
OSU, May 16, 2005

Declarative Programming
with

Persistent Information

Michael Hanus

Christian-Albrechts-Universität Kiel

DECLARATIVE PROGRAMMING

General idea:

• no coding of algorithms

• description of logical relationships

• powerful abstractions
➜ domain specific languages

• higher programming level

• reliable and maintainable programs
➜ pointer structures ⇒ algebraic data types
➜ complex procedures ⇒ comprehensible parts

(pattern matching, local definitions)

CAU Kiel Michael Hanus 2

FUNCTIONAL LOGIC LANGUAGES

Approach to amalgamate ideas of declarative programming

• efficient execution principles of functional languages
(determinism, laziness)

• flexibility of logic languages
(constraints, built-in search)

• avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

• combine best of both worlds in a single model
➜ higher-order functions
➜ declarative I/O
➜ concurrent constraints

CAU Kiel Michael Hanus 3

MOTIVATION: PERSISTENCY

Functional logic languages:
➜ functions, expressions, lazy evaluation

➜ logical variables, partial data structures

➜ search for solutions

➜ concurrent constraint solving

Advantages:
➜ optimal evaluation strategies [JACM’00]

➜ new design patterns [FLOPS’02]
(GUIs [PADL’00], dynamic web pages [PADL’01])

Not yet sufficiently covered:
➜ access to persistent information (e.g., databases)

➜ manipulation of persistent information

This talk: clean approach to handle dynamic (database) predicates

CAU Kiel Michael Hanus 4

MOTIVATION: PERSISTENCY

Functional logic languages:
➜ functions, expressions, lazy evaluation

➜ logical variables, partial data structures

➜ search for solutions

➜ concurrent constraint solving

Advantages:
➜ optimal evaluation strategies [JACM’00]

➜ new design patterns [FLOPS’02]
(GUIs [PADL’00], dynamic web pages [PADL’01])

Not yet sufficiently covered:
➜ access to persistent information (e.g., databases)

➜ manipulation of persistent information

This talk: clean approach to handle dynamic (database) predicates

CAU Kiel Michael Hanus 4

MOTIVATION: PERSISTENCY

Functional logic languages:
➜ functions, expressions, lazy evaluation

➜ logical variables, partial data structures

➜ search for solutions

➜ concurrent constraint solving

Advantages:
➜ optimal evaluation strategies [JACM’00]

➜ new design patterns [FLOPS’02]
(GUIs [PADL’00], dynamic web pages [PADL’01])

Not yet sufficiently covered:
➜ access to persistent information (e.g., databases)

➜ manipulation of persistent information

This talk: clean approach to handle dynamic (database) predicates

CAU Kiel Michael Hanus 4

EXISTING APPROACHES

Logic programming:
➜ externally stored relations ≈ facts defining predicates

➜ deductive databases

➜ declarative knowledge management

➜ no separation between access and manipulation of facts

Prolog:
➜ asserta/assertz: add clauses

➜ retract: delete clauses

Problematic in the presence of backtracking:
p :- assertz(p), fail.

Is p provable?

[Lindholm/O’Keefe’87] No!

; logical view of database updates

CAU Kiel Michael Hanus 5

EXISTING APPROACHES

Logic programming:
➜ externally stored relations ≈ facts defining predicates

➜ deductive databases

➜ declarative knowledge management

➜ no separation between access and manipulation of facts

Prolog:
➜ asserta/assertz: add clauses

➜ retract: delete clauses

Problematic in the presence of backtracking:
p :- assertz(p), fail.

Is p provable?

[Lindholm/O’Keefe’87] No!

; logical view of database updates

CAU Kiel Michael Hanus 5

DATABASE UPDATES AND ADVANCED CONTROL RULES

Advanced control rules (e.g., coroutining):
➜ better control behavior (termination, efficiency) [Naish’85]

➜ justified by flexible selection rule of SLD-resolution

➜ problematic w.r.t. database updates

:- block ap(-). % delay if argument unbound

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

Is q provable?

Yes (Y unbound!)———————– No!

Be careful
➜ with advanced control rules

➜ with non-strict functional logic languages
(demand-driven and concurrent evaluation)

Here: Solution for Curry (and similar functional logic languages)

CAU Kiel Michael Hanus 6

DATABASE UPDATES AND ADVANCED CONTROL RULES

Advanced control rules (e.g., coroutining):
➜ better control behavior (termination, efficiency) [Naish’85]

➜ justified by flexible selection rule of SLD-resolution

➜ problematic w.r.t. database updates

:- block ap(-). % delay if argument unbound

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

Is q provable? Yes (Y unbound!)

———————– No!

Be careful
➜ with advanced control rules

➜ with non-strict functional logic languages
(demand-driven and concurrent evaluation)

Here: Solution for Curry (and similar functional logic languages)

CAU Kiel Michael Hanus 6

DATABASE UPDATES AND ADVANCED CONTROL RULES

Advanced control rules (e.g., coroutining):
➜ better control behavior (termination, efficiency) [Naish’85]

➜ justified by flexible selection rule of SLD-resolution

➜ problematic w.r.t. database updates

:- block ap(-). % delay if argument unbound

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

Is q provable? Yes (Y unbound!)———————– No!

Be careful
➜ with advanced control rules

➜ with non-strict functional logic languages
(demand-driven and concurrent evaluation)

Here: Solution for Curry (and similar functional logic languages)

CAU Kiel Michael Hanus 6

DATABASE UPDATES AND ADVANCED CONTROL RULES

Advanced control rules (e.g., coroutining):
➜ better control behavior (termination, efficiency) [Naish’85]

➜ justified by flexible selection rule of SLD-resolution

➜ problematic w.r.t. database updates

:- block ap(-). % delay if argument unbound

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

Is q provable? Yes (Y unbound!)———————– No!

Be careful
➜ with advanced control rules

➜ with non-strict functional logic languages
(demand-driven and concurrent evaluation)

Here: Solution for Curry (and similar functional logic languages)

CAU Kiel Michael Hanus 6

DATABASE UPDATES AND ADVANCED CONTROL RULES

Advanced control rules (e.g., coroutining):
➜ better control behavior (termination, efficiency) [Naish’85]

➜ justified by flexible selection rule of SLD-resolution

➜ problematic w.r.t. database updates

:- block ap(-). % delay if argument unbound

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

Is q provable? Yes (Y unbound!)———————– No!

Be careful
➜ with advanced control rules

➜ with non-strict functional logic languages
(demand-driven and concurrent evaluation)

Here: Solution for Curry (and similar functional logic languages)

CAU Kiel Michael Hanus 6

CURRY

[Dagstuhl’96, POPL’97]
http://www.informatik.uni-kiel.de/~curry

• declarative multi-paradigm language
(higher-order concurrent functional logic language,
features for high-level distributed programming)

• extension of Haskell (non-strict functional language)

• developed by an international initiative

• provide a standard for functional logic languages
(research, teaching, application)

• several implementations available

• PAKCS (Portland Aachen Kiel Curry System):
➜ freely available implementation of Curry
➜ many libraries (GUI, HTML, XML, meta-programming,. . .)
➜ various tools (CurryDoc, CurryTest, Debuggers, Analyzers,. . .)
➜ used in various applications (e-learning, course management,. . .)

CAU Kiel Michael Hanus 7

VALUES IN CURRY

Values in declarative languages: algebraic data types

Haskell-like syntax: enumerate all data constructors

#

"

Ã

!

data Bool = True | False

data Maybe a = Nothing | Just a

data List a = [] | a : List a -- [a]

data Tree a = Leaf a | Node [Tree a]

data Int = 0 | 1 | -1 | 2 | -2 | ...

Value ≈ data term, constructor term:
well-formed expression containing variables and data type constructors

(Just True) 1:(2:[]) [1,2] Node [Leaf 3, Node [Leaf 4, Leaf 5]]

CAU Kiel Michael Hanus 8

FUNCTIONAL LOGIC PROGRAMS

Functions: operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation data terms condition

(optional) expression

'

&

$

%

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys

last :: [a] -> a

last xs | ys ++ [x] =:= xs

= x where x,ys free

last [1,2] ; 2

CAU Kiel Michael Hanus 9

EXPRESSIONS AND CONSTRAINTS

e ::= c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

success (trivial constraint)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Success: type of constraint expressions

Equational constraints over functional expressions:

ys ++ [x] =:= [1,2] ; {ys=[1],x=2}

CAU Kiel Michael Hanus 10

EXPRESSIONS AND CONSTRAINTS

e ::= c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

success (trivial constraint)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Success: type of constraint expressions

Equational constraints over functional expressions:

ys ++ [x] =:= [1,2] ; {ys=[1],x=2}

CAU Kiel Michael Hanus 10

EXPRESSIONS AND CONSTRAINTS

e ::= c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

success (trivial constraint)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Success: type of constraint expressions

Equational constraints over functional expressions:

ys ++ [x] =:= [1,2] ; {ys=[1],x=2}

CAU Kiel Michael Hanus 10

EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve flag | flag =:= x++[White]++y++[Red]++z

= solve (x++[Red]++y++[White]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[Red]++z

= solve (x++[Red]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[White]++z

= solve (x++[White]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= uni Red ++ uni White ++ uni Blue = flag

where uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11

EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve flag | flag =:= x++[White]++y++[Red]++z

= solve (x++[Red]++y++[White]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[Red]++z

= solve (x++[Red]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[White]++z

= solve (x++[White]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= uni Red ++ uni White ++ uni Blue = flag

where uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11

EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve flag | flag =:= x++[White]++y++[Red]++z

= solve (x++[Red]++y++[White]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[Red]++z

= solve (x++[Red]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[White]++z

= solve (x++[White]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= uni Red ++ uni White ++ uni Blue = flag

where uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11

EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve flag | flag =:= x++[White]++y++[Red]++z

= solve (x++[Red]++y++[White]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[Red]++z

= solve (x++[Red]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[White]++z

= solve (x++[White]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= uni Red ++ uni White ++ uni Blue = flag

where uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11

EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve flag | flag =:= x++[White]++y++[Red]++z

= solve (x++[Red]++y++[White]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[Red]++z

= solve (x++[Red]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= x++[Blue]++y++[White]++z

= solve (x++[White]++y++[Blue]++z) where x,y,z free

solve flag | flag =:= uni Red ++ uni White ++ uni Blue = flag

where uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11

EXAMPLE: GUI PROGRAMMING [PADL’00]

A specification of a counter GUI:

Col [

Entry [WRef val, Text "0", Background "yellow"],

Row [Button (updateValue incrText val) [Text "Increment"],

Button (setValue val "0") [Text "Reset"],

Button exitGUI [Text "Stop"]]]

where val free

➜ layout structure ; hierarchical structure, algebraic data type

➜ event handlers ; functions contained in layout structure

➜ logical structure ; dependencies in layout structure: free variables

➜ free variable val: reference to entry widget, used in event handlers

CAU Kiel Michael Hanus 12

EXAMPLE: HTML PROGRAMMING [PADL’01]

form "Question" [htxt "Enter a string: ", textfield ref "", hr,

button "Reverse string" revhandler,

button "Duplicate string" duphandler]

where

ref free

revhandler env = return $ form "Answer"

[h1 [htxt ("Reversed input: " ++ rev (env ref))]]

duphandler env = return $ form "Answer"

[h1 [htxt ("Duplicated input: " ++ env ref ++ env ref)]]

CAU Kiel Michael Hanus 13

MONADIC INPUT/OUTPUT

I/O actions: transformations on the external world

Interactive program: sequence(!) of actions applied to external world

Type of I/O actions: §̈ ¥¦IO a ≈ World -> (a,World)

Some primitive I/O actions:.

getChar :: IO Char -- read character from stdin

putChar :: Char -> IO () -- write argument to stdout

return :: a -> IO a -- do nothing and return argument

Compose actions: (>>=) :: IO a -> (a -> IO b) -> IO b

getChar >>= putChar: copy character from input to output

Specialized composition: ignore result of first action:

(>>) :: IO a -> IO b -> IO b

x >> y = x >>= _->y

CAU Kiel Michael Hanus 14

MONADIC INPUT/OUTPUT

I/O actions: transformations on the external world

Interactive program: sequence(!) of actions applied to external world

Type of I/O actions: §̈ ¥¦IO a ≈ World -> (a,World)

Some primitive I/O actions:.

getChar :: IO Char -- read character from stdin

putChar :: Char -> IO () -- write argument to stdout

return :: a -> IO a -- do nothing and return argument

Compose actions: (>>=) :: IO a -> (a -> IO b) -> IO b

getChar >>= putChar: copy character from input to output

Specialized composition: ignore result of first action:

(>>) :: IO a -> IO b -> IO b

x >> y = x >>= _->y

CAU Kiel Michael Hanus 14

MONADIC INPUT/OUTPUT

I/O actions: transformations on the external world

Interactive program: sequence(!) of actions applied to external world

Type of I/O actions: §̈ ¥¦IO a ≈ World -> (a,World)

Some primitive I/O actions:.

getChar :: IO Char -- read character from stdin

putChar :: Char -> IO () -- write argument to stdout

return :: a -> IO a -- do nothing and return argument

Compose actions: (>>=) :: IO a -> (a -> IO b) -> IO b

getChar >>= putChar: copy character from input to output

Specialized composition: ignore result of first action:

(>>) :: IO a -> IO b -> IO b

x >> y = x >>= _->y

CAU Kiel Michael Hanus 14

MONADIC I/O: EXAMPLES

Example: output action for strings (String ≈ [Char])¶
µ

³
´

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >> putStr cs

Syntactic sugar: Haskell’s do notation

do p <- a1 ≈ a1 >>= \p -> a2

a2

Example: read a lineº

¹

·

¸
getLine = do c <- getChar

if c==’\n’ then return []

else do cs <- getLine

return (c:cs)

CAU Kiel Michael Hanus 15

MONADIC I/O: EXAMPLES

Example: output action for strings (String ≈ [Char])¶
µ

³
´

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >> putStr cs

Syntactic sugar: Haskell’s do notation

do p <- a1 ≈ a1 >>= \p -> a2

a2

Example: read a lineº

¹

·

¸
getLine = do c <- getChar

if c==’\n’ then return []

else do cs <- getLine

return (c:cs)

CAU Kiel Michael Hanus 15

PREDICATES

Predicates (logic programming) ≈ functions with result type Success

'

&

$

%

isPrime :: Int -> Success

isPrime 2 = success

isPrime 3 = success

isPrime 5 = success

isPrime 7 = success

isPrimePair :: Int -> Int -> Success

isPrimePair x y = isPrime x & isPrime y & x+2 =:= y

Pure logic programs ; direct translation into Curry programs

CAU Kiel Michael Hanus 16

DYNAMIC PREDICATES: GENERAL CONCEPT

Dynamic predicate:
➜ semantics defined by ground facts

➜ facts not provided in program code

➜ only type signature provided (similar to external functions)

®

©
ªprime :: Int -> Dynamic -- instead of Success

prime dynamic -- instead of explicit rules

Dynamic:
➜ abstract type (≈ Success)

➜ specific update and access functionsº
¹

·
¸

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

getKnowledge :: IO (Dynamic->Success) -- get current facts

CAU Kiel Michael Hanus 17

DYNAMIC PREDICATES: GENERAL CONCEPT

Dynamic predicate:
➜ semantics defined by ground facts

➜ facts not provided in program code

➜ only type signature provided (similar to external functions)®

©
ªprime :: Int -> Dynamic -- instead of Success

prime dynamic -- instead of explicit rules

Dynamic:
➜ abstract type (≈ Success)

➜ specific update and access functionsº
¹

·
¸

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

getKnowledge :: IO (Dynamic->Success) -- get current facts

CAU Kiel Michael Hanus 17

DYNAMIC PREDICATES: GENERAL CONCEPT

Dynamic predicate:
➜ semantics defined by ground facts

➜ facts not provided in program code

➜ only type signature provided (similar to external functions)®

©
ªprime :: Int -> Dynamic -- instead of Success

prime dynamic -- instead of explicit rules

Dynamic:
➜ abstract type (≈ Success)

➜ specific update and access functions

º
¹

·
¸

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

getKnowledge :: IO (Dynamic->Success) -- get current facts

CAU Kiel Michael Hanus 17

DYNAMIC PREDICATES: GENERAL CONCEPT

Dynamic predicate:
➜ semantics defined by ground facts

➜ facts not provided in program code

➜ only type signature provided (similar to external functions)®

©
ªprime :: Int -> Dynamic -- instead of Success

prime dynamic -- instead of explicit rules

Dynamic:
➜ abstract type (≈ Success)

➜ specific update and access functionsº
¹

·
¸

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

getKnowledge :: IO (Dynamic->Success) -- get current facts

CAU Kiel Michael Hanus 17

BASIC EXAMPLES

²
±

¯
°

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

assert (prime 1) >> assert (prime 2) >> retract (prime 1)

; asserts (prime 2) to database

§̈ ¥¦getKnowledge :: IO (Dynamic->Success) -- get current facts

Retrieve set of currently stored facts:

do assert (prime 2)

known <- getKnowledge

doSolve (known (prime x)) -- doSolve c | c = return ()

; {x=2}

CAU Kiel Michael Hanus 18

BASIC EXAMPLES

²
±

¯
°

assert :: Dynamic -> IO () -- add new fact

retract :: Dynamic -> IO Bool -- try to delete fact

assert (prime 1) >> assert (prime 2) >> retract (prime 1)

; asserts (prime 2) to database

§̈ ¥¦getKnowledge :: IO (Dynamic->Success) -- get current facts

Retrieve set of currently stored facts:

do assert (prime 2)

known <- getKnowledge

doSolve (known (prime x)) -- doSolve c | c = return ()

; {x=2}

CAU Kiel Michael Hanus 18

ENCAPSULATING NON-DETERMINISM

Note: I/O actions must be deterministic (“cannot copy the world”)

; encapsulate non-deterministic search in I/O actions

§̈ ¥¦getAllSolutions :: (a -> Success) -> IO [a]

returns list of all solutions for constraint abstraction

getAllSolutions (\x -> known (prime x)) ; all known primes

Print list of all known primes:¾

½

»

¼
printKnownPrimes = do

known <- getKnowledge

primes <- getAllSolutions (\x -> known (prime x))

print primes

CAU Kiel Michael Hanus 19

ENCAPSULATING NON-DETERMINISM

Note: I/O actions must be deterministic (“cannot copy the world”)

; encapsulate non-deterministic search in I/O actions

§̈ ¥¦getAllSolutions :: (a -> Success) -> IO [a]

returns list of all solutions for constraint abstraction

getAllSolutions (\x -> known (prime x)) ; all known primes

Print list of all known primes:¾

½

»

¼
printKnownPrimes = do

known <- getKnowledge

primes <- getAllSolutions (\x -> known (prime x))

print primes

CAU Kiel Michael Hanus 19

ENCAPSULATING NON-DETERMINISM

Note: I/O actions must be deterministic (“cannot copy the world”)

; encapsulate non-deterministic search in I/O actions

§̈ ¥¦getAllSolutions :: (a -> Success) -> IO [a]

returns list of all solutions for constraint abstraction

getAllSolutions (\x -> known (prime x)) ; all known primes

Print list of all known primes:¾

½

»

¼
printKnownPrimes = do

known <- getKnowledge

primes <- getAllSolutions (\x -> known (prime x))

print primes

CAU Kiel Michael Hanus 19

LOGIC PROGRAMMING WITH DYNAMIC PREDICATES

General technique:
➜ pass result of getKnowledge into deductive part

➜ wrap all calls to dynamic predicate

Print all prime pairs:'

&

$

%

printPrimePairs = do

known <- getKnowledge

ppairs <- getAllSolutions (\p -> primePair known p)

print ppairs

primePair known (x,y) =

known (prime x) & known (prime y) & x+2 =:= y

CAU Kiel Michael Hanus 20

LOGIC PROGRAMMING WITH DYNAMIC PREDICATES

An even more logic programming style:
➜ pass result of getKnowledge into deductive part

➜ define composition of knowledge and dynamic predicate

Define sequence of primes:'

&

$

%

primeSequence known l = primes l

where

isPrime = known . prime

primes [p] = isPrime p

primes (p1:p2:ps) = isPrime p1 &

isPrime p2 &

(p1<p2) =:= True &

primes (p2:ps)

CAU Kiel Michael Hanus 21

COMBINING UPDATES AND ACCESSES

Clear separation between update and access
independent of computation order:'

&

$

%

do assert (prime 2)

known1 <- getKnowledge -- should be [2]

assert (prime 3)

assert (prime 5)

known2 <- getKnowledge -- should be [2,3,5]

sols2 <- getAllSolutions (\x -> known2 (prime x))

sols1 <- getAllSolutions (\x -> known1 (prime x))

return (sols1,sols2) ; ([2],[2,3,5])

Computation (getAllSolutions) later than access (getKnowledge)
➜ getKnowledge conceptually copies current database

➜ efficiently implemented by time stamps

CAU Kiel Michael Hanus 22

PERSISTENCE

Real applications require persistent data
➜ survive program executions (or crashes)

➜ store in (XML) files or databases

➜ complex access/update routines

Our approach: declare dynamic predicate as persistent (nothing else!)®

©
ªprime :: Int -> Dynamic

prime persistent "file:prime_infos" -- instead of dynamic

Consequences:
➀ all facts are persistently stored

➁ changes immediately written into log file (recovered after restart/crash)

➂ getKnowledge gets current persistently stored knowledge
(e.g., changes by other processes)

CAU Kiel Michael Hanus 23

PERSISTENCE

Real applications require persistent data
➜ survive program executions (or crashes)

➜ store in (XML) files or databases

➜ complex access/update routines

Our approach: declare dynamic predicate as persistent (nothing else!)®

©
ªprime :: Int -> Dynamic

prime persistent "file:prime_infos" -- instead of dynamic

Consequences:
➀ all facts are persistently stored

➁ changes immediately written into log file (recovered after restart/crash)

➂ getKnowledge gets current persistently stored knowledge
(e.g., changes by other processes)

CAU Kiel Michael Hanus 23

TRANSACTIONS

Problem with persistent data: changes by concurrent processes
➜ synchronization necessary

➜ database community: transactions

Transaction: updates completely performed or ignored (error/failure)

(only complete transactions visible to other processes)²
±

¯
°

transaction :: IO a -> IO (Maybe a)

abortTransaction :: IO a -- failure of transaction

¶
µ

³
´

try42 = do assert (prime 42)

abortTransaction

assert (prime 43)

transaction try42 ; Nothing (no change to prime)

CAU Kiel Michael Hanus 24

TRANSACTIONS

Problem with persistent data: changes by concurrent processes
➜ synchronization necessary

➜ database community: transactions

Transaction: updates completely performed or ignored (error/failure)

(only complete transactions visible to other processes)²
±

¯
°

transaction :: IO a -> IO (Maybe a)

abortTransaction :: IO a -- failure of transaction

¶
µ

³
´

try42 = do assert (prime 42)

abortTransaction

assert (prime 43)

transaction try42 ; Nothing (no change to prime)

CAU Kiel Michael Hanus 24

TRANSACTIONS

Problem with persistent data: changes by concurrent processes
➜ synchronization necessary

➜ database community: transactions

Transaction: updates completely performed or ignored (error/failure)

(only complete transactions visible to other processes)²
±

¯
°

transaction :: IO a -> IO (Maybe a)

abortTransaction :: IO a -- failure of transaction

¶
µ

³
´

try42 = do assert (prime 42)

abortTransaction

assert (prime 43)

transaction try42 ; Nothing (no change to prime)

CAU Kiel Michael Hanus 24

IMPLEMENTATION

Dynamic predicates implemented in PAKCS (Curry7→Prolog):
➜ dynamic predicate ≈ data structure (actual arguments, file name)

➜ facts stored in main memory

➜ assert/retract ≈ Prolog’s assert/retract

➜ facts with time stamps [birth,death]

Current time (CT): incremented for each assert/retract
assert ; time stamp [CT,∞]
retract ; set death time to CT
getKnowledge ; keep CT and check time stamp of unifiable facts

Persistent predicates:
➜ all facts stored in main memory and Prolog file

➜ each update written into log file

➜ program initialization: merge log file into Prolog file
(exclusive by one process with OS locks)

➜ reduce load time: store facts in intermediate format (Sicstus-Prolog “.po”)

CAU Kiel Michael Hanus 25

IMPLEMENTATION

Dynamic predicates implemented in PAKCS (Curry7→Prolog):
➜ dynamic predicate ≈ data structure (actual arguments, file name)

➜ facts stored in main memory

➜ assert/retract ≈ Prolog’s assert/retract

➜ facts with time stamps [birth,death]

Current time (CT): incremented for each assert/retract
assert ; time stamp [CT,∞]
retract ; set death time to CT
getKnowledge ; keep CT and check time stamp of unifiable facts

Persistent predicates:
➜ all facts stored in main memory and Prolog file

➜ each update written into log file

➜ program initialization: merge log file into Prolog file
(exclusive by one process with OS locks)

➜ reduce load time: store facts in intermediate format (Sicstus-Prolog “.po”)

CAU Kiel Michael Hanus 25

IMPLEMENTATION

Dynamic predicates implemented in PAKCS (Curry7→Prolog):
➜ dynamic predicate ≈ data structure (actual arguments, file name)

➜ facts stored in main memory

➜ assert/retract ≈ Prolog’s assert/retract

➜ facts with time stamps [birth,death]

Current time (CT): incremented for each assert/retract
assert ; time stamp [CT,∞]
retract ; set death time to CT
getKnowledge ; keep CT and check time stamp of unifiable facts

Persistent predicates:
➜ all facts stored in main memory and Prolog file

➜ each update written into log file

➜ program initialization: merge log file into Prolog file
(exclusive by one process with OS locks)

➜ reduce load time: store facts in intermediate format (Sicstus-Prolog “.po”)

CAU Kiel Michael Hanus 25

IMPLEMENTATION (CONT’D)

Transactions and concurrent access:
➜ operating system locks

➜ version numbers for database (concurrent updates)

➜ mark log files with transactions (ignore incomplete transactions)

Preliminary results:

Experiment: bibliographic database with 10,000 entries
➜ machine: 2.0 GHz Linux-PC (AMD Athlon XP 2600)

➜ load time (for 12.5 MB Prolog source code): 120 msec

➜ query time: few milliseconds

Current implementation used in a larger application
(SOL - web-based test and examination system)

CAU Kiel Michael Hanus 26

IMPLEMENTATION (CONT’D)

Transactions and concurrent access:
➜ operating system locks

➜ version numbers for database (concurrent updates)

➜ mark log files with transactions (ignore incomplete transactions)

Preliminary results:

Experiment: bibliographic database with 10,000 entries
➜ machine: 2.0 GHz Linux-PC (AMD Athlon XP 2600)

➜ load time (for 12.5 MB Prolog source code): 120 msec

➜ query time: few milliseconds

Current implementation used in a larger application
(SOL - web-based test and examination system)

CAU Kiel Michael Hanus 26

CONCLUSIONS

Dynamic predicates:

• defined by facts

• updates and access initialization as I/O actions

• actual access controlled by time stamps
(independence of evaluation time!)

• easy to use: only three basic I/O actions

• supports
➜ logic programming style
➜ persistence
➜ concurrency and transactions

Future work: relational database instead of files
(first implementation with MySQL just finished)

Available with latest PAKCS release:
http://www.informatik.uni-kiel.de/~pakcs/

CAU Kiel Michael Hanus 27

