PADL 2001

High-Level Server Side Web Scripting In
C
AUF
I

I
y

Michael Hanus

Christian-Albrechts-Universitat Kiel

\HTI\/IL/CGI PROGRAI\/II\/IINGI

Early days of the World Wide Web: web pages with static contents

Common Gateway Interface (CGl): web pages with dynamic contents

Retrieval of a dynamic page:
[server executes a program
[J program computes an HTML string, writes it to stdout
[1 server sends result back to client

HTML with input elements (forms):

[1 client fills out input elements
[input values are sent to server
[1 server program decodes input values for computing its answer

HTML/CGl| PROGRAMMING

‘TRADITIONAL CGl PROGRAI\/II\/IINGI

CGI programs on the server can be written in any programming language

[1 access to environment variables (for input values)
[1 writes a string to stdout

Scripting languages: (Perl, Tcl,...)
[1 simple programming of single pages
[1 error-prone: correctness of HTML result not ensured
[1 difficult programming of interaction sequences

Specialized languages: (MAWL, DynDoc,...)
[0 HTML support (structure checking)
[1 interaction support (partially)
[1 restricted or connection to existing languages

TRADITIONAL CGl PROGRAMMING

\CGI PROGRAMMING IN A MULTI-PARADIGM LANGUAGEI

Library in multi-paradigm language

Exploit functional and logic features for

[HTML support (data type for HTML structures)

[J simple access to input values (free variables and environments)
[1 simple programming of interactions (event handlers)

[1 wrapper for hiding details

Exploit imperative features for
[1 environment access (files, data bases,...)

Domain-specific language for HTML/CGI programming

CGIl PROGRAMMING IN A MULTI-PARADIGM LANGUAGE

CURRYI

[Dagstuhl’96, POPL97]

e multi-paradigm language
(higher-order concurrent functional logic language,
features for high-level distributed programming)

e extension of Haskell (non-strict functional language)
e developed by an international initiative

e provide a standard for functional logic languages
(research, teaching, application)

e several implementations available

CURRY

Declarative languages: algebraic data types

VALUESI

Values in imperative languages: basic types + pointer structures

(Haskell-like syntax)

/

data Bool
data Nat

data List a

data Tree a

data Int =

N

True | False \\\
Z | S Nat
[] | a : List a —- [a]

Leaf a | Node [Tree a]

11 -112 1 -2 |

/

Value =~

(S 2) 1:(2:[1)

[1,2]

data term, constructor term:
well-formed expression containing variables and data type constructors

VALUES

Node [Leaf 3, Node [Leaf 4, Leaf 5]]

\CURRY PROGRAI\/ISI

Functions: operations on values defined by equations (or rules)

N

defined condition :
operation data terms (optional) expression

//, conc [] ysS = Vs

conc (x:xs) ys = X : conc Xs ys

last xs | conc ys [x] =:= xs

_ = x

last [1,2] ~> 2

CURRY PROGRAMS

‘EXPRESSIONSI

(60 €1 Gn)
\z->e

if b then e; else es

(constants)

(variables x)
(application)
(abstraction)

(conditional)

EXPRESSIONS

‘EXPRESSIONSI

(60 €1 en)
\z->e¢

if b then e; else es

let x¢,...,2, free in e

(constants)

(variables x)
(application)
(abstraction)
(conditional)

(equational constraint)
(concurrent conjunction)

(existential quantification)

EXPRESSIONS

8-a

‘EXPRESSIONSI

c (constants)

x (variables x)

(eg €1...€p) (application)

\z->e (abstraction)

if b then e; else eo (conditional)

e1=:=ey (equational constraint)

e1 & e (concurrent conjunction)
let x1,...,z, free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ~ {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports

EXPRESSIONS

‘ FUNCTIONS I

e lazy evaluation (evaluate only needed redexes)
e support infinite data structures, modularity

e optimal evaluation (also for logic programming)

Distinguish:

flexible (generator) and rigid (consumer) functions

Flexible functions ~» logic programming

Rigid functions ~» concurrent programming

FUNCTIONS

FLEXIBLE VS. RIGID FUNCTIONSI
f 0=2
f1=3

rigid/flexible status not relevant for ground calls:

f1 ~ 3
f flexible:

fx=:=y ~ {x=0,y=2} | {x=1,y=3}
f rigid:

:=y ~» suspend

~ {x=1} f 1
~ {x=1} 3 =:
~ {x=1,y=3}

f x
(suspend f x)

(evaluate £ 1)

]
]
<

fx=1=y & x=:=

]
<

Default in Curry: constraints are flexible, all others are rigid

FLEXIBLE VS. RIGID FUNCTIONS

10

MODELING HTML I

Data type for representing HTML expressions:

data HtmlExp = HText String
| HStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:

htxt s = HText (htmlQuote s) —— plain string
bold hexps = HStruct "B" [] hexps -- bold font
italic hexps = HStruct "I" [] hexps —-— italic font
hi hexps = HStruct "H1" [] hexps -- main header

Example: [h1 [htxt "1. Hello World"l],
italic [htxt "Hello"], bold [htxt "world!"]]

~» 1. Hello World
Hello world!

MODELING HTML

11

Advantages:

[1 static checking of HTML structure (well-balanced parentheses)
[1 flexible dynamic documents
[functions for computing HTML documents

Converting tree structure (leaves contain strings) into nested HTML lists:

///aata Tree a = Leaf a | Node [Tree a] ‘\\\

htmlTree :: Tree String -> [HtmlExp]

htmlTree (Leaf s) = [htxt s]
htmlTree (Node trees) = [ulist (map htmlTree trees)]

ulist :: [[HtmlExp]] -> HtmlExp
ulist items = HStruct "UL" [] (map litem items)

\\\}item hexps = HStruct "LI" [] hexps ////

MODELING HTML

\ HTML INPUT FORMSI

Specific HTML elements for dealing with user input
<INPUT TYPE="TEXT" NAME="INPTEXT" VALUE="fill out!">

Form is submitted ~»
clients sends the current value of this field (identified by "INPTEXT")

Expressible as HTML term:
HStruct "INPUT" [("TYPE","TEXT"),("NAME","INPTEXT"),
("VALUE","fill out!")] []

Problems:

[1 server program must decode input values
[1 server program must know right names of field identifiers ("INPTEXT")
[l error-prone

HTML INPUT FORMS 13

ABSTRACT INPUT FORMS I

[use free variables as references to input fields (CGl references)

Solution:

[1 collect input values in CGI environments:
mapping from CGI references to strings

[1 associate event handlers to submit buttons
[1 event handlers take a CGI environment and produce an HTML form

Implementation:

straightforward in a functional logic language!

ABSTRACT INPUT FORMS

14

ABSTRACT INPUT FORMS: |I\/IPLEI\/IENTATIONI

CGl references:
data CgiRef = —-—- data constructor not exported

[1 no construction of wrong references
[only free variables of type CgiRef
[1 global wrapper function instantiates with the right strings

HTML elements with CGI references:
data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

Example: Text fields with a CGlI reference and initial contents
textfield :: CgiRef -> String -> HtmlExp
textfield (CgiRef ref) contents =
HtmlCRef (HStruct "INPUT" [("TYPE","TEXT"),
("NAME" ,ref), ("VALUE",contents)])

(CgiRef ref)

ABSTRACT INPUT FORMS: IMPLEMENTATION 15

HTML form: title + list of HTML expressions
data HtmlForm = Form String [HtmlExp]

Example: simple form with a single input element (a text field)
Form "Form" [hl [htxt "A Simple Form"],
htxt "Enter a string:", textfield sref ""]

CGlI environments: map CGI references to strings
type CgiEnv = CgiRef -> String

Event handlers have type CgiEnv -> I0 Form

Event handlers are associated to submit buttons:
user presses a submit button
~» execute associated event handler with current environment

ABSTRACT INPUT FORMS: IMPLEMENTATION

16

‘ EXAMPLE: FORM TO REVERSE/DUPLICATE A STRING I

File Edit View Go Communicator Help

Enter a sting -I

Reversze stringl Duplicate stringl

o | |
Form "Question" [htxt "Enter a string: ", textfield tref "", hr,
button "Reverse string" revhandler,

button "Duplicate string" duphandler]
where tref free

revhandler env = return $ Form "Answer"
[h1 [htxt ("Reversed input: " ++ rev (env tref))]]

duphandler env = return $§ Form "Answer"
[h1 [htxt ("Duplicated input: " ++ env tref ++ env tref)]]

EXAMPLE: FORM TO REVERSE/DUPLICATE A STRING 17

‘ACCESSING THE WEB SERVER ENVIRONI\/IENTI

Form to show the contents of an arbitrary file stored at the server:

Form "Get File" [htxt "Enter local file name:",
textfield fileref "",
button "Get file!" handler]

where fileref free

handler env =
do contents <- readFile (env fileref)
return $§ Form "Answer"
[h1 [htxt ("Contents of file " ++ env fileref)],

verbatim contents]

ACCESSING THE WEB SERVER ENVIRONMENT 18

HANDLING INTERMEDIATE STATE I

Sequence of forms to collect first and last name:

Form "First Name Form"
[htxt "Enter your first name: ", textfield first "",

button "Continue" fhandler]

where first free

fhandler _ =
return $§ Form "Last Name Form"
[htxt "Enter your last name: ", textfield last "",

button "Continue" lhandler]
where last free

lhandler env = return $ Form "Answer"

[htxt ("Hi, " ++ env first ++ " " ++ env last)]

HANDLING INTERMEDIATE STATE 19

INTERACTION SEQUENCESI

Programming arbitrary loops: a number guessing game:

guessform = return $§ Form "Number Guessing" guessinput

guessinput =
[htxt "Guess a number: ", textfield nref "",
button "Check" (guesshandler nref)] where nref free

guesshandler nref env =
let nr = readInt (env nref)
in return $ Form "Answer"
(if nr==42
then [htxt "Right!"]
else [htxt (if nr<42 then "Too small!" else "Too large!"),

hrule] ++ guessinput)

INTERACTION SEQUENCES 20

APPLICATION-ORIENTED ABSTRACTIONS I

Abtraction: HTML element for looking up email addresses:

mail_epilog =
[htxt "Enter a name: ", textfield nref "",

button "search email" lookup, hrule]

where nref free

lookup env = ... send (GetEmail (env nref))

Now, mail_epilog can be used as any other HTML element
(without name conflicts with other form elements!):

[..., textfield nref "", hrule] ++ mail_epilog ++ ...

APPLICATION-ORIENTED ABSTRACTIONS

21

\HTI\/IL/CGI PROGRAI\/II\/IINGI

The main form is executed by a wrapper function
runcgi :: String -> I0 HtmlForm -> I0 ()

[1 takes a title string and a form and transforms it into HTML text
[replaces all CGI references by unique strings
[1 decodes input values and invokes associated event handler

Event handlers return forms rather than HTML expressions
[1 sequences of interactions

[1 use control abstractions (branching, recursion) of underlying language
[1 state between interactions handled by CGI environments

Note: no language extension necessary (CGl library)

multi-paradigm languages as scripting languages

HTML/CGl| PROGRAMMING 22

IMPLEMENTATION I

completely implemented in Curry
standard CGI programming features used
no server extension, usable with any standard web server, no cookies

O O O

available as library for

PAKCS (Portland Aachen Kiel Curry System)
http://www.informatik.uni-kiel.de/ pakcs

[1 based on a Curry—Prolog compiler [Antoy/Hanus FroCoS'00]

Applications:
[0 web pages for Curry
[1 access to distributed address server [PPDP’99]

[1 submission form for JFLP
(Journal of Functional and Logic Programming)

[1 questionaires for students

L]

testing home assignments of students

IMPLEMENTATION

23

Domain-specific language for HTML/CGI programming (CGl library)

CONCLUSIONSI

Exploit functional and logic features for

[]

[]
[]
[]

correct HTML coding (data type for HTML structures)

simple access to input values (free variables and environments)
simple programming of interactions (event handlers)

wrapper for hiding details

Curry supports appropriate abstractions for software development

Other examples:

[1 GUI programming [PADLO0O]
[1 FL parser combinators [Caballero/Lopez-Fraguas FLOPS'99]

More infos on Curry:

http://www.informatik.uni-kiel.de/ " curry

CONCLUSIONS

24

