the PAKCS compiler system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML
format and has the following general structure:15

<primitives>
specification of external function f1
. . .

specification of external function fn
</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">
<library>lib</library>
<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global
directory pakcshome /curry2prolog/lib_src) containing the code implementing this function
and pred is a predicate name in this library implementing this function. Note that the function
f must be declared in module Mod: either as an external function or defined in Curry by

15http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure
of these files.

406

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

equations. In the latter case, the Curry definition is not translated but calls to this function
are redirected to the Prolog code specified above.

Furthermore, the list of specifications can also contain entries of the form

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code
generation, e.g., since they are never called w.r.t. to the current implementation of external
functions. For instance, this is useful when functions that can be defined in Curry should be
(usually more efficiently) are implemented as external functions.

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if the
external function requires the arguments to be evaluated in a particular form, this must be
done before calling the external function. For instance, the external function for adding two
integers requires that both arguments must be evaluated to non-variable head normal form
(which is identical to the ground constructor normal form). Therefore, the function “+” is
specified in the prelude by

(+) :: Int → Int → Int
x + y = (prim_Int_plus $# y) $# x

prim_Int_plus :: Int → Int → Int
prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.
Consequently, the specification file Prelude.prim_c2p has an entry of the form

<primitive name="prim_Int_plus" arity="2">
<library>prim_standard</library>
<entry>prim_Int_plus</entry>

</primitive>

where the Prolog library prim_standard.pl contains the Prolog code implementing this func-
tion.

2. For most external functions, a standard interface is generated by the compiler so that an n-ary
function can be implemented by an (n + 1)-ary predicate where the last argument must be
instantiated to the result of evaluating the function. The standard interface can be used if all
arguments are ensured to be fully evaluated (e.g., see definition of (+) above) and no suspension
control is necessary, i.e., it is ensured that the external function call does not suspend for all
arguments. Otherwise, the raw interface (see below) must be used. For instance, the Prolog
code implementing prim_Int_plus contained in the Prolog library prim_standard.pl is as
follows (note that the arguments of (+) are passed in reverse order to prim_Int_plus in order
to ensure a left-to-right evaluation of the original arguments by the calls to ($#)):

prim_Int_plus(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external functions with result type IO a, assumes
that the I/O action is implemented as a predicate (with a possible side effect) that instantiates

407

the last argument to the returned value of type “a”. For instance, the primitive predicate
prim_getChar implementing prelude I/O action getChar can be implemented by the Prolog
code

prim_getChar(C) :- get_code(N), char_int(C,N).

where char_int is a predicate relating the internal Curry representation of a character with
its ASCII value.

4. If some arguments passed to the external functions are not fully evaluated or the external
function might suspend, the implementation must follow the structure of the PAKCS run-
time system by using the raw interface. In this case, the name of the external entry must
be suffixed by “[raw]” in the prim_c2p file. For instance, if we want to use the raw interface
for the external function prim_Int_plus, the specification file Prelude.prim_c2p must have an
entry of the form

<primitive name="prim_Int_plus" arity="2">
<library>prim_standard</library>
<entry>prim_Int_plus[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external function consists of the
definition of an (n+3)-ary predicate pred. The first n arguments are the corresponding actual
arguments. The (n+1)-th argument is a free variable which must be instantiated to the result
of the function call after successful execution. The last two arguments control the suspension
behavior of the function (see [5] for more details): The code for the predicate pred should
only be executed when the (n+ 2)-th argument is not free, i.e., this predicate has always the
SICStus-Prolog block declaration

?- block pred(?,. . .,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-
tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external
function. Finally, the last argument (which is a free variable at call time) must be unified
with the (n + 2)-th argument after the function call is successfully evaluated (and does not
suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they
are accessed. Thus, an implementation of the external function for adding integers is as follows
in the raw interface:

?- block prim_Int_plus(?,?,?,-,?).
prim_Int_plus(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant
(and derefAll for dereferencing complex structures).

The Prolog code implementing the external functions must be accessible to the run-time system
of PAKCS by putting it into the directory containing the corresponding Curry module or into the

408

system directory pakcshome /curry2prolog/lib_src. Then it will be automatically loaded into the
run-time environment of each compiled Curry program.

Note that arbitrary functions implemented in C or Java can be connected to PAKCS by using
the corresponding interfaces of the underlying Prolog system.

409

Index
<, 162
***, 130
*., 107, 128
*#, 101, 105
+., 107, 128
+#, 101, 105
---, 41
--compact, 78
--fcypp, 78
-., 107, 128
-=-, 198
-#, 101, 105
-fpopt, 78
., 109
./=, 109
./=., 95, 262
.=., 95, 262
.==, 109
.&&, 109
.pakcsrc, 17
.<, 109
.<->., 263
.<., 95, 263
.<=, 109
.<=., 95, 263
.>, 109, 233
.>., 96, 262
.>=, 109
.>=., 95, 263
.~., 263
/., 107, 128
//, 201
/=#, 101, 105
/\, 94, 97, 102
:!, 13
:&, 208
:add, 11
:browse, 12
:cd, 13
:coosy, 13
:dir, 13

:edit, 12
:eval, 12
:fork, 13
:help, 11
:interface, 12
:load, 11
:modules, 12
:peval, 13
:programs, 12
:quit, 12
:reload, 11
:save, 13
:set, 12
:set path, 9
:show, 13
:source, 13
:type, 12
:usedimports, 12
:xml, 11, 13
==>, 94, 199
=#, 101, 105
@, 20
@author, 41
@cons, 41
@param, 41
@return, 41
@version, 41
#, 200
#/=#, 106
#/\#, 106
#=#, 106
#=>#, 106
#<, 200
#<=#, 106
#<=>#, 106
#<#, 106
#>, 200
#>=#, 106
#>#, 106
#\/#, 106
$$, 168

410

&&&, 130
PAKCS, 10
<*>, 120, 162
<+>, 168
<., 107
<.>, 123
<//>, 169
</>, 125, 168
<=., 108
<=#, 101, 105
<=>, 94
<#, 101, 105
<$

<$
$>, 169

<$+$>, 168
<$$>, 169
<$>, 120
<>, 168, 246
<~, 199
<~>, 199
<~~>, 199
>+, 120, 258
>+=, 120, 258
>., 108
>=., 108
>=#, 102, 106
>#, 102, 105
>>-, 160
>>>, 162
~>, 199, 336
\\, 94, 156
^, 147
^., 128

aBool, 320
abortTransaction, 248
above, 232
ABranchExpr, 372
abs, 148
AbstractCurry, 88
abstractCurryFileName, 331
aChar, 320
acos, 129

acosh, 130
adapt, 320
adaptWSpec, 302, 309
addAttr, 293
addAttrs, 293
addCanvas, 145
addClass, 293
addCookies, 287
addCurrySubdir, 117
addDays, 194
addDB, 244
addDescription, 267
addExtension, 123
addFormParam, 287
addHeadings, 290
addHours, 194
addListToFM, 204
addListToFM C, 204
addMinutes, 193
addMonths, 194
addPageParam, 288
addRegionStyle, 145
address, 290
addSeconds, 193
addSound, 287
addTarget, 118
addToFM, 204
addToFM C, 204
addTrailingPathSeparator, 125
addVS, 224
addYears, 194
AExpr, 371
AFCSubst, 388
aFloat, 320
AFuncDecl, 371
aInt, 320
align, 167
all different, 107
allC, 102
allCHR, 95, 97
allDBInfos, 248, 253
allDBKeyInfos, 248, 253
allDBKeys, 248, 253, 255
allDifferent, 102, 107

411

allfails, 14
allSolutions, 126
allSubsets, 110
allValues, 126
allValuesBFS, 217
allValuesDFS, 217
allValuesDiag, 217
allValuesIDS, 217
allValuesIDSwith, 217
allValuesWith, 216
allVars, 361, 386
allVarsInFunc, 357, 382
allVarsInProg, 352, 377
allVarsInRule, 358, 383
always, 199
alwaysRequired, 370
analyzing programs, 65
AName, 276
anchor, 290
andC, 102
andCHR, 95, 97
angles, 173
annExpr, 388
annPattern, 388
annRule, 388
answerEncText, 287
answerText, 287
anyPrim, 96
APattern, 372
appendStyledValue, 145
appendValue, 145
applyAt, 201
applyE, 337
applyF, 337
applyJust, 337
applyMaybe, 337
applySubst, 238
applySubstEq, 238
applySubstEqs, 238
applyV, 337
AProg, 371
ArgDescr, 132
ArgOrder, 132
args, 16, 198

argTypes, 333, 355, 380
Arity, 325, 343, 371
Array, 201
ARule, 371
as-pattern, 20
ascOrder, 263
asin, 129
asinh, 130
assert, 113, 246
assertEqual, 91
assertEqualIO, 91
assertIO, 91, 113
Assertion, 91
assertSolutions, 91
assertTrue, 91
assertValues, 91
asTable, 276
aString, 320
at, 175
atan, 129
atanh, 130
attr, 320
Attribute, 277
attributeDomain, 279
attributeName, 279
avg, 273
avgFloatCol, 264
avgIntCol, 264

backslash, 175
bar, 175
baseName, 121
baseType, 336
begin, 258
below, 232
best, 127
between, 263
bfsStrategy, 216
bgBlack, 178
bgBlue, 178
bgCyan, 178
bgGreen, 178
bgMagenta, 178
bgRed, 178

412

bgWhite, 178
bgYellow, 178
bindS, 189
bindS , 189
binomial, 148
bitAnd, 148
bitNot, 148
bitOr, 148
bitTrunc, 148
bitXor, 148
black, 177
blink, 289
blinkRapid, 177
blinkSlow, 177
block, 291
blockstyle, 291
blue, 177
bold, 176, 289
bool, 261
Boolean, 108
boolOrNothing, 268
boolType, 336
bootstrapForm, 280
bootstrapPage, 280
both, 130
bound, 110
bquotes, 173
braces, 173
brackets, 173
BranchExpr, 348
branchExpr, 361, 386
branchPattern, 361, 386
breakline, 291
browse, 127
browseList, 128
buildGr, 209
Button, 146
button, 291

CalendarTime, 192
calendarTimeToString, 193
callFrontend, 119
callFrontendWithParams, 119
CanvasItem, 141

CanvasScroll, 146
Cardinality, 278
cardMaximum, 280
cardMinimum, 280
CASC, 44
caseBranches, 359, 384
caseExpr, 359, 384
caseResultBool, 274
caseResultChar, 274
caseResultFloat, 274
caseResultInt, 274
caseResultString, 274
caseThen, 274
CaseType, 346
caseType, 359, 384
CASS, 65
cat, 170
categorizeByItemKey, 282
catMaybes, 160
cBranch, 338
CCaseType, 330
cChar, 338
CColumn, 259
CConsDecl, 326
center, 289
CExpr, 329
CField, 325
CFieldDecl, 327
CFixity, 327
cFloat, 338
cfunc, 336
CFuncDecl, 328
CgiEnv, 282
CgiRef, 282
CgiServerMsg, 295
cgiServerRegistry, 296
char, 173, 261, 319
charOrNothing, 268
charType, 336
check, 110
checkAssertion, 92
checkbox, 292
checkedbox, 292
childFamilies, 223

413

children, 222
choiceSPEP, 165
choose, 187
chooseColor, 147
chooseValue, 187
CHR, 94
chr2curry, 96
chrsToGoal, 95
cInt, 338
classify, 200
cleancurry, 8
cleanDB, 249, 254, 255
CLiteral, 330
CLocalDecl, 328
ClockTime, 192
clockTimeToInt, 193
closeDBHandles, 254
Cmd, 146
cmpChar, 221
cmpList, 221
cmpString, 221
cmtfunc, 337
code, 289
col, 143, 262
collect, 200
collectAs, 201
colNum, 262
colon, 174
Color, 142
Column, 266
ColumnDescription, 266
ColumnFiveTupleCollection, 271
ColumnFourTupleCollection, 271
ColumnSingleCollection, 272
ColumnTripleCollection, 271
ColumnTupleCollection, 271
ColVal, 250, 260
colVal, 262
colValAlt, 262
combArgs, 359, 384
combine, 125, 168, 202
CombinedDescription, 266
combineDescriptions, 267
combineIds, 280

combineSimilar, 202
combName, 359, 384
CombType, 346
combType, 359, 384
comma, 174
Command, 146
comment

documentation, 41
commit, 258
compact, 15
compareAnyTerm, 195
compareCalendarTime, 194
compareClockTime, 194
compareDate, 194
compileCHR, 96
compose, 169
composeSubst, 238
computeCompactFlatCurry, 371
concatMapES, 121
Condition, 260
condition, 264
condQName, 228
condTRS, 228
ConfCollection, 140
ConfigButton, 146
ConfItem, 136
Connection, 257
connectPort, 87, 165
connectPortRepeat, 164
connectPortWait, 164
connectSQLite, 258
connectToCommand, 152
connectToSocket, 162, 189
connectToSocketRepeat, 161
connectToSocketWait, 162
cons, 202
consArgs, 353, 378
consArity, 353, 378
ConsDecl, 344
consfail, 14, 15
consName, 333, 353, 378
constF, 337
constract, 38
Constraint, 103, 260

414

constructors, 332
consVis, 333
consVisibility, 353, 378
Context, 207
context, 210
Context’, 208
cookieForm, 287
CookieParam, 285
coordinates, 294
COpDecl, 327
copyFile, 114
cos, 129
cosh, 130
count, 102, 107, 109, 273
countCol, 264
CPair, 225
cPairs, 225
CPattern, 329
cpnsAlive, 111
cpnsShow, 111
cpnsStart, 111
cpnsStop, 111
cpvar, 339
createDirectory, 113
createDirectoryIfMissing, 113
CRhs, 328
Criteria, 259
crossJoin, 273
crossout, 177
CRule, 328
CStatement, 330
ctDay, 192
ctHour, 192
ctMin, 192
ctMonth, 192
ctSec, 193
ctTZ, 193
ctvar, 339
CTVarIName, 325
ctYear, 192
CTypeDecl, 326
CTypeExpr, 327
currentModule, 363
curry, 10

curry doc, 42
curry erd2curry, 72
Curry mode, 18
curry peval, 74
Curry preprocessor, 51
curry spiceup, 73
curry style, 44
curry test, 45
curry verify, 47
Curry2Prolog, 403
Curry2Verify, 47
CurryCheck, 32
curryCompiler, 115
curryCompilerMajorVersion, 115
curryCompilerMinorVersion, 115
CurryDoc, 41
CURRYPATH, 9, 15, 77
CurryProg, 326
curryRuntime, 116
curryRuntimeMajorVersion, 116
curryRuntimeMinorVersion, 116
currySubdir, 117
CurryTest, 45
CValue, 259
cvar, 339
CVarIName, 325
CVisibility, 325
cyan, 177
cycle, 159
cyclic structure, 19

database programming, 72
date, 262
dateOrNothing, 268
dateType, 336
daysOfMonth, 194
DBAction, 256
DBError, 256
DBErrorKind, 256
debug, 14, 16
debug mode, 14, 16
debugTcl, 143
Decomp, 208
defaultButton, 281

415

defaultEncoding, 286
defaultNOptions, 230
defaultOptions, 340, 364
defaultParams, 118
defaultRequired, 370
DefTree, 226
defTrees, 227
defTreesL, 227
deg, 211
deg’, 212
delEdge, 209
delEdges, 210
delete, 156, 214
deleteBy, 156
deleteDB, 244
deleteDBEntries, 249, 254
deleteDBEntry, 249, 254, 255
deleteEntries, 270
deleteRBT, 219, 222
delFromFM, 204
delListFromFM, 204
delNode, 209
delNodes, 209
depthDiag, 218
deqHead, 203
deqInit, 203
deqLast, 203
deqLength, 202
deqReverse, 203
deqTail, 203
deqToList, 203
descOrder, 263
deterministic, 200
dfsStrategy, 216
diagonal, 157
diagStrategy, 216
digitToInt, 93
dirName, 121
disconnect, 258
disjoint, 233
dlist, 290
Doc, 165
doc, 42
documentation comment, 41

documentation generator, 41
doesDirectoryExist, 113
doesFileExist, 113
Domain, 277
domain, 101, 105, 354, 379
doneT, 244, 252
doSend, 87, 164
dot, 175
dotifyDefTree, 227
dotifyNarrowingTree, 232
doubleArrow, 175
doubleColon, 175
dquote, 174
dquotes, 173
dropDrive, 124
dropExtension, 123
dropExtensions, 124
dropFileName, 124
dropTrailingPathSeparator, 125
dtPattern, 226
dtRoot, 226
Dynamic, 246, 250
dynamic, 246
dynamicExists, 244

eBool, 321
eChar, 321
Edge, 207
edges, 212
eEmpty, 321
eFloat, 321
eInt, 320
element, 319
elemFM, 205
elemIndex, 156
elemIndices, 156
elemRBT, 219
elemsOf, 317
eltsFM, 206
Emacs, 18
emap, 212
emphasize, 289
empty, 162, 165, 202, 209, 214, 319
emptyAFCSubst, 388

416

emptyCriteria, 261
emptyDefaultArray, 201
emptyErrorArray, 201
emptyFM, 204
emptySetRBT, 219
emptySubst, 238
emptyTableRBT, 222
emptyVS, 224
EName, 276
encapsulated search, 9
enclose, 173
encloseSep, 171
encloseSepSpaced, 171
Encoding, 316
Entity, 277
entity relationship diagrams, 72
entityAttributes, 279
EntityDescription, 265
entityName, 279
EntryScroll, 146
eOpt, 321
eps, 232
eqConsPattern, 241
eqFM, 205
equal, 211, 262
equalFilePath, 125
equals, 175
ERD, 277
ERD2Curry, 72
erd2curry, 72
ERDName, 276
erdName, 279
eRep, 321
eRepSeq1, 322
eRepSeq2, 322
eRepSeq3, 323
eRepSeq4, 323
eRepSeq5, 324
eRepSeq6, 324
errorT, 244, 252
ES, 120
eSeq1, 321
eSeq2, 322
eSeq3, 322

eSeq4, 323
eSeq5, 324
eSeq6, 324
eString, 321
evalChildFamilies, 223
evalChildFamiliesIO, 224
evalCmd, 152
evalES, 120
evalFamily, 223
evalFamilyIO, 224
evalSpace, 180
evalState, 190
evalTime, 180
evaluate, 110
even, 148
Event, 139
eventually, 199
exclusiveIO, 152
execCmd, 152
execState, 190
execute, 258
executeMultipleTimes, 258
executeRaw, 259
exists, 109
existsDBKey, 248, 253, 255
exitGUI, 144
exitWith, 191
exp, 129
expires, 287
Expr, 347
extended, 118
extendSubst, 238
external function, 406
extSeparator, 123

factorial, 147
fail, 94, 97, 258
failES, 120
failing, 199
failT, 244, 252
failVS, 225
faint, 176
false, 109
family, 223

417

FCYPP, 78
fcypp, 78
fd, 101
FDConstr, 101
FDExpr, 101
FDRel, 98
FilePath, 122
fileSize, 113
fileSuffix, 122
fill, 175
fillBreak, 176
fillCat, 170
fillEncloseSep, 171
fillEncloseSepSpaced, 172
fillSep, 170
filterFM, 205
find, 156
findall, 9, 127
findfirst, 9, 127
findIndex, 156
findIndices, 156
firewall, 88
first, 15, 130
fiveCol, 275
FiveColumnSelect, 273
fix, 130
Fixity, 345
FlatCurry, 88
flatCurry2Xml, 368
flatCurry2XmlFile, 368
flatCurryFileName, 349
flatCurryIntName, 350
FlexRigidResult, 369
float, 174, 261, 319
floatOrNothing, 268
floatType, 336
FM, 204
fmSortBy, 206
fmToList, 206
fmToListPreOrder, 206
focusInput, 145
fold, 223
foldChildren, 223
foldFM, 205

foldValues, 187
footer, 289
for, 200
forAll, 200
forAllValues, 200
foreignKeyAttributes, 279
form, 286
formatMarkdownFileAsPDF, 300
formatMarkdownInputAsPDF, 300
formBodyAttr, 286
formCSS, 286
formEnc, 286
formMetaInfo, 286
FormParam, 283
fourCol, 274
FourColumnSelect, 272
free, 14
free variable mode, 11, 14
freeExpr, 359, 384
freeVars, 359, 384
fromCurryProg, 228
fromDefTrees, 226
fromExpr, 229
fromFuncDecl, 228
fromJust, 160
fromLeft, 119
fromLiteral, 228
fromMarkdownText, 299
fromMaybe, 160
fromPattern, 228
fromRhs, 229
fromRight, 120
fromRule, 228
fromSQLResult, 257
fromStringOrNull, 268
FrontendParams, 115
FrontendTarget, 114
fullPath, 119
funcArgs, 357, 382
funcArity, 334, 356, 381
funcBody, 357, 382
funcComment, 334
FuncDecl, 345
funcName, 334, 356, 381

418

funcNamesOfFDecl, 335
funcNamesOfLDecl, 335
funcNamesOfStat, 335
funcRHS, 357, 382
funcRule, 356, 381
funcRules, 334
function

external, 406
functional pattern, 19
functions, 332
funcType, 334, 356, 381
funcVis, 334
funcVisibility, 356, 381

garbageCollect, 180
garbageCollectorOff, 179
garbageCollectorOn, 180
GDecomp, 208
gelem, 211
generateCompactFlatCurryFile, 370
germanLatexDoc, 295
getAbsolutePath, 114
getAllFailures, 90
getAllSolutions, 90
getAllValues, 90, 126
getAllValuesWith, 217
getArgs, 191
getAssoc, 153
getClockTime, 193
getColumn, 269
getColumnFiveTuple, 270
getColumnFourTuple, 270
getColumnFull, 267
getColumnName, 267
getColumnNames, 259
getColumnSimple, 267
getColumnTableName, 267
getColumnTriple, 269
getColumnTuple, 269
getColumnTyp, 267
getColumnValueBuilder, 267
getColumnValueSelector, 268
getContents, 151
getContentsOfUrl, 300

getCookies, 294
getCPUTime, 191
getCurrentDirectory, 113
getCursorPosition, 145
getDB, 244, 251
getDBInfo, 248, 254, 255
getDBInfos, 249, 254, 255
getDirectoryContents, 113
getDynamicSolution, 247
getDynamicSolutions, 247
getElapsedTime, 191
getEntries, 269
getEntriesCombined, 270
getEnviron, 191
getFileInPath, 122
getFiveTupleTypes, 275
getFiveTupleValFuncs, 275
getFlatCurryFileInLoadPath, 350
getFlexRigid, 369
getFourTupleTypes, 275
getFourTupleValFuncs, 275
getHomeDirectory, 114
getHostname, 191
getKnowledge, 247
getLoadPathForModule, 117
getLocalTime, 193
getModificationTime, 113
getOneSolution, 90
getOneValue, 90
getOpenFile, 146
getOpenFileWithTypes, 146
getOpt, 132
getOpt’, 132
getPID, 191
getPortInfo, 111
getProcessInfos, 179
getProgName, 191
getRandomSeed, 213
getRcVar, 116
getRcVars, 116
getS, 189
gets, 121
getSaveFile, 147
getSaveFileWithTypes, 147

419

getSearchPath, 123
getSearchTree, 90, 216
getSingleType, 275
getSingleValFunc, 275
getSomeValue, 126
getTable, 267
getTemporaryDirectory, 114
getToEntity, 267
getToInsertValues, 267
getToValues, 267
getTripleTypes, 275
getTripleValFuncs, 275
getTupleTypes, 275
getTupleValFuncs, 275
getTypeEnv, 391
getTypeEnvFromProgEnv, 391
getTypes, 267
getUrlParameter, 293
getValue, 144
Global, 133
global, 133
GlobalSpec, 133
glyphicon, 281
gmap, 212
Goal, 94, 97
Graph, 208
greaterThan, 262
greaterThanEqual, 263
green, 177
ground, 96
group, 157, 166
GroupBy, 260
groupBy, 157, 263
groupByCol, 264
groupByIndex, 248, 255
guardedRule, 337
GuiPort, 135
GVar, 134
gvar, 134

h1, 288
h2, 288
h3, 288
h4, 289

h5, 289
Handle, 149
hang, 167
hardline, 166
hasDefault, 279
hasDefTree, 226
hasDrive, 124
hasExtension, 123
hasForeignKey, 279
hasTrailingPathSeparator, 125
having, 264
hcat, 170
hClose, 150
headedTable, 290
header, 289
hempty, 288
hEncloseSep, 171
hFlush, 150
hGetChar, 151
hGetContents, 151
hGetLine, 151
hiddenfield, 293
hIsEOF, 150
hIsReadable, 151
hIsTerminalDevice, 151
hIsWritable, 151
homeIcon, 281
hPrint, 151
hPutChar, 151
hPutStr, 151
hPutStrLn, 151
hReady, 151
href, 290
hrefBlock, 281
hrefButton, 281
hrefInfoBlock, 281
hrule, 290
hSeek, 150
hsep, 169
htmldir, 119
HtmlExp, 282
HtmlForm, 283
HtmlHandler, 282
htmlIsoUmlauts, 293

420

HtmlPage, 285
htmlQuote, 293
htmlSpecialChars2tex, 294
htxt, 288
htxts, 288
hWaitForInput, 150
hWaitForInputOrMsg, 150
hWaitForInputs, 150
hWaitForInputsOrMsg, 150

i2f, 108, 128
identicalVar, 195
idOfCgiRef, 286
idsStrategy, 216
idsStrategyWith, 216
idtPositions, 226
idVal, 262
ilog, 147
image, 291
imageButton, 291
imNStrategy, 230
imports, 332
inCurrySubdir, 117
inCurrySubdirModule, 117
indeg, 211
indeg’, 212
indent, 168, 366, 375
indentWidth, 363
index, 248, 255
indomain, 107
inferExpr, 390
inferExprEnv, 391
inferFunction, 390
inferFunctionEnv, 390
inferNewFunctions, 390
inferNewFunctionsEnv, 391
inferProg, 390
inferProgEnv, 390
inferProgFromProgEnv, 390
init, 158
inits, 158
inject, 127
inline, 291
inn, 210

inn’, 212
innerJoin, 273
insEdge, 209
insEdges, 209
insertBy, 158
insertEntries, 269
insertEntry, 269
insertEntryCombined, 270
insertionSort, 220
insertionSortBy, 220
insertMultiRBT, 219
insertRBT, 219
insNode, 209
insNodes, 209
installDir, 116
int, 173, 261, 319
interactive, 15
intercalate, 157
intersect, 157
intersectBy, 157
intersectFM, 205
intersectFM C, 205
intersectRBT, 219
intersperse, 157
intForm, 295
intFormMain, 295
intOrNothing, 268
intToDigit, 93
intType, 336
inverse, 177
invf1, 131
invf2, 131
invf3, 131
invf4, 131
invf5, 131
IOMode, 149
IORef, 152
ioTestOf, 198
ioType, 336
is, 199
isAbsolute, 121, 125
isAlpha, 93
isAlphaNum, 93
isAlways, 199

421

isAscii, 92
isAsciiLower, 92
isAsciiUpper, 92
isBaseType, 333
isBigComment, 392
isBinDigit, 93
isCase, 360, 385
isCode, 392
isComb, 360, 385
isCombTypeConsCall, 358, 383
isCombTypeConsPartCall, 358, 383
isCombTypeFuncCall, 358, 383
isCombTypeFuncPartCall, 358, 383
isComment, 392
isConsBased, 235
isConsCall, 361, 386
isConsId, 366
isConsPartCall, 361, 386
isConsPattern, 362, 387
isConsTerm, 240
isControl, 93
isDefined, 216
isDemandedAt, 235
isDigit, 93
isDrive, 124
isEmpty, 166, 186, 202, 210, 214
isEmptyFM, 205
isEmptySetRBT, 219
isEmptyTable, 222
isEntityNamed, 279
isEOF, 150
isEventually, 199
isExternal, 356, 382
isExtSeparator, 123
isForeignKey, 279
isFree, 360, 385
isFuncCall, 361, 386
isFuncPartCall, 361, 386
isFunctionalType, 333
isFuncType, 354, 379
isGround, 195, 240, 361, 386
isHexDigit, 93
isIn, 263
isInfixOf, 158

isInfixOp, 366, 375
isIOReturnType, 333
isIOType, 333
isJust, 160
isKnown, 247
isLatin1, 92
isLeft, 119
isLeftLinear, 234
isLeftNormal, 234
isLet, 360, 385
isLetter, 392
isLinear, 240
isListId, 366, 375
isLit, 359, 385
isLower, 93
isMeta, 393
isModuleHead, 392
isNormal, 240
isNothing, 160
isNotNull, 262
isNull, 262
isNullAttribute, 279
isOctDigit, 93
isOr, 360, 385
isOrthogonal, 225
isPathSeparator, 122
isPattern, 235
isPolyType, 333
isPosix, 192
isPrefixOf, 158
isPrelude, 335
isqrt, 147
isRedex, 234
isRelative, 125
isRight, 119
isRuleExternal, 357, 382
isSearchPathSeparator, 123
isSmallComment, 392
isSpace, 93
isSuffixOf, 158
isTCons, 354, 379
isText, 392
isTupleId, 366, 375
isTVar, 354, 379

422

isTypeSyn, 352, 377
isUpper, 93
isValid, 125
isVar, 195, 359, 384
isVariantOf, 234
isVarTerm, 240
isWeakOrthogonal, 225
isWindows, 192
italic, 177, 289

Join, 271
joinDrive, 124
joinModuleIdentifiers, 116
joinPath, 125
JSBranch, 155
jsConsTerm, 155
JSExp, 153
JSFDecl, 155
JSStat, 154

Key, 250, 277
keyOrder, 206
KeyPred, 250
keysFM, 206

lab, 210
lab’, 211
labEdges, 212
label, 200
labeling, 107
LabelingOption, 103
labNode’, 211
labNodes, 212
labUEdges, 212
labUNodes, 212
langle, 174
larrow, 175
last, 158
LayoutChoice, 339
lazyNStrategy, 231
lbrace, 174
lbracket, 174
ldeclsOfRule, 334
LEdge, 207
leftOf, 232

lefts, 119
leqChar, 221
leqCharIgnoreCase, 221
leqLexGerman, 221
leqList, 221
leqString, 221
leqStringIgnoreCase, 221
lessThan, 263
lessThanEqual, 263
let, 19
letBinds, 359, 384
letBody, 359, 384
letExpr, 338
levelDiag, 218
liftS, 190
liftS2, 190
like, 263
limitSearchTree, 216
line, 166
linebreak, 166
linesep, 166
liRStrategy, 236
list, 172
list2ac, 338
list2CategorizedHtml, 282
ListBoxScroll, 146
listenOn, 161, 188
listenOnFresh, 188
listPattern, 338
listSpaced, 172
listToDefaultArray, 202
listToDeq, 203
listToErrorArray, 202
listToFM, 204
listToMaybe, 160
listToSubst, 238
listType, 336
litem, 290
Literal, 349
literal, 358, 384
LNode, 207
loDefTrees, 227
log, 129
logBase, 129

423

logfile, 119
loginIcon, 281
logoutIcon, 281
loNStrategy, 230
lookup, 214
lookupAFCSubst, 388
lookupFileInPath, 122
lookupFlatCurryFileInLoadPath, 350
lookupFM, 206
lookupModuleSource, 117
lookupModuleSourceInLoadPath, 117
lookupRBT, 222
lookupSubst, 238
lookupWithDefaultFM, 206
loRStrategy, 236
lparen, 174
LPath, 208
lpre, 210
lpre’, 211
lsuc, 210
lsuc’, 211

magenta, 177
MailOption, 297
main, 111
mainWUI, 307, 315
makeRelative, 125
makeValid, 125
mapAccumES, 121
mapAccumL, 159
mapAccumR, 159
mapChildFamilies, 223
mapChildFamiliesIO, 224
mapChildren, 223
mapChildrenIO, 223
mapES, 121
mapFamily, 223
mapFamilyIO, 223
mapFM, 205
mapMaybe, 160
mapMMaybe, 160
mapS, 190
mapS , 190
mapT, 245, 252

mapT , 245, 252
mapTerm, 241
mapValues, 187
markdown, 41
MarkdownDoc, 298
MarkdownElem, 298
markdownEscapeChars, 300
markdownText2CompleteHTML, 300
markdownText2CompleteLaTeX, 300
markdownText2HTML, 300
markdownText2LaTeX, 300
markdownText2LaTeXWithFormat, 300
match, 210
matchAny, 209
matchHead, 203
matchLast, 203
matrix, 143
max3, 148
maxCol, 264
maxFM, 206
maximize, 108
maximum, 159
maximumBy, 159
maximumFor, 108
maxlist, 148
maxV, 273
MaxValue, 278
maxValue, 188
maxVarInRule, 234
maxVarInTerm, 240
maxVarInTRS, 234
maybeToList, 160
maybeType, 336
MContext, 207
MenuItem, 140
mergeSort, 220
mergeSortBy, 220
min3, 148
minCol, 264
minFM, 206
minimize, 108
minimum, 159
minimumBy, 159
minimumFor, 108

424

minlist, 148
minusFM, 205
minV, 273
minValue, 187
minVarInRule, 234
minVarInTerm, 240
minVarInTRS, 234
missingArgs, 358, 383
missingCombArgs, 359, 384
mkGraph, 209
mkUGraph, 209
MName, 325
modify, 121
modifyIORef, 153
modifyS, 190
modNameToPath, 117
modsOfType, 334
mplus, 160
multipleSelection, 292

narrowBy, 231
narrowByL, 231
Narrowing, 229
narrowingBy, 231
narrowingByL, 231
NarrowingTree, 229
narrowingTreeBy, 231
narrowingTreeByL, 231
nav, 289
nbsp, 288
neg, 106, 109
neighbors, 210
neighbors’, 211
nest, 166
newDBEntry, 249, 254, 255
newDBKeyEntry, 249, 254
newIORef, 153
newNamedObject, 165
newNodes, 212
newObject, 165
newTreeLike, 214
nextBoolean, 213
nextInt, 213
nextIntRange, 213

nmap, 212
noChildren, 222
Node, 207
node’, 211
nodeRange, 210
nodes, 212
noGuard, 337
noHandlerPage, 296
noHave, 264
noindex, 43
none, 274
noNodes, 210
nonvar, 96
NOptions, 230
normalise, 125
normalize, 230
normalizeRule, 234
normalizeTerm, 240
normalizeTRS, 234
notEmpty, 186
notEqual, 262
NStrategy, 229
nub, 156
nubBy, 156
Null, 277

odd, 148
ok, 258
olist, 290
omNStrategy, 230
on, 130
once, 127
onlyindex, 43
OpDecl, 345
openFile, 149
openNamedPort, 87, 88, 164
openPort, 87, 164
openProcessPort, 164
opFixity, 355, 380
opName, 355, 380
opPrecedence, 355, 380
opt, 320
OptDescr, 132
Option, 99, 260, 369

425

Options, 339, 363
orExps, 359, 384
out, 210
out’, 211
outdeg, 211
outdeg’, 212
overlapWarn, 118

page, 288
pageBodyAttr, 288
pageCSS, 287
pageEnc, 287
pageLinkInfo, 288
pageMetaInfo, 287
PageParam, 285
pakcs, 10
pakcs frontend, 405
PAKCS_LOCALHOST, 88
PAKCS_OPTION_FCYPP, 78
PAKCS_SOCKET, 88
PAKCS_TRACEPORTS, 88
pakcsrc, 17
par, 289
parens, 173
parensIf, 173
parRStrategy, 236
parseHtmlString, 297
Parser, 162
parser, 16
ParserRep, 162
parseXmlString, 318
partial evaluation, 74
partition, 110, 157
partitionEithers, 120
password, 292
patArgs, 362, 387
patCons, 362, 387
patExpr, 362, 387
Path, 208
path, 9, 15
pathSeparator, 122
pathSeparatorChar, 121
pathSeparators, 122
patLiteral, 362, 387

Pattern, 349
pattern

functional, 19
pChar, 338
permSort, 220
permSortBy, 220
permutations, 157
permute, 110
persistent, 246
persistentSQLite, 252
peval, 74
peval, 74
pFloat, 338
phiRStrategy, 227
pi, 128
ping, 164
pInt, 338
piRStrategy, 236
plainCode, 393
PlClause, 181
PlGoal, 181
plList, 181
PlTerm, 181
plusFM, 205
plusFM C, 205
pNil, 338
popupMessage, 145
poRStrategy, 236
Port, 87, 163
ports, 87
Pos, 232
positions, 233
postcondition, 39
pow, 147
ppAVarIndex, 374
ppBranch, 366, 375
ppCaseType, 366, 375
ppCExpr, 342
ppCFuncDecl, 342
ppCFuncDeclWithoutSig, 342
ppCFuncSignature, 342
ppCLiteral, 342
ppComb, 365, 374
ppConsDecl, 365, 373

426

ppConsDecls, 365, 373
ppConsExports, 364, 373
ppCOpDecl, 341
ppCPattern, 342
ppCRhs, 342
ppCRule, 342
ppCRules, 342
ppCStatement, 342
ppCTypeDecl, 341
ppCTypeExpr, 342
ppCurryProg, 341
ppDecl, 366, 374
ppDecls, 365, 374
ppExp, 365, 374
ppExports, 341, 364, 373
ppExpr, 365, 374
ppFixity, 364, 373
ppFunc, 342
ppFuncDecl, 365, 374
ppFuncDecls, 365, 374
ppFuncExports, 364, 373
ppHeader, 364, 372
ppImport, 364, 373
ppImports, 341, 364, 373
ppInfixOp, 375
ppInfixQOp, 366
ppLiteral, 365, 374
ppMName, 341
ppName, 366
ppOpDecl, 364, 373
ppOpDecls, 364, 373
ppPattern, 366, 375
ppPrefixOp, 366, 375
ppPrefixQOp, 366
ppProg, 364, 372
ppQFunc, 342
ppQName, 366, 375
ppQType, 342
pPrint, 165
ppRule, 365, 374
ppTVarIndex, 365, 374
ppType, 342
ppTypeDecl, 364, 373
ppTypeDecls, 364, 373

ppTypeExp, 365, 373
ppTypeExport, 364, 373
ppTypeExpr, 365, 374
ppVarIndex, 365, 374
pre, 210, 290, 330
pre’, 211
precondition, 38
preludeName, 330
preprocessor, 51
pretty, 178
prettyCurryProg, 341
primButton, 281
printAllValuesWith, 217
printdepth, 16
printfail, 14
printMemInfo, 180
printSQLResults, 257
printValues, 188
printValuesWith, 217
ProcessInfo, 178
product, 159
profile, 15
profileSpace, 180
profileSpaceNF, 180
profileTime, 180
profileTimeNF, 180
Prog, 343
progFuncs, 351, 376
progImports, 351, 376
progName, 332, 351, 376
progOps, 351, 376
program

analysis, 65
documentation, 41
testing, 32, 45
verification, 47

progTypes, 351, 376
Prop, 197
PropIO, 197
ProtocolMsg, 91
publicConsNames, 333
publicFuncNames, 333
publicTypeNames, 333
punctuate, 170

427

putS, 190
puts, 121
pVars, 338

QName, 325, 343
Qualification, 339
QualMode, 363
qualMode, 363
Query, 242, 250
queryAll, 243
queryJustOne, 243
queryOne, 243
queryOneWithDefault, 243
Queue, 202
quickSort, 220
quickSortBy, 220
quiet, 118

radio main, 292
radio main off, 292
radio other, 292
range, 354, 379
rangle, 174
rarrow, 175
rbrace, 174
rbracket, 174
rcFileContents, 116
rcFileName, 116
rCons, 233
rcParams, 118
readAbstractCurryFile, 332
readAnyQExpression, 196
readAnyQTerm, 196
readAnyUnqualifiedTerm, 196
readBin, 183
readCgiServerMsg, 296
readCompleteFile, 152
readCSV, 112
readCSVFile, 112
readCSVFileWithDelims, 112
readCSVWithDelims, 112
readCurry, 89, 331
readCurryProgram, 228
readCurryWithImports, 331

readCurryWithParseOptions, 331
readERDTermFile, 279
readFileWithXmlDocs, 317
readFlatCurry, 89, 349
readFlatCurryFile, 350
readFlatCurryInPath, 367
readFlatCurryInt, 350
readFlatCurryIntWithImports, 367
readFlatCurryIntWithImportsInPath, 367
readFlatCurryIntWithParseOptions, 350
readFlatCurryWithImports, 367
readFlatCurryWithImportsInPath, 367
readFlatCurryWithParseOptions, 349
readFM, 206
readGlobal, 133
readGVar, 134
readHex, 182, 183
readHtmlFile, 297
readInt, 182, 183
readIORef, 153
readNat, 182, 183
readOct, 183
readPropertyFile, 182
readQName, 228
readQTerm, 184
readQTermFile, 185
readQTermListFile, 185
readsAnyQExpression, 196
readsAnyQTerm, 196
readsAnyUnqualifiedTerm, 195
readScan, 393
readsQTerm, 184
readsTerm, 184
readsUnqualifiedTerm, 184
readTerm, 184
readUnqualifiedTerm, 184
readUnsafeXmlFile, 317
readUntypedCurry, 331
readUntypedCurryWithParseOptions, 331
readXmlFile, 317
recip, 129
ReconfigureItem, 138
red, 177
RedBlackTree, 213

428

redexes, 236
redirect, 287
reduce, 236
reduceAt, 237
reduceAtL, 237
reduceBy, 237
reduceByL, 237
reduceL, 236
Reduction, 235
reduction, 237
reductionBy, 237
reductionByL, 237
reductionL, 237
registerCgiServer, 296
registerPort, 111
Relationship, 278
removeDirectory, 114
removeEscapes, 299
removeFile, 114
removeRegionStyle, 145
renameDirectory, 114
renameFile, 114
renameRuleVars, 234
renameTermVars, 241
renameTRSVars, 234
REnd, 278
Rendering, 301, 308
renderList, 307, 315
renderTaggedTuple, 307, 315
renderTuple, 307, 315
rep, 320
replace, 158
replaceBaseName, 124
replaceChildren, 222
replaceChildrenIO, 223
replaceDirectory, 125
replaceExtension, 123
replaceFileName, 124
replaceTerm, 233
repSeq1, 321
repSeq2, 322
repSeq3, 322
repSeq4, 323
repSeq5, 323

repSeq6, 324
RequiredSpec, 370
requires, 370
resetbutton, 291
restoreEntries, 269
restrictSubst, 238
Result, 197
result, 198
resultType, 334, 355, 380
retract, 247
returnES, 120
returnS, 189
returns, 198
returnT, 244, 252
rewriteAll, 128
rewriteSome, 128
rightOf, 232
rights, 119
riRStrategy, 236
RName, 277
rndDepthDiag, 218
rndLevelDiag, 218
rndLevelDiagFlat, 218
rnmAllVars, 361, 386
rnmAllVarsInFunc, 357, 382
rnmAllVarsInProg, 352, 377
rnmAllVarsInRule, 358, 383
rnmAllVarsInTypeExpr, 355, 380
rnmProg, 352, 377
Role, 277
rollback, 258
roRStrategy, 236
rotate, 203
round, 129
row, 143
rparen, 174
rRoot, 233
RStrategy, 235
rStrategy, 230
Rule, 233, 346
ruleArgs, 357, 382
ruleBody, 357, 382
ruleExtDecl, 357, 382
ruleRHS, 334

429

runCgiServerCmd, 296
runCHR, 96
runCHRwithTrace, 96
runConfigControlledGUI, 143
runControlledGUI, 143
runcurry, 63
runFormServerWithKey, 294
runFormServerWithKeyAndFormParams, 294
runGUI, 143
runGUIwithParams, 143
runHandlesControlledGUI, 144
runInitControlledGUI, 144
runInitGUI, 143
runInitGUIwithParams, 143
runInitHandlesControlledGUI, 144
runInTransaction, 257
runJustT, 245, 251
runNamedServer, 165
runPassiveGUI, 143
runQ, 244, 251
runState, 190
runT, 245, 251
runTNA, 245
runWithDB, 258
rVars, 234
RWData, 227

safe, 16
safeReadGlobal, 134
sameReturns, 198
satisfied, 110
satisfy, 163
saveEntry, 269
saveEntryCombined, 270
saveMultipleEntries, 269
scalarProduct, 102, 107
scan, 393
scanl, 159
scanl1, 159
scanr, 159
scanr1, 159
scc, 215
sClose, 161, 189
searchPathSeparator, 123

SearchTree, 90, 215
searchTreeSize, 216
second, 130
section, 289
SeekMode, 149
seeText, 145
select, 187, 258
selectDefTrees, 226
selection, 292
selectionInitial, 292
selectValue, 187
semi, 174
semiBraces, 172
semiBracesSpaced, 172
send, 87, 164
sendMail, 298
sendMailWithOptions, 298
sep, 170
separatorChar, 121
seq1, 321
seq2, 322
seq3, 322
seq4, 323
seq5, 323
seq6, 324
seqRStrategy, 236
seqStrActions, 92
sequenceMaybe, 160
sequenceS, 190
sequenceS , 190
sequenceT, 245, 252
sequenceT , 245, 252
set, 172
set functions, 9
set0, 186
set1, 186
set2, 186
set3, 186
set4, 186
set5, 186
set6, 186
set7, 186
setAssoc, 152
setConfig, 144

430

setCurrentDirectory, 113
setEnviron, 191
setExtended, 118
setFullPath, 118
setFullQualification, 340
setHtmlDir, 118
setImportQualification, 340
setIndentWith, 340
setInsertEquivalence, 214
setLayoutChoice, 341
setLogfile, 118
setModName, 341
setNoQualification, 340
setOnDemandQualification, 340
SetOp, 271
setOverlapWarn, 118
setPageWith, 340
setQuiet, 118
SetRBT, 218
setRBT2list, 219
setSpaced, 172
setSpecials, 118
setValue, 144
showAFCSubst, 388
showAnyExpression, 196
showAnyQExpression, 196
showAnyQTerm, 195
showAnyTerm, 195
showCPair, 225
showCPairs, 225
showCProg, 341
showCSV, 112
showCurryExpr, 368
showCurryId, 368
showCurryType, 368
showCurryVar, 368
showERD, 280
showEscape, 374
showFlatFunc, 368
showFlatProg, 368
showFlatType, 368
showFM, 206
showGraph, 212
showHtmlExp, 293

showHtmlExps, 293
showHtmlPage, 293
showJSExp, 155
showJSFDecl, 155
showJSStat, 155
showLatexDoc, 294
showLatexDocs, 295
showLatexDocsWithPackages, 295
showLatexDocWithPackages, 294
showLatexExp, 294
showLatexExps, 294
showMemInfo, 180
showNarrowing, 230
showPlClause, 181
showPlGoal, 182
showPlGoals, 182
showPlProg, 181
showPlTerm, 182
showPos, 232
showQName, 228
showQNameInModule, 349
showQTerm, 184
showReduction, 236
showRule, 233
showSearchTree, 216
showSubst, 238
showTerm, 184, 239
showTermEq, 239
showTermEqs, 239
showTError, 244, 254
showTestCase, 92
showTestCompileError, 92
showTestEnd, 92
showTestMod, 92
showTRS, 233
showUnificationError, 242
showVarIdx, 239
showXmlDoc, 317
showXmlDocWithParams, 317
shuffle, 213
simpleRule, 337
simpleRuleWithLocals, 337
simplify, 110
sin, 129

431

single, 16
singleCol, 274
SingleColumnSelect, 272
singleton variables, 8
sinh, 130
sizedSubset, 110
sizeFM, 205
sleep, 192
smallButton, 281
snoc, 202
Socket, 161, 188
socketAccept, 161, 189
socketName, 161
softbreak, 166
softline, 166
solutionOf, 199
solve, 106
solveAll, 127
solveCHR, 96, 97
solveEq, 231
solveEqL, 232
solveFD, 102
solveFDAll, 102
solveFDOne, 102
some, 163
someDBInfos, 253
someDBKeyInfos, 253
someDBKeyProjections, 253
someDBKeys, 253
someSearchTree, 216
someSolution, 127
someValue, 126, 217
someValueWith, 218
sort, 220
sortBy, 158, 214, 220
sortByIndex, 248, 255
sorted, 220
sortedBy, 220
sortRBT, 219
sortValues, 188
sortValuesBy, 188
SP_Msg, 163
space, 175
spawnConstraint, 194

specials, 119
specification, 38
Specifier, 259
spiceup, 73
Spicey, 73
split, 158
splitBaseName, 122
splitDirectories, 125
splitDirectoryBaseName, 122
splitDrive, 124
splitExtension, 123
splitExtensions, 123
splitFileName, 124
splitFM, 205
splitModuleFileName, 116
splitModuleIdentifiers, 116
splitOn, 157
splitPath, 122, 125
splitSearchPath, 123
splitSet, 110
spy, 17
sqlBoolOrNull, 268
sqlCharOrNull, 268
sqlDateOrNull, 268
sqlFloatOrNull, 268
sqlIntOrNull, 268
SQLResult, 256
sqlString, 268
sqlStringOrNull, 268
SQLType, 257
SQLValue, 256
sqrt, 129
squote, 174
squotes, 173
stamp, 198
standardForm, 287
standardPage, 288
star, 163
State, 189
stderr, 149
stdin, 149
stdNStrategy, 230
stdout, 149
storeERDFromProgram, 280

432

Strategy, 215
string, 173, 261, 319
string2ac, 339
string2urlencoded, 294
stringList2ItemList, 282
stringOrNothing, 268
stringPattern, 338
stringType, 336
stripCurrySuffix, 116
stripSuffix, 122
strong, 289
Style, 141
style, 44, 291
style checking, 44
styleSheet, 291
submitForm, 296
subset, 110
Subst, 237
subst, 389
substBranch, 389
substExpr, 389
substFunc, 389
substPattern, 389
substRule, 389
substSnd, 389
suc, 210
suc’, 211
successful, 200
suffixSeparatorChar, 121
sum, 102, 107, 159, 273
sumFloatCol, 264
sumIntCol, 264
sysLibPath, 117
system, 191

Table, 265
table, 290
TableClause, 271
TableRBT, 221
tableRBT2list, 222
tabulator stops, 8
tagOf, 317
tails, 158
takeBaseName, 124

takeDirectory, 125
takeDrive, 124
takeExtension, 123
takeExtensions, 124
takeFileName, 124
tan, 129
tanh, 130
tCons, 240
tConsAll, 240
tConsArgs, 354, 379
tConsName, 354, 379
tconsOfType, 334
tConst, 239
teletype, 290
Term, 239
TermEq, 239
TermEqs, 239
terminal, 162
TError, 242, 250
TErrorKind, 243, 250
Test, 197
test, 45, 198
Test.EasyCheck, 32, 36
Test.Prop, 32
testing programs, 32, 45
testScan, 393
testsOf, 198
text, 166
textarea, 292
TextEditScroll, 146
textfield, 291
textOf, 317
textOfXml, 317
textstyle, 291
tilde, 175
time, 15
timeoutOnStream, 164
titledSideMenu, 280
toCalendarTime, 193
toCColumn, 264
toClockTime, 193
toCValue, 265
toDayString, 193
toError, 198

433

toGoal1, 95
toGoal2, 95
toGoal3, 95
toGoal4, 95
toGoal5, 95
toGoal6, 95
toIOError, 198
Token, 392
Tokens, 392
toLower, 93
tOp, 240
toTimeString, 193
toUpper, 93
toUTCTime, 193
toValueOrNull, 268
toVar, 339
trace, 17, 112, 194
traceId, 112
traceIO, 112
traceShow, 112
traceShowId, 112
Transaction, 243, 250
transaction, 247
transactionWithErrorCatch, 248
transformQ, 244, 251
transformWSpec, 302, 309
transpose, 157
Traversable, 222
trBranch, 361, 386
trColumn, 265
trCombType, 358, 383
trCondition, 265
trCons, 353, 378
trConstraint, 265
trCriteria, 265
tree2list, 214
trExpr, 360, 385
trFiveTupleSelectQuery, 276
trFourTupleSelectQuery, 276
trFunc, 356, 381
tripleCol, 274
TripleColumnSelect, 272
trivial, 200
trJoinPart1, 276

trJoinPart2, 276
trLimit, 276
tRoot, 240
trOp, 355, 380
trOption, 265
trPattern, 362, 387
trProg, 351, 376
trRule, 357, 382
TRS, 233
TRSData, 227
trSetOp, 276
trSingleSelectQuery, 275
trSpecifier, 265
trTripleSelectQuery, 276
trTupleSelectQuery, 276
trType, 352, 377
trTypeExpr, 354, 379
true, 94, 97, 102, 109
truncate, 129
trValue, 265
try, 127
tryParse, 331
tryReadACYFile, 332
tryReadCurryFile, 331
tryReadCurryWithImports, 331
tupleCol, 274
TupleColumnSelect, 272
tupled, 172
tupledSpaced, 172
tupleExpr, 337
tuplePattern, 338
tupleType, 336
TVarIndex, 343
tVarIndex, 354, 379
tVars, 240
tVarsAll, 240
tvarsOfType, 334
typeCons, 333
typeConsDecls, 352, 377
TypeData, 227
TypeDecl, 344
TypeEnv, 390
TypeExpr, 344
typeName, 333, 352, 377

434

typeParams, 352, 377
types, 332
typeSyn, 352, 377
typeVis, 333
typeVisibility, 352, 377

UContext, 208
UDecomp, 208
UEdge, 207
ufold, 212
UGr, 208
ulist, 290
unAnnExpr, 388
unAnnFuncDecl, 388
unAnnPattern, 388
unAnnProg, 388
unAnnRule, 388
underline, 177
unfoldr, 159
unifiable, 241, 242
UnificationError, 241
unify, 241, 242
union, 156
unionBy, 156
unionRBT, 219
uniquely, 199
unitFM, 204
unitType, 336
UNode, 207
unpack, 128
unregisterCgiServer, 296
unregisterPort, 111
unsafePerformIO, 194
unscan, 393
unsetEnviron, 191
untypedAbstractCurryFileName, 332
UPath, 208
updArgs, 198
Update, 351, 376
update, 201, 214
updateDBEntry, 249, 254, 255
updateEntries, 270
updateEntry, 270
updateEntryCombined, 270

updateFile, 152
updatePropertyFile, 182
updateRBT, 222
updateValue, 144
updateXmlFile, 318
updBranch, 361, 387
updBranches, 361, 386
updBranchExpr, 362, 387
updBranchPattern, 362, 387
updCases, 360, 386
updCombs, 360, 385
updCons, 353, 378
updConsArgs, 354, 379
updConsArity, 354, 379
updConsName, 353, 378
updConsVisibility, 354, 379
updFM, 204
updFrees, 360, 385
updFunc, 356, 381
updFuncArgs, 357, 382
updFuncArity, 356, 381
updFuncBody, 357, 382
updFuncName, 356, 381
updFuncRule, 356, 381
updFuncType, 356, 381
updFuncTypes, 355, 380
updFuncVisibility, 356, 381
updLets, 360, 385
updLiterals, 360, 385
updOp, 355, 380
updOpFixity, 355, 380
updOpName, 355, 380
updOpPrecedence, 356, 381
updOrs, 360, 385
updPatArgs, 362, 387
updPatCons, 362, 387
updPatLiteral, 362, 387
updPattern, 362, 387
updProg, 351, 376
updProgExps, 352, 377
updProgFuncs, 351, 376
updProgImports, 351, 376
updProgName, 351, 376
updProgOps, 352, 377

435

updProgTypes, 351, 376
updQNames, 361, 386
updQNamesInConsDecl, 354, 379
updQNamesInFunc, 357, 382
updQNamesInProg, 352, 377
updQNamesInRule, 358, 383
updQNamesInType, 353, 378
updQNamesInTypeExpr, 355, 380
updRule, 357, 383
updRuleArgs, 358, 383
updRuleBody, 358, 383
updRuleExtDecl, 358, 383
updTCons, 355, 380
updTVars, 354, 379
updType, 352, 377
updTypeConsDecls, 353, 378
updTypeds, 361, 386
updTypeName, 353, 378
updTypeParams, 353, 378
updTypeSynonym, 353, 378
updTypeVisibility, 353, 378
updVars, 360, 385
urlencoded2string, 293
usageInfo, 132
user interface, 77
userIcon, 281

v, 16
validDate, 194
Value, 260
valueOf, 186
Values, 186
values2list, 188
ValueSequence, 224
valuesOf, 201
valuesOfSearchTree, 201
valueToString, 259
variables

singleton, 8
VarIdx, 239
VarIndex, 343
varNr, 358, 383
varsOfExp, 334
varsOfFDecl, 335

varsOfLDecl, 335
varsOfPat, 334
varsOfRhs, 335
varsOfRule, 335
varsOfStat, 335
vcat, 170
verbatim, 290
verbosity, 16
verify, 47
verifying programs, 47
version, 330
Visibility, 343
vsep, 169
vsepBlank, 170
vsToList, 225

w10Tuple, 305, 313
w11Tuple, 305, 313
w12Tuple, 305, 314
w4Tuple, 304, 311
w5Tuple, 304, 311
w6Tuple, 304, 312
w7Tuple, 304, 312
w8Tuple, 304, 312
w9Tuple, 305, 313
waitForSocketAccept, 161, 189
warn, 15
warnSuspendedConstraints, 97
wCheckBool, 303, 310
wCheckMaybe, 306, 315
wCons10, 305, 313
wCons10JS, 313
wCons11, 305, 313
wCons11JS, 314
wCons12, 306, 314
wCons12JS, 314
wCons2, 303, 310
wCons2JS, 311
wCons3, 304, 311
wCons3JS, 311
wCons4, 304, 311
wCons4JS, 311
wCons5, 304, 311
wCons5JS, 311

436

wCons6, 304, 312
wCons6JS, 312
wCons7, 304, 312
wCons7JS, 312
wCons8, 305, 312
wCons8JS, 312
wCons9, 305, 313
wCons9JS, 313
wConstant, 302, 309
wEither, 306, 315
where, 19
wHidden, 302, 309
white, 178
wHList, 306, 314
Widget, 135
WidgetRef, 141
wInt, 302, 309
withCondition, 302, 308
withConditionJS, 309
withConditionJSName, 309
withError, 302, 308
withRendering, 301, 308
wJoinTuple, 306, 310
wList, 306, 314
wListWithHeadings, 306, 314
wMatrix, 306, 314
wMaybe, 306, 314
wMultiCheckSelect, 303, 310
wnNStrategy, 231
wPair, 303, 310
wRadioBool, 303, 310
wRadioMaybe, 306, 315
wRadioSelect, 303, 310
wRequiredString, 302, 309
wRequiredStringSize, 302, 309
writeAbstractCurryFile, 332
writeAssertResult, 92
writeCSVFile, 112
writeDefTree, 227
writeERDTermFile, 280
writeFCY, 350
writeGlobal, 134
writeGVar, 134
writeIORef, 153

writeNarrowingTree, 232
writeQTermFile, 185
writeQTermListFile, 185
writeXmlFile, 317
writeXmlFileWithParams, 317
wSelect, 303, 310
wSelectBool, 303, 310
wSelectInt, 303, 310
wString, 302, 309
wStringSize, 302, 309
wTextArea, 302, 309
WTree, 301, 308
wTree, 307, 315
wTriple, 303, 311
wui2html, 307, 315
WuiHandler, 301, 308
wuiHandler2button, 301, 308
wuiInForm, 307, 315
WuiSpec, 301, 308
wuiWithErrorForm, 307, 315

XAttrConv, 318
XElemConv, 318
xml, 317
xml2FlatCurry, 368
XmlDocParams, 316
XmlExp, 316
xmlFile2FlatCurry, 368
xmlRead, 319
XmlReads, 318
xmlReads, 319
xmlShow, 319
XmlShows, 318
xmlShows, 319
XOptConv, 318
XPrimConv, 318
XRepConv, 318
xtxt, 317

yellow, 177

437

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions
	Modules in PAKCS

	PAKCS: An Interactive Curry Development System
	Invoking PAKCS
	Commands of PAKCS
	Options of PAKCS
	Using PAKCS in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Comments
	Identifiers and Keywords
	Numeric and Character Literals

	Layout
	Context-Free Grammar

	Optimization of Curry Programs
	curry browse: A Tool for Analyzing and Browsing Curry Programs
	curry check: A Tool for Testing Properties of Curry Programs
	Testing Properties
	Generating Test Data
	Checking Contracts and Specifications
	Checking Usage of Specific Operations

	curry doc: A Documentation Generator for Curry Programs
	curry style: A Style Checker for Curry Programs
	Basic Usage
	Configuration

	curry test: A Tool for Testing Curry Programs
	curry verify: A Tool to Support the Verification of Curry Programs
	Basic Usage
	Options

	CurryPP: A Preprocessor for Curry Programs
	Integrated Code
	Regular Expressions
	Format Specifications
	HTML Code
	XML Expressions

	SQL Statements
	ER Specifications
	SQL Statements as Integrated Code

	Sequential Rules
	Default Rules
	Contracts

	runcurry: Running Curry Programs
	CASS: A Generic Curry Analysis Server System
	Using CASS to Analyze Programs
	Batch Mode
	API Mode
	Server Mode

	Implementing Program Analyses

	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Spicey: An ER-based Web Framework
	curry peval: A Partial Evaluator for Curry
	Basic Usage
	Options

	UI: Declarative Programming of User Interfaces
	Preprocessing FlatCurry Files
	Technical Problems
	Bibliography
	Libraries of the PAKCS Distribution
	Constraints, Ports, Meta-Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry

	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library CHR
	Library CHRcompiled
	Library CLP.FD
	Library CLPFD
	Library CLPR
	Library CLPB
	Library Combinatorial
	Library CPNS
	Library CSV
	Library Debug
	Library Directory
	Library Distribution
	Library Either
	Library ErrorState
	Library FileGoodies
	Library FilePath
	Library Findall
	Library Float
	Library Function
	Library FunctionInversion
	Library GetOpt
	Library Global
	Library GlobalVariable
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library List
	Library Maybe
	Library NamedSocket
	Library Parser
	Library Ports
	Library Pretty
	Library Profile
	Library Prolog
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library State
	Library System
	Library Time
	Library Unsafe
	Library Test.EasyCheck

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SCC
	Library SearchTree
	Library SearchTreeTraversal
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal
	Library ValueSequence
	Library Rewriting.CriticalPairs
	Library Rewriting.DefinitionalTree
	Library Rewriting.Files
	Library Rewriting.Narrowing
	Library Rewriting.Position
	Library Rewriting.Rules
	Library Rewriting.Strategy
	Library Rewriting.Substitution
	Library Rewriting.Term
	Library Rewriting.Unification
	Library Rewriting.UnificationSpec

	Libraries for Database Access and Manipulation
	Library Database
	Library Dynamic
	Library KeyDatabase
	Library KeyDatabaseSQLite
	Library KeyDB
	Library Database.CDBI.Connection
	Library Database.CDBI.Criteria
	Library Database.CDBI.Description
	Library Database.CDBI.ER
	Library Database.CDBI.QueryTypes
	Library Database.ERD
	Library Database.ERDGoodies

	Libraries for Web Applications
	Library Bootstrap3Style
	Library CategorizedHtmlList
	Library HTML
	Library HtmlCgi
	Library HtmlParser
	Library Mail
	Library Markdown
	Library URL
	Library WUI
	Library WUIjs
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry.Types
	Library AbstractCurry.Files
	Library AbstractCurry.Select
	Library AbstractCurry.Build
	Library AbstractCurry.Pretty
	Library FlatCurry.Types
	Library FlatCurry.Files
	Library FlatCurry.Goodies
	Library FlatCurry.Pretty
	Library FlatCurry.Read
	Library FlatCurry.Show
	Library FlatCurry.XML
	Library FlatCurry.FlexRigid
	Library FlatCurry.Compact
	Library FlatCurry.Annotated.Types
	Library FlatCurry.Annotated.Pretty
	Library FlatCurry.Annotated.Goodies
	Library FlatCurry.Annotated.TypeSubst
	Library FlatCurry.Annotated.TypeInference
	Library CurryStringClassifier

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	SQL Syntax Supported by CurryPP
	Overview of the PAKCS Distribution
	Auxiliary Files
	External Functions
	Index

