
Observing Functional Logic Computations

or:

C Sy: TheCurry ObjectObservationSystem

Bernd Braßel Olaf Chitil Frank Huch Michael Hanus

Christian-Albrechts- University
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C Sy — Lazy + Logic = Hard Debugging

Curry : a lazy functional logic language (extension of Haskell)

Lazy (demand-driven) evaluation complicates debugging:

• execution trace does not match program text

• some terms are not evaluated

• print statements (for testing) might change program execution

More problems by logic programming features:

• non-deterministic computations with multiple results

• instantiation of logic variables influences computation order

• information about bindings is relevant

COOSy:
➜ a relatively simple approach to help debugging
➜ extension of HOOD (Haskell observation debugger[Gill’01] )
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C Sy is easy

COOSy is easy to use:

1. Import moduleObserve

2. Observe computed value of some expressione by

(observe observeType Label e)

(manyobserveTypes are predefined; see later)

3. Start graphical COOSy interface, execute program,

look atobservation protocol
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C Sy — An Example

The following program contains a bug:

max x y | x < y = y

| x > y = x

maxList = foldl max 0

main = maxList [1,7,3,2,6,7,8]

Evaluatemain  no solution

First debugging approach: observe the list

import Observe

...

main = maxList (observe (oList oInt) "List"

[1,7,3,2,6,7,8] )
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C Sy — Graphical Interface

Result of this example:

“_” ≈ this element has not been evaluated
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C Sy — Protocol for Functional Observations

observerecords uniquely numbered events:

Demand Event≈ a value is demanded:
Format: Demand argument number parent
Example: Demand 1 24 23

Value Event≈ a value has been computed:
Format: Value value arity number parent
Example: Value “4” 0 25 24

Chain of parent nodes complete data structure:

_ Value with referencer (arity> 0) but no Demand with parentr:

argument not demanded

! Demand with referencer but not Value with parentr:

value was demanded but not computed (failure, interrupt)
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C Sy — Reconstructing the Data Structure

( : )   

DemandDemand

( : )   

DemandDemand

( : ) ...

1

7

Demand

reconstruct data structure from parent references

here: beginning of list1:7:[...]
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C Sy — The Observables

One can observe

• data structures: standard observation types are derivable from general patterns

data Nat = O | S Nat

oNat O = o0 "O" O

oNat (S x) = o1 oNat S "S" x

• functions:

oMax = oInt ˜ > oInt ˜ > oInt

maxList = foldl (observe oMax "max" max) 0

˜ > is predefined infix operator of moduleObserve

• non-deterministic branches (see below)

• bindings of logic variables (see below)
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C Sy — Observing Functions

Proceed with debugging the initial example:

max x y | x < y = y

| x > y = x

oMax = oInt ˜ > oInt ˜ > oInt

maxList = foldl (observe oMax "max" max) 0

main = maxList [1,7,3,6,7,8]

Observation protocol of a function:
argument/result pairs computed during program execution

{ ! _ -> !

, 7 7 -> !

, 7 6 -> 7

, 7 3 -> 7

, 1 7 -> 7

, 0 1 -> 1 }
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C Sy — Non-Determinism

We want to observe also non-deterministic operations:

coin = O plus O x = x

coin = S O plus (S x) y = S (plus x y)

main = plus 0 coin

main = (observe (oNat ˜ > oNat ˜ > oNat) " + " plus ) 0 coin

Desired observation:

+

---

{ O O -> O }
{ O (S O) -> S O }

But: current chaining of events provides not enough information

Predecessor:number of event occurred just before in same branch
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C Sy — Predecessor Chaining
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C Sy — Logic Variables

We want to observe also logic variables:

plus O x = x

plus (S x) y = S (plus x y)

main | plus

(observe oNat "x"

x

)

y =:= S(S(S O))

= (x,y) where x,y free

 four results: (0,3), (1,2), (2,1), (3,0)

Observation for logic variablex :

(?/O)

(?/ (S ?/O) )

(?/(S ?/ (S ?/O) ))

(?/(S ?/(S ?/ (S ?/O) )))
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C Sy — How it Works

Problem:observation should not influence lazy evaluation
Solution:observeyields head constructor and furtherobservecalls for arguments
Pattern: observe s(C x1 . . . xn) = C (observe 1x1 . . .observe nxn)

Problem:some terms are not evaluated
Solution: distinguish between Demand and Value events
Pattern: observex = record Demand>> compute hnf x>>= record Value

Problem:associating subterms to computation branches
Solution: reference chain to predecessor of a branch
Pattern? such information is usually not accessible!

4 2
3

1
computation order can be arbitrary

(e.g., fair computation of all branches)
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C Sy — Computing Predecessor Chain

First solution:observecontains a logic variable as further parameter

• bindings visible in complete computation branch

• different computation branches — different bindings

Remaining problem:when should this logic variable be bound?

• multiple bindings failure of computation

• future branches not predictable newlogic variables necessary

Solution:

• variable will be bound to an open-ended list, every step records reference at the end

(by instantiation)

• find end of list by (unsafe) “test of logic variable” (isVar )
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C Sy — Observing Bindings

Final problem:

how can we observe concrete bindings of logic variables?

bindings are performed later (in other parts of the programs)

Solution:

create a concurrent constraint:

this constraint suspends on logic variable and is activated on binding

Pattern:

if isVar x then

spawnConstraint (x =:= observe oNat "x" x)

else ...
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C Sy Conclusions

COOSy extends Haskell’s HOOD to include

• non-determinism

• logic variables

All desired properties of HOOD are still valid:

• simple approach

• specific observation, no big log files

Advantages for debugging functional logic programs:

• no difficult requirements on underlying implementation:

functions used in moduleObserve: standard or easy to provide

• graphical interface⇒ easy to use

• debug “batch” programs (e.g., web applications)
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C Sy Further Work

Automatic generation ofobservetypes
√

Distribute tool and test its usability

Printing of partial information in parallel to exeuction of observed

program
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