

Declarative Programming with Function Patterns

Michael Hanus

Christian-Albrechts-Universität Kiel

(joint work with Sergio Antoy, Portland State University)

FUNCTIONAL LOGIC LANGUAGES

Approach to amalgamate ideas of declarative programming

- efficient execution principles of functional languages (determinism, laziness)
- flexibility of logic languages (constraints, built-in search)
- avoid non-declarative features of Prolog (arithmetic, I/O, cut)
- combine best of both worlds in a single model (higher-order functions, declarative I/O, concurrent constraints)
- Advantages:
 - → optimal evaluation strategies [JACM'00,ALP'97]
 - → new design patterns [FLOPS'02]
 - → better abstractions for application programming (GUI programming [PADL'00], web programming [PADL'01])

FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL'97]

FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL'97]

Datatypes (\approx admissible values): enumerate all data constructors

 data Bool	=	True		False	
data List a	=	[]		a : List a	[a]

FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL'97]

Datatypes (\approx admissible values): enumerate all data constructors

data Bool	=	True		False	
data List a	=	[]	I	a : List a	[a]

Functions: operations on values defined by equations (or rules)

Pattern: linear data term

FUNCTIONAL LOGIC PROGRAMS

Functional evaluation: (lazy) rewriting $[1,2]++[3] \rightarrow 1:([2]++[3]) \rightarrow 1:(2:([]++[3])) \rightarrow [1,2,3]$

Functional logic evaluation: equation solving, guess values for unknowns $xs++[x] = := [1,2,3] \longrightarrow \{xs \mapsto [1,2], x \mapsto 3\}$

FUNCTIONAL LOGIC PROGRAMS

Functional evaluation: (lazy) rewriting $[1,2]++[3] \rightarrow 1:([2]++[3]) \rightarrow 1:(2:([]++[3])) \rightarrow [1,2,3]$

Functional logic evaluation: equation solving, guess values for unknowns $xs++[x] = := [1,2,3] \longrightarrow \{xs \mapsto [1,2], x \mapsto 3\}$

Define functions by **conditional equations**:

last :: [a] -> a last xs | ys ++ [x] =:= xs = x where x, ys free

last [1,2]
$$\rightarrow$$
 2

Modern functional logic languages (Curry, Toy): non-strict semantics

- → lazy evaluation
- → computing with infi nite structures
- → comparison of arbitrary infi nite objects?

Modern functional logic languages (Curry, Toy): non-strict semantics

- → lazy evaluation
- → computing with infi nite structures
- → comparison of arbitrary infi nite objects?

Strict equality (K-LEAF [Giovannetti et al. '91])

- → identity on finite data terms (~not reflexive)
- → $e_1 = := e_2$ satisfied iff e_1 and e_2 reducible to same (unifiable) constructor term
- → "x =:= head []" does not hold

Modern functional logic languages (Curry, Toy): non-strict semantics

- → lazy evaluation
- → computing with infi nite structures
- → comparison of arbitrary infi nite objects?

Strict equality (K-LEAF [Giovannetti et al. '91])

- → identity on finite data terms (~not reflexive)
- → $e_1 = := e_2$ satisfied iff e_1 and e_2 reducible to same (unifiable) constructor term
- → "x =:= head []" does not hold

Disadvantage: strict equality evaluates more than necessary

last [failed,2] $\sim \rightarrow$ no result!

Difficulty: comparison of infinite structures

from $x = x$: from (x+1)	\Rightarrow	from 0 \rightsquigarrow 0:1:2:3:4:5:
rtail (x:xs) = rtail xs		

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

Difficulty: comparison of infinite structures

from $x = x$: from (x+1)	\Rightarrow	from 0 \rightsquigarrow 0:1:2:3:4:5:
rtail (x:xs) = rtail xs		

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

from 2 x = x : x+1 : from 2 (x+2)

from 0 =:= from 2 0 : should hold with reflexivity, generally undecidable

Difficulty: comparison of infinite structures

from $x = x$: from (x+1)	\Rightarrow	from 0 \rightsquigarrow 0:1:2:3:4:5:
rtail (x:xs) = rtail xs		

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

from 2x = x : x+1 : from 2 (x+2)

from 0 =:= from 2 0 : should hold with reflexivity, generally undecidable

\implies strict equality is not reflexive

head [] =:= head [] \rightarrow no solution

(not specific to FLP, e.g., Haskell, Java,...)

RELAXING STRICT EQUALITY?

Is evaluation always necessary?

 $x =:= head [] \rightarrow no solution$

Why not: solve x = := t by binding x to t (without evaluating t)?

RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] \rightarrow no solution

Why not: solve x = := t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:

(f x	x =:= from	n 0 = 99
f x	\sim	99
(f x, 9	9) ~>	(99, 99)
(f x, f	x) ~>	no termination

RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] $\sim \rightarrow$ no solution

Why not: solve x = := t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:

f x x	: =:= from	$m \ 0 \ = \ 99$
f x	\rightsquigarrow	99
(f x, 99)) \sim	(99, 99)
(f x, f :	x) \sim	no termination

Solution: Distinguish between

- → logic variables: bind only to fi nite constructor terms
- → pattern variables: bind to arbitrary (unevaluated) terms

→ function patterns

FUNCTION PATTERNS: SYNTAX

Function pattern: pattern containing

- → variables
- → constructors
- ➔ defined operation symbols

last :: [a] -> a last (xs++[x]) = x

Advantages:

- → concise definition
- \rightarrow xs and x pattern variables \rightsquigarrow can be bound to unevaluated expressions
- → last [failed,2] \sim 2 (with {xs \mapsto [failed], x \mapsto 2})

FUNCTION PATTERNS: TRANSFORMATIONAL SEMANTICS

- → Reuse existing semantics and models of functional logic programs
- ➔ Transform programs with function patterns into standard programs

FUNCTION PATTERNS: TRANSFORMATIONAL SEMANTICS

- → Reuse existing semantics and models of functional logic programs
- ➔ Transform programs with function patterns into standard programs

Basic idea: rule with function patterns \mapsto set of rules where each function pattern is replaced by its evaluation to some data term

Example: Evaluations of xs++[x]:

$$xs++[x] \stackrel{*}{\leadsto}_{xs\mapsto[} [x]$$

$$xs++[x] \stackrel{*}{\leadsto}_{xs\mapsto[x1]} [x1,x]$$

$$xs++[x] \stackrel{*}{\leadsto}_{xs\mapsto[x1,x2]} [x1,x2,x]$$

 $\Rightarrow \texttt{last} (\texttt{xs} + \texttt{[x]}) = \texttt{x}$ abbreviates the set of rules

. . .

Potential problems of this approach:

Potential problems of this approach:

1. infinite set of transformed rules \rightsquigarrow perform transformation at run time

SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

- 1. infinite set of transformed rules \rightsquigarrow perform transformation at run time
- 2. circular definition, e.g.,

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

 \rightsquigarrow avoid circular definitions by restriction to stratified programs

SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

- 1. infinite set of transformed rules \rightsquigarrow perform transformation at run time
- 2. circular definition, e.g.,

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

 \rightsquigarrow avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules

idpair x = (x, x)

f (idpair x) = 0

Transformation into: f(x,x) = 0

Not allowed in standard FLP \rightsquigarrow linearization of left-hand sides:

f(x,y) | x=:=y = 0

 $\text{Details} \rightsquigarrow \text{paper}$

Dutch National Flag (Dijkstra'76): arrange a sequence of objects colored by red, white or blue so that they appear in the order of the Dutch flag

Dutch National Flag (Dijkstra'76): arrange a sequence of objects colored by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

Dutch National Flag (Dijkstra'76): arrange a sequence of objects colored by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[Red]++z) = solve (x++[Red]++y++[White]++z)

Dutch National Flag (Dijkstra'76): arrange a sequence of objects colored by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[Red]++z) = solve (x++[Red]++y++[White]++z)

solve (x++[Blue]++y++[Red]++z) = solve (x++[Red]++y++[Blue]++z)

solve (x++[Blue]++y++[White]++z) = solve (x++[White]++y++[Blue]++z)

Dutch National Flag (Dijkstra'76): arrange a sequence of objects colored by red, white or blue so that they appear in the order of the Dutch flag

```
data Color = Red | White | Blue
solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)
solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)
solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)
solve flag | isDutchFlag flag = flag
where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success
uni color = []
uni color = color : uni color
```


EXAMPLE: TESTING INFINITE STRUCTURES

Task: compute length of a stream up to the first repeated element (part of an ACM programming contest)

EXAMPLE: TESTING INFINITE STRUCTURES

Task: compute length of a stream up to the first repeated element (part of an ACM programming contest)

Implementation with function patterns:

- → (nub xs): list without duplicates
- ➔ function pattern + condition: break input list into part without repeated elements and fi rst repeated element
- → with strict equality (i.e., xs =:= p++[r]++q): works only for finite lists and evaluates also elements after first repeated element

Task: simplify symbolic arithmetic expressions, e.g., $1 * (x + 0) \rightsquigarrow x$ data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

Task: simplify symbolic arithmetic expressions, e.g., $1 * (x + 0) \rightsquigarrow x$ data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp (evalTo e): expressions that simplify to e evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1) ...

Task: simplify symbolic arithmetic expressions, e.g., $1 * (x + 0) \rightsquigarrow x$ data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp (evalTo e): expressions that simplify to e evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1) ... (replace c p e): term replacement $c[e]_p$ replace _ [] x = x replace (Add l r) (1:p) x = Add (replace l p x) r replace (Add l r) (2:p) x = Add l (replace r p x) ...

Task: simplify symbolic arithmetic expressions, e.g., $1 * (x + 0) \rightarrow x$ data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp (evalTo e): expressions that simplify to e evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1) (replace c p e): term replacement $c[e]_p$ replace _ [] x = x replace (Add l r) (1:p) x = Add (replace l p x) r replace (Add l r) (2:p) x = Add l (replace r p x)simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:

- → define abstractions for complex collections of patterns (evalTo)
- specify transformations at arbitrary positions inside an argument (replace) e.g., variable in expression: varInExp (replace c p (Var v)) = v

Some useful abstractions:

xtxt s = XText s -- basic text element xml t c = XElem t [] c -- XML element without attributes ~> xml "program" [xml "language" [xtxt "Curry"],...]


```
data XmlExp = XText String
            | XElem String [(String, String)] [XmlExp]
Some useful abstractions:
xtxt s = XText s -- basic text element
xml t c = XElem t [] c -- XML element without attributes
→ xml "program" [xml "language" [xtxt "Curry"],...]
(replace xe \ c \ s): XML term replacement xs[s]_p
replace _ [] s = s
replace (XElem tag atts xes) (i:p) s =
         XElem tag atts (replaceElem i (x \rightarrow replace x p s) xes)
  where
   replaceElem 0 f (x:xs) = f x : xs
   replaceElem (S n) f (x:xs) = x : replaceElem n f xs
```



```
data XmlExp = XText String
            | XElem String [(String, String)] [XmlExp]
Some useful abstractions:
xtxt s = XText s -- basic text element
xml t c = XElem t [] c -- XML element without attributes
→ xml "program" [xml "language" [xtxt "Curry"],...]
(replace xe \ c \ s): XML term replacement xs[s]_p
replace _ [] s = s
replace (XElem tag atts xes) (i:p) s =
         XElem tag atts (replaceElem i (x \rightarrow replace x p s) xes)
  where
   replaceElem 0 f (x:xs) = f x : xs
   replaceElem (S n) f (x:xs) = x : replaceElem n f xs
Example: Find element <city>...</city> in XML expression:
cityOf (replace _ _ (xml "city" [xtxt c])) = c
```


Basic idea: perform transformation of rules containing function patterns demand-driven at run time

Integration of function patterns into existing implementations:

- Preprocessor eliminates function patterns: replace by new variable and introduce specific unification "=:<=""">"<=""<"
- ② Provide implementation of "=:<="<">"<="<"</p>

Example:

last(xs++[x]) = x

is transformed into

last ys | xs++[x] =:<= ys = x where xs,x free</pre>

FUNCTION PATTERN UNIFICATION

To evaluate $e_1 = : <= e_2$: (e_1 : function pattern)

- ① Evaluate e_1 to a head normal form h_1
- $\ensuremath{ @ 2 }$ If h_1 is a variable: bind it to e_2
- ③ If $h_1 = c t_1 \dots t_n$ (where c is a constructor):
 - (a) Evaluate e_2 to a head normal form h_2
 - (b) If h_2 is a variable: instantiate h_2 to $c x_1 \dots x_n$ (x_1, \dots, x_n are fresh variables) and evaluate $t_1 = : \le x_1 \& \dots \& t_n = : \le x_n$
 - (c) If $h_2 = c \ s_1 \dots s_n$: evaluate $t_1 = : <= s_1 \& \dots \& t_n = : <= s_n$
 - (d) Otherwise: fail

FUNCTION PATTERN UNIFICATION

To evaluate $e_1 = : <= e_2$: (e_1 : function pattern)

- ① Evaluate e_1 to a head normal form h_1
- $\ensuremath{ @ 2 }$ If h_1 is a variable: bind it to e_2
- ③ If $h_1 = c t_1 \dots t_n$ (where c is a constructor):
 - (a) Evaluate e_2 to a head normal form h_2
 - (b) If h_2 is a variable: instantiate h_2 to $c x_1 \dots x_n$ (x_1, \dots, x_n are fresh variables) and evaluate $t_1 = : \le x_1 \& \dots \& t_n = : \le x_n$
 - (c) If $h_2 = c \ s_1 \dots s_n$: evaluate $t_1 = : <= s_1 \& \dots \& t_n = : <= s_n$
 - (d) Otherwise: fail
- → finite search space for xs++[x] =:<= [failed,2]</p>
- → useful: more efficient function pattern unification "=:<<=" for linear function patterns (~> compiler optimization)

Implementation of function patterns provided in Curry programming environment PAKCS

Function pattern increases expressiveness, but they can also increase efficiency in comparison to strict equality:

Expression:	=:=	=:<=	=:<<=
last (take 10000 (repeat failed) ++ [1])	no solution	380	250
last (map (inc 0) [12000])	20900	90	60
lengthUpToRepeat ([150]++[1]++[51])	∞	200	200
simplify*	1200	1080	690
varsInExp	2240	1040	100

Further optimization:

compile-time specialization of function patterns (~> paper)

Declarative programs with function patterns:

- concise definitions, problems with strict equality avoided
- executable high-level definitions of complex transformation tasks and queries on tree-like structures
- semantics defined by transformation into standard programs
- implementation by specific function pattern unification
- extension specific to integrated functional logic languages (LP: lack of evaluable functions, FP: lack of nondeterminism)
- functional logic languages: ideal environments for building high-level abstractions

Prototype implementation available in recent releases of PAKCS: http://www.informatik.uni-kiel.de/~pakcs/

