
Linköping, 11.2003

Declarative Multi-Paradigm Programming in

Michael Hanus

Christian-Albrechts-Universität Kiel

DECLARATIVE PROGRAMMING

General idea:

• no coding of algorithms

• description of logical relationships

• powerful abstractions
➜ domain specific languages

• higher programming level

• reliable and maintainable programs
➜ pointer structures⇒ algebraic data types
➜ complex procedures⇒ comprehensible parts

(pattern matching, local definitions)

CAU Kiel Michael Hanus 2

DECLARATIVE MULTI-PARADIGM LANGUAGES

Approach to amalgamate ideas of declarative programming

• efficient execution principles of functional languages
(determinism, laziness)

• flexibility of logic languages
(constraints, built-in search)

• avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

• combine best of both worlds in a single model
➜ higher-order functions
➜ declarative I/O
➜ concurrent constraints

CAU Kiel Michael Hanus 3

CURRY

[Dagstuhl’96, POPL’97]
http://www.informatik.uni-kiel.de/~curry

• multi-paradigm language
(higher-order concurrent functional logic language,
features for high-level distributed programming)

• extension of Haskell (non-strict functional language)

• developed by an international initiative

• provide a standard for functional logic languages
(research, teaching, application)

• several implementations available

• PAKCS (Portland Aachen Kiel Curry System):
➜ freely available implementation of Curry
➜ many libraries (GUI, HTML, XML, meta-programming,. . .)
➜ various tools (CurryDoc, CurryTest, Debuggers, Analyzers,. . .)

CAU Kiel Michael Hanus 4

VALUES

Values in imperative languages: basic types + pointer structures

Declarative languages: algebraic data types (Haskell-like syntax)

#

"

!

data Bool = True | False

data Nat = Z | S Nat

data List a = [] | a : List a -- [a]

data Tree a = Leaf a | Node [Tree a]

data Int = 0 | 1 | -1 | 2 | -2 | ...

Value ≈ data term , constructor term :
well-formed expression containing variables and data type constructors

(S Z) 1:(2:[]) [1,2] Node [Leaf 3, Node [Leaf 4, Leaf 5]]

CAU Kiel Michael Hanus 5

FUNCTIONAL (CURRY) PROGRAMS

Functions : operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation data terms condition

(optional) expression

'

&

$

%

O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

depth (Leaf _) = 1

depth (Node []) = 1

depth (Node (t:ts)) = max (1+depth t) (depth (Node ts))

CAU Kiel Michael Hanus 6

EVALUATION : COMPUTING VALUES

Reduce expressions to their values

Replace equals by equals

Apply reduction step to a subterm (redex, reducible expression):

variables in rule’s left-hand side are universally quantified
; match lhs against subterm (instantiate these variables)

�
�

�
�

O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

(S O)+(S O) → S (O+(S O)) → S (S O)

CAU Kiel Michael Hanus 7

EVALUATION STRATEGIES

Expressions with several redexes: which evaluate first?

Strict evaluation: select an innermost redex (≈ call-by-value)

Lazy evaluation: select an outermost redex

�
�

�
�

O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

Strict evaluation:
O ≤ (S O)+(S O) → O ≤ (S (O+(S O)) → O ≤ (S (S O)) → True

Lazy evaluation:
O ≤ (S O)+(S O) → True

CAU Kiel Michael Hanus 8

Strict evaluation might need more steps, but it can be even worse. . .�

�

�

�
O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

f = f

Lazy evaluation:
O+O ≤ f → O ≤ f → True

Strict evaluation:
O+O ≤ f → O+O ≤ f → O+O ≤ f → · · ·

Ideal strategy: evaluate only needed redexes
(i.e., redexes necessary to compute a value)

Determine needed redexes with definitional trees

CAU Kiel Michael Hanus 9

DEFINITIONAL TREES [A NTOY 92]

➜ data structure to organize the rules of an operation

➜ each node has a distinct pattern

➜ branch nodes (case distinction), rule nodes

�
�

�
�

O ≤ y = True

(S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

0 ≤ x2 = True (S x3) ≤ x2

(S x3) ≤ 0 = False (S x3) ≤ (S x4) = x3 ≤ x4

x1 ≤ x2

�
�

��
Q
Q
QQ

�
�
�

Q
Q
Q

CAU Kiel Michael Hanus 10

EVALUATION WITH DEFINITIONAL TREES

0 ≤ x2 = True (S x3) ≤ x2

(S x3) ≤ 0 = False (S x3) ≤ (S x4) = x3 ≤ x4

x1 ≤ x2

�
�

��
Q
Q
QQ

�
�
�

Q
Q
Q

Evaluating function call t1 ≤ t2:
➀ Reduce t1 to head normal form (constructor-rooted expression)

➁ If t1 = O: apply rule

➂ If t1 = (S . . .): reduce t2 to head normal form

CAU Kiel Michael Hanus 11

PROPERTIES OF REDUCTION WITH DEFINITIONAL TREES

• Normalizing strategy
i.e., always computes value if it exists ≈ sound and complete

• Independent on the order of rules

• Definitional trees can be automatically generated
→ pattern matching compiler

• Identical to lazy functional languages (e.g, Miranda, Haskell) for the
subclass of uniform programs
(i.e., programs with strong left-to-right pattern matching)

• Optimal strategy: each reduction step is needed

• Easily extensible to more general classes

CAU Kiel Michael Hanus 12

NON-DETERMINISTIC EVALUATION

Previous functions: inductively defined on data structures

Sometimes overlapping rules more natural:�
�

�
�

True ∨ x = True

x ∨ True = True

False ∨ False = False

First two rules overlap on True ∨ True

; Problem: no needed argument:
�� ��e1 ∨ e2 evaluate e1 or e2?

Functional languages: backtracking: Evaluate e1, if not successful: e2

Disadvantage: not normalizing (e1 may not terminate)

CAU Kiel Michael Hanus 13

NON-DETERMINISTIC EVALUATION

�
�

�
�

True ∨ x = True

x ∨ True = True

False ∨ False = False

Evaluation of
�� ��e1 ∨ e2 ?

1. Parallel reduction of e1 and e2 [Sekar/Ramakrishnan 93]

2. Non-deterministic reduction: try (don’t know) e1 or e2

Extension to definitional trees / pattern matching:
Introduce or-nodes to describe non-deterministic selection of redexes

; non-deterministic evaluation: e → e1 | · · · | en
︸ ︷︷ ︸

disjunctive expression

; non-deterministic functions

CAU Kiel Michael Hanus 14

NON-DETERMINISTIC / SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

; more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

Demand-driven search (search space reduction): sorted (perm xs)

CAU Kiel Michael Hanus 15

NON-DETERMINISTIC / SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

; more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

Demand-driven search (search space reduction): sorted (perm xs)

CAU Kiel Michael Hanus 15

NON-DETERMINISTIC / SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

; more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

Demand-driven search (search space reduction): sorted (perm xs)

CAU Kiel Michael Hanus 15

NON-DETERMINISTIC / SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

; more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

Demand-driven search (search space reduction): sorted (perm xs)

CAU Kiel Michael Hanus 15

LOGIC PROGRAMMING

Distinguished features:
➜ compute with partial information (constraints)

➜ deal with free variables in expressions

➜ compute solutions to free variables

➜ built-in search

➜ non-deterministic evaluation

Functional programming: values, no free variables

Logic programming: computed answers for free variables

Operational extension: instantiate free variables, if necessary

CAU Kiel Michael Hanus 16

FROM FUNCTIONAL PROGRAMMING TO LOGIC PROGRAMMING

�

�
	f 0 = 2

f 1 = 3

Evaluate (f x): – bind x to 0 and reduce (f 0) to 2, or:

– bind x to 1 and reduce (f 1) to 3

Computation step: bind
︸ ︷︷ ︸

logic

and reduce
︸ ︷︷ ︸

functional

: e ; {σ1} e1 | · · · | {σn} en
︸ ︷︷ ︸

disjunctive expression
Reduce: (f 0) ; 2

Bind and reduce: (f x) ; {x=0} 2 | {x=1} 3

Compute necessary bindings with needed strategy
; needed narrowing [Antoy/Echahed/Hanus POPL’94/JACM’00]

CAU Kiel Michael Hanus 17

NEEDED NARROWING

0 ≤ x2 = True (S x3) ≤ x2

(S x3) ≤ 0 = False (S x3) ≤ (S x4) = x3 ≤ x4

x1 ≤ x2

�
�

��
Q
Q
QQ

�
�
�

Q
Q
Q

Evaluating function call t1 ≤ t2:
➀ Reduce t1 to head normal form

➁ If t1 = O: apply rule

➂ If t1 = (S . . .): reduce t2 to head normal form

➃ If t1 variable: bind t1 to O or (S x)

CAU Kiel Michael Hanus 18

NEEDED NARROWING

0 ≤ x2 = True (S x3) ≤ x2

(S x3) ≤ 0 = False (S x3) ≤ (S x4) = x3 ≤ x4

x1 ≤ x2

�
�

��
Q
Q
QQ

�
�
�

Q
Q
Q

Evaluating function call t1 ≤ t2:
➀ Reduce t1 to head normal form

➁ If t1 = O: apply rule

➂ If t1 = (S . . .): reduce t2 to head normal form

➃ If t1 variable: bind t1 to O or (S x)

CAU Kiel Michael Hanus 18

PROPERTIES OF NEEDED NARROWING

Sound and complete (w.r.t. strict equality, no termination requirement)

Optimality:
➀ No unnecessary steps:

Each narrowing step is needed, i.e., it cannot be avoided if a solution should be
computed.

➁ Shortest derivations:
If common subterms are shared, needed narrowing derivations have minimal
length.

➂ Minimal set of computed solutions:
Two solutions σ and σ′ computed by two distinct derivations are independent.

CAU Kiel Michael Hanus 19

PROPERTIES OF NEEDED NARROWING

Determinism:
No non-deterministic step during the evaluation of ground expressions
(≈ functional programming)

Restriction: inductively sequential rules
(i.e., no overlapping left-hand sides)

Extensible to
➜ conditional rules [Hanus ICLP’95, Antoy/Braßel/Hanus PPDP’03]

➜ overlapping left-hand sides [Antoy/Echahed/Hanus ICLP’97]

➜ multiple right-hand sides [Antoy ALP’97]

➜ higher-order rules [Hanus/Prehofer JFP’99]

➜ concurrent evaluation [Hanus POPL’97]

CAU Kiel Michael Hanus 20

EQUATIONAL CONSTRAINTS

Logic programming: solve goals, compute solutions

Functional logic programming: solve equations

Strict equality: identity on finite objects

(only reasonable notion of equality in the presence of non-terminating functions)

Equational constraint
�� ��e1 =:= e2

successful if both sides evaluable to unifiable data terms

⇒ e1 =:= e2 does not hold if e1 or e2 undefined or infinite

⇒ e1 =:= e2 and e1, e2 data terms ≈ unification in logic programming

CAU Kiel Michael Hanus 21

EQUATIONAL CONSTRAINTS

Logic programming: solve goals, compute solutions

Functional logic programming: solve equations

Strict equality: identity on finite objects

(only reasonable notion of equality in the presence of non-terminating functions)

Equational constraint
�� ��e1 =:= e2

successful if both sides evaluable to unifiable data terms

⇒ e1 =:= e2 does not hold if e1 or e2 undefined or infinite

⇒ e1 =:= e2 and e1, e2 data terms ≈ unification in logic programming

CAU Kiel Michael Hanus 21

FUNCTIONAL LOGIC PROGRAMMING : EXAMPLES

List concatenation:�
�

�
�

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Functional programming:

[1,2] ++ [3,4] ; [1,2,3,4]

Logic programming:

x ++ y =:= [1,2] ;

{x=[],y=[1,2]} | {x=[1],y=[2]} | {x=[1,2],y=[]}

Last list element:
�� ��last xs | ys ++ [x] =:= xs = x

CAU Kiel Michael Hanus 22

FUNCTIONAL LOGIC PROGRAMMING : EXAMPLES

List concatenation:�
�

�
�

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Functional programming:

[1,2] ++ [3,4] ; [1,2,3,4]

Logic programming:

x ++ y =:= [1,2] ;

{x=[],y=[1,2]} | {x=[1],y=[2]} | {x=[1,2],y=[]}

Last list element:
�� ��last xs | ys ++ [x] =:= xs = x

CAU Kiel Michael Hanus 22

PROGRAMMING DEMAND-DRIVEN SEARCH

Non-deterministic functions for generating permutations:�

�

�

�

insert e [] = [e]

insert e (x:xs) = e:x:xs ! y:insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

Sorting lists with test-of-generate principle:�

�

�

�

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x<=y = x : sorted (y:ys)

psort xs = sorted (perm xs)

CAU Kiel Michael Hanus 23

PROGRAMMING DEMAND-DRIVEN SEARCH

Non-deterministic functions for generating permutations:�

�

�

�

insert e [] = [e]

insert e (x:xs) = e:x:xs ! y:insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

Sorting lists with test-of-generate principle:�

�

�

�

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x<=y = x : sorted (y:ys)

psort xs = sorted (perm xs)

CAU Kiel Michael Hanus 23

Advantages of non-deterministic functions as generators:
➜ demand-driven generation of solutions (due to laziness)

➜ modular program structure
psort [5,4,3,2,1] ; sorted (perm [5,4,3,2,1])

;

∗ sorted (5 : 4 : perm [3,2,1])
︸ ︷︷ ︸

undefined: discard this alternative

| · · ·

Effect: Permutations of [3,2,1] are not enumerated!

Permutation sort for [n,n−1,. . .,2,1]: #or-branches/disjunctions

Length of the list: 4 5 6 8 10

generate-and-test 24 120 720 40320 3628800

test-of-generate 19 59 180 1637 14758

CAU Kiel Michael Hanus 24

CONSTRAINT PROGRAMMING

Logic Programming:
➜ compute with partial information (constraints)

➜ data structures (constraint domain): constructor terms

➜ basic constraint: (strict) equality

➜ constraint solver: unification

Constraint Programming: generalizes logic programming by
➜ new specific constraint domains (e.g., reals, finite sets)

➜ new basic constraints over these domains

➜ sophisticated constraint solvers for these constraints

CAU Kiel Michael Hanus 25

CONSTRAINT PROGRAMMING OVER REALS

Constraint domain: real numbers

Basic constraints: equations / inequations over real arithmetic expressions

Constraint solvers: Gaussian elimination, simplex method

Examples:

5.1 =:= x + 3.5 ; {x=1.6}

x <= 1.5 & x+1.3 >= 2.8 ; {x=1.5}

CAU Kiel Michael Hanus 26

EXAMPLE : C IRCUIT ANALYSIS

Define relation cvi between electrical circuit, voltage, and current

Circuits are defined by the data type

data Circuit = Resistor Float

| Series Circuit Circuit

| Parallel Circuit Circuit
...

Rules for relation cvi:

cvi (Resistor r) v i = v =:= i * r -- Ohm’s law

cvi (Series c1 c2) v i = -- Kirchhoff’s law

v=:=v1+v2 & cvi c1 v1 i & cvi c2 v2 i

cvi (Parallel c1 c2) v i = -- Kirchhoff’s law

i=:=i1+i2 & cvi c1 v i1 & cvi c2 v i2

CAU Kiel Michael Hanus 27

Querying the circuit specification:

Current in a sequence of resistors:

cvi (Series (Resistor 180.0) (Resistor 470.0)) 5.0 i

; {i = 0.007692307692307693}

Relation between resistance and voltage in a circuit:

cvi (Series (Series (Resistor r) (Resistor r)) (Resistor r)) v 5.0

; {v=15.0*r}

Also synthesis of circuits possible

CAU Kiel Michael Hanus 28

CONSTRAINT PROGRAMMING WITH FINITE DOMAINS

Constraint domain: finite set of values

Basic constraints: equality / disequality / membership / . . .

Constraint solvers: OR methods (e.g., arc consistency)

Application areas: combinatorial problems
(job scheduling, timetabling, routing,. . .)

General method:
➀ define the domain of the variables (possible values)

➁ define the constraints between all variables

➂ “labeling”, i.e., non-deterministic instantiation of the variables

constraint solver reduces the domain of the variables by sophisticated
pruning techniques using the given constraints

Usually: finite domain ≈ finite subset of integers

CAU Kiel Michael Hanus 29

EXAMPLE : A C RYPTO-ARITHMETIC PUZZLE

Assign a different digit to each different letter
such that the following calculation is valid:

s e n d
+ m o r e

m o n e y

puzzle s e n d m o r y =

domain [s,e,n,d,m,o,r,y] 0 9 & -- define domain

s > 0 & m > 0 & -- define constraints

all_different [s,e,n,d,m,o,r,y] &

1000 * s + 100 * e + 10 * n + d

+ 1000 * m + 100 * o + 10 * r + e

= 10000 * m + 1000 * o + 100 * n + 10 * e + y &

labeling [s,e,n,d,m,o,r,y] -- instantiate variables

puzzle s e n d m o r y ; {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}

CAU Kiel Michael Hanus 30

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING

Disadvantage of narrowing:
➜ functions on recursive data structures ; narrowing may not terminate

➜ all rules must be explicitly known ; combination with external functions?

Solution: Delay function calls if a needed argument is free

; residuation principle [Aı̈t-Kaci et al. 87]
(used in Escher, Le Fun, Life, NUE-Prolog, Oz,. . .)

Distinguish: rigid (consumer) and flexible (generator) functions

Necessary: Concurrent conjunction of constraints: c1 & c2

Meaning: evaluate c1 and c2 concurrently, if possible

CAU Kiel Michael Hanus 31

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING

Disadvantage of narrowing:
➜ functions on recursive data structures ; narrowing may not terminate

➜ all rules must be explicitly known ; combination with external functions?

Solution: Delay function calls if a needed argument is free

; residuation principle [Aı̈t-Kaci et al. 87]
(used in Escher, Le Fun, Life, NUE-Prolog, Oz,. . .)

Distinguish: rigid (consumer) and flexible (generator) functions

Necessary: Concurrent conjunction of constraints: c1 & c2

Meaning: evaluate c1 and c2 concurrently, if possible

CAU Kiel Michael Hanus 31

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING

Disadvantage of narrowing:
➜ functions on recursive data structures ; narrowing may not terminate

➜ all rules must be explicitly known ; combination with external functions?

Solution: Delay function calls if a needed argument is free

; residuation principle [Aı̈t-Kaci et al. 87]
(used in Escher, Le Fun, Life, NUE-Prolog, Oz,. . .)

Distinguish: rigid (consumer) and flexible (generator) functions

Necessary: Concurrent conjunction of constraints: c1 & c2

Meaning: evaluate c1 and c2 concurrently, if possible

CAU Kiel Michael Hanus 31

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1 ; {x=1} f 1 =:= y (suspend f x)
; {x=1} 3 =:= y (evaluate f 1)
; {x=1,y=3}

Default in Curry: flexible (except for predefined and I/O functions)

CAU Kiel Michael Hanus 32

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1

; {x=1} f 1 =:= y (suspend f x)
; {x=1} 3 =:= y (evaluate f 1)
; {x=1,y=3}

Default in Curry: flexible (except for predefined and I/O functions)

CAU Kiel Michael Hanus 32

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1 ; {x=1} f 1 =:= y (suspend f x)

; {x=1} 3 =:= y (evaluate f 1)
; {x=1,y=3}

Default in Curry: flexible (except for predefined and I/O functions)

CAU Kiel Michael Hanus 32

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1 ; {x=1} f 1 =:= y (suspend f x)
; {x=1} 3 =:= y (evaluate f 1)

; {x=1,y=3}

Default in Curry: flexible (except for predefined and I/O functions)

CAU Kiel Michael Hanus 32

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1 ; {x=1} f 1 =:= y (suspend f x)
; {x=1} 3 =:= y (evaluate f 1)
; {x=1,y=3}

Default in Curry: flexible (except for predefined and I/O functions)

CAU Kiel Michael Hanus 32

UNIFICATION OF DECLARATIVE COMPUTATION MODELS

Computation model Restrictions on programs

Needed narrowing inductively sequential rules; optimal strategy

Weakly needed narrowing
(∼Babel)

only flexible functions

Resolution (∼Prolog) only (flexible) predicates (∼ constraints)

Lazy functional languages
(∼Haskell)

no free variables in expressions

Parallel functional langs.
(∼Goffin, Eden)

only rigid functions, concurrent conjunction

Residuation (∼Life, Oz) constraints are flexible; all others are rigid

CAU Kiel Michael Hanus 33

SUMMARY: CURRY PROGRAMS

Functions : operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation data terms constraint

(optional) expression

�

�

�

�

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs

= x where x,ys free

CAU Kiel Michael Hanus 34

SUMMARY: EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports (; OOP)

CAU Kiel Michael Hanus 35

SUMMARY: EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports (; OOP)

CAU Kiel Michael Hanus 35

SUMMARY: EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports (; OOP)

CAU Kiel Michael Hanus 35

FEATURES OF CURRY

Curry’s basic operational model:
➜ conservative extension of lazy functional and (concurrent) logic programming
➜ generalization of concurrent constraint programming with lazy (optimal)

strategy [POPL’97,WFLP’02,WRS’02,ENTCS76]

Features for application programming:
➜ types, higher-order functions, modules
➜ monadic I/O
➜ encapsulated search [PLILP’98]
➜ ports for distributed programming [PPDP’99]
➜ libraries for
• constraint programming
• GUI programming [PADL’00]
• HTML programming [PADL’01]
• XML programming
• meta-programming
• persistent terms
• . . .

CAU Kiel Michael Hanus 36

FEATURES OF CURRY

Curry’s basic operational model:
➜ conservative extension of lazy functional and (concurrent) logic programming
➜ generalization of concurrent constraint programming with lazy (optimal)

strategy [POPL’97,WFLP’02,WRS’02,ENTCS76]

Features for application programming:
➜ types, higher-order functions, modules
➜ monadic I/O
➜ encapsulated search [PLILP’98]
➜ ports for distributed programming [PPDP’99]
➜ libraries for
• constraint programming
• GUI programming [PADL’00]
• HTML programming [PADL’01]
• XML programming
• meta-programming
• persistent terms
• . . .

CAU Kiel Michael Hanus 36

CURRY: A M ULTI-PARADIGM PROGRAMMING LANGUAGE

Integration of different programming paradigms is possible

Functional programming is a good starting point:
➜ lazy evaluation ; modularity, optimal evaluation

➜ higher-order functions ; code reuse, design patterns

➜ polymorphism ; type safety, static checking

Stepwise extensible in a conservative manner to cover
➜ logic programming: non-determinism, free variables

➜ constraint programming: specific constraint structures

➜ concurrent programming: suspending function calls, synchronization on logical
variables

➜ object-oriented programming: constraint functions, ports [IFL 2000]

➜ imperative programming: monadic I/O, sequential composition (∼ Haskell)

➜ distributed programming: external ports [PPDP’99]

CAU Kiel Michael Hanus 37

WHY INTEGRATION OF DECLARATIVE PARADIGMS ?

• more expressive than pure functional languages
(compute with partial information/constraints)

• more structural information than in pure logic programs
(functional dependencies)

• more efficient than logic programs (determinism, laziness)

• functions: declarative notion to improve control in logic programming

• avoid impure features of Prolog (arithmetic, I/O)

• combine research efforts in FP and LP

• do not teach two paradigms, but one: declarative programming
[PLILP’97]

• choose the most appropriate features for application programming

CAU Kiel Michael Hanus 38

APPLICATION : HTML/CGI P ROGRAMMING

Early days of the World Wide Web: web pages with static contents

Common Gateway Interface (CGI): web pages with dynamic contents

Retrieval of a dynamic page:
➜ server executes a program

➜ program computes an HTML string, writes it to stdout

➜ server sends result back to client

HTML with input elements (forms):
➜ client fills out input elements

➜ input values are sent to server

➜ server program decodes input values for computing its answer

CAU Kiel Michael Hanus 39

TRADITIONAL CGI PROGRAMMING

CGI programs on the server can be written in any programming language
➜ access to environment variables (for input values)

➜ writes a string to stdout

Scripting languages: (Perl, Tk,. . .)
➜ simple programming of single pages

➜ error-prone: correctness of HTML result not ensured

➜ difficult programming of interaction sequences

Specialized languages: (MAWL, DynDoc,. . .)
➜ HTML support (structure checking)

➜ interaction support (partially)

➜ restricted or connection to existing languages

CAU Kiel Michael Hanus 40

HTML/CGI PROGRAMMING WITH CURRY [PADL’01]

Library implemented in Curry

Exploit functional and logic features for
➜ HTML support (data type for HTML structures)

➜ simple access to input values (free variables and environments)

➜ simple programming of interactions (event handlers)

➜ wrapper for hiding details

Exploit imperative features for
➜ environment access (files, data bases,. . .)

Domain-specific language for HTML/CGI programming

CAU Kiel Michael Hanus 41

MODELING HTML

Data type for representing HTML expressions:�

�
	data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:
htxt s = HtmlText (htmlQuote s) -- plain string

bold hexps = HtmlStruct "B" [] hexps -- bold font

italic hexps = HtmlStruct "I" [] hexps -- italic font

h1 hexps = HtmlStruct "H1" [] hexps -- main header

...

Example: [h1 [htxt "1. Hello World"],

italic [htxt "Hello"], bold [htxt "world!"]]

; 1. Hello World
Hello world!

Advantage: static checking of HTML structure

CAU Kiel Michael Hanus 42

MODELING HTML

Data type for representing HTML expressions:�

�
	data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:
htxt s = HtmlText (htmlQuote s) -- plain string

bold hexps = HtmlStruct "B" [] hexps -- bold font

italic hexps = HtmlStruct "I" [] hexps -- italic font

h1 hexps = HtmlStruct "H1" [] hexps -- main header

...

Example: [h1 [htxt "1. Hello World"],

italic [htxt "Hello"], bold [htxt "world!"]]

; 1. Hello World
Hello world!

Advantage: static checking of HTML structure

CAU Kiel Michael Hanus 42

MODELING HTML

Data type for representing HTML expressions:�

�
	data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:
htxt s = HtmlText (htmlQuote s) -- plain string

bold hexps = HtmlStruct "B" [] hexps -- bold font

italic hexps = HtmlStruct "I" [] hexps -- italic font

h1 hexps = HtmlStruct "H1" [] hexps -- main header

...

Example: [h1 [htxt "1. Hello World"],

italic [htxt "Hello"], bold [htxt "world!"]]

; 1. Hello World
Hello world!

Advantage: static checking of HTML structure

CAU Kiel Michael Hanus 42

MODELING HTML

Data type for representing HTML expressions:�

�
	data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:
htxt s = HtmlText (htmlQuote s) -- plain string

bold hexps = HtmlStruct "B" [] hexps -- bold font

italic hexps = HtmlStruct "I" [] hexps -- italic font

h1 hexps = HtmlStruct "H1" [] hexps -- main header

...

Example: [h1 [htxt "1. Hello World"],

italic [htxt "Hello"], bold [htxt "world!"]]

; 1. Hello World
Hello world!

Advantage: static checking of HTML structure

CAU Kiel Michael Hanus 42

DYNAMIC WEB PAGES

• Web pages with dynamic contents and interaction

• Content is computed at the page request time

Data type to represent complete HTML documents:
(title, optional parameters (cookies, style sheets), contents)

data HtmlForm = HtmlForm String [FormParam] [HtmlExp]

Useful abbreviation:
form title hexps = HtmlForm title [] hexps

Type of dynamic web page: IO HtmlForm

(I/O action that computes a page depending on current environment)

helloPage = return (form "Hello" hello)

CAU Kiel Michael Hanus 43

DYNAMIC WEB PAGES

• Web pages with dynamic contents and interaction

• Content is computed at the page request time

Data type to represent complete HTML documents:
(title, optional parameters (cookies, style sheets), contents)

data HtmlForm = HtmlForm String [FormParam] [HtmlExp]

Useful abbreviation:
form title hexps = HtmlForm title [] hexps

Type of dynamic web page: IO HtmlForm

(I/O action that computes a page depending on current environment)

helloPage = return (form "Hello" hello)

CAU Kiel Michael Hanus 43

WEB PAGES WITH USER INTERACTION

General concept: submit form with input elements ; answer form

Specific HTML elements for dealing with user input, e.g.:

textfield ref "initial contents" :: HtmlExp

HTML library: programming with call-back functions

Event handler: attached to submit buttons in HTML forms

type EventHandler = (CgiRef -> String) -> IO HtmlForm

CGI environment: mapping from CGI references to actual input values

CGI reference:
➜ identifies input element of HTML form

➜ abstract data type (instead of strings as in raw CGI, Perl, PHP,. . .)

➜ logical variable in HTML forms

CAU Kiel Michael Hanus 44

WEB PAGES WITH USER INTERACTION

General concept: submit form with input elements ; answer form

Specific HTML elements for dealing with user input, e.g.:

textfield ref "initial contents" :: HtmlExp

HTML library: programming with call-back functions

Event handler: attached to submit buttons in HTML forms

type EventHandler = (CgiRef -> String) -> IO HtmlForm

CGI environment: mapping from CGI references to actual input values

CGI reference:
➜ identifies input element of HTML form

➜ abstract data type (instead of strings as in raw CGI, Perl, PHP,. . .)

➜ logical variable in HTML forms

CAU Kiel Michael Hanus 44

EXAMPLE : FORM TO REVERSE/DUPLICATE A STRING

form "Question" [htxt "Enter a string: ", textfield ref "", hr,

button "Reverse string" revhandler,

button "Duplicate string" duphandler]

where

ref free

revhandler env = return $ form "Answer"

[h1 [htxt ("Reversed input: " ++ rev (env ref))]]

duphandler env = return $ form "Answer"

[h1 [htxt ("Duplicated input: " ++ env ref ++ env ref)]]

CAU Kiel Michael Hanus 45

EXAMPLE : RETRIEVING FILES FROM A WEB SERVER

Form to show the contents of an arbitrary file stored at the server:

getFile = return $ form "Question"

[htxt "Enter local file name:",

textfield fileref "",

button "Get file!" handler]

where

fileref free

handler env = do contents <- readFile (env fileref)

return $ form "Answer"

[h1 [htxt ("Contents of " ++ env fileref)],

verbatim contents]

Functional + logic features ; simple interaction + retrieval of user input

CAU Kiel Michael Hanus 46

APPLICATION : E-L EARNING

CurryWeb : a system to support web-based learning

openness : no distinction between instructors and students, users can
learn or add new material, rank material, write critics,. . .

self-responsible use : users are responsible to select right material

Requirements:
➜ provide structure to learning material to support selection process

➜ management of users

Implementation:
➜ completely implemented in Curry (around 8000 lines of code)

➜ shows how Curry’s features support high-level implementation

➜ declarative languages are appropriate for implementing complex web-based
systems

➜ done by students without prior knowledge to Curry

CAU Kiel Michael Hanus 47

APPLICATION : E-L EARNING

CurryWeb : a system to support web-based learning

openness : no distinction between instructors and students, users can
learn or add new material, rank material, write critics,. . .

self-responsible use : users are responsible to select right material

Requirements:
➜ provide structure to learning material to support selection process

➜ management of users

Implementation:
➜ completely implemented in Curry (around 8000 lines of code)

➜ shows how Curry’s features support high-level implementation

➜ declarative languages are appropriate for implementing complex web-based
systems

➜ done by students without prior knowledge to Curry

CAU Kiel Michael Hanus 47

APPLICATION : E-L EARNING

CurryWeb : a system to support web-based learning

openness : no distinction between instructors and students, users can
learn or add new material, rank material, write critics,. . .

self-responsible use : users are responsible to select right material

Requirements:
➜ provide structure to learning material to support selection process

➜ management of users

Implementation:
➜ completely implemented in Curry (around 8000 lines of code)

➜ shows how Curry’s features support high-level implementation

➜ declarative languages are appropriate for implementing complex web-based
systems

➜ done by students without prior knowledge to Curry

CAU Kiel Michael Hanus 47

CURRYWEB : MAIN INTERFACE

CAU Kiel Michael Hanus 48

FURTHER WEB APPLICATIONS

PASTA: a web-based system to submit and test exercises in a
programming course

Module Directory : a web-based system to administrate module
descriptions in our CS department

Questionnaire : a system for the web-based submission and evaluation of
questionnaires

Conference/Journal Submission : a system for the web-based
submission and administration of papers (used for various
workshops/conferences and JFLP)

CAU Kiel Michael Hanus 49

FURTHER APPLICATIONS : PROGRAMMING EMBEDDED SYSTEMS

[WFLP 2002, WFLP 2003]

CAU Kiel Michael Hanus 50

APPLICATION : PROGRAMMING AUTONOMOUS ROBOTS

go _ _ =

[Send (MotorDir Out_A Fwd),

Send (MotorDir Out_C Fwd)]

|> Proc waitEvent

waitEvent (TouchLeft:_) _ =

[Deq TouchLeft] |> Proc (turn TouchLeft)

waitEvent (TouchRight:_) _ =

[Deq TouchRight] |> Proc (turn TouchRight)

turn t _ _ =

[Send (MotorDir Out_A Rev), Send (MotorDir Out_C Rev)] |>

Proc (wait 2) >>>

atomic

[Send (MotorDir (if t==TouchLeft then Out_A else Out_C) Fwd)] >>>

Proc (wait 2) >>> Proc go

CAU Kiel Michael Hanus 51

CURRY: A T RUE INTEGRATION OF DECLARATIVE PARADIGMS

Functional programming: lazy evaluation, deterministic evaluation of
ground expressions, higher-order functions, polymorphic types,
monadic I/O =⇒ extension of Haskell

Logic programming: logical variables, partial data structures, search
facilities, concurrent constraint solving

Curry:
➜ efficiency (functional programming) + expressivity (search, concurrency)

➜ possible with “good” evaluation strategies

➜ one paradigm: declarative programming

Curry supports appropriate abstractions for software development
; functional logic design patterns [FLOPS’02]

More infos on Curry:
http://www.informatik.uni-kiel.de/~curry

CAU Kiel Michael Hanus 52

CURRY: A T RUE INTEGRATION OF DECLARATIVE PARADIGMS

Functional programming: lazy evaluation, deterministic evaluation of
ground expressions, higher-order functions, polymorphic types,
monadic I/O =⇒ extension of Haskell

Logic programming: logical variables, partial data structures, search
facilities, concurrent constraint solving

Curry:
➜ efficiency (functional programming) + expressivity (search, concurrency)

➜ possible with “good” evaluation strategies

➜ one paradigm: declarative programming

Curry supports appropriate abstractions for software development
; functional logic design patterns [FLOPS’02]

More infos on Curry:
http://www.informatik.uni-kiel.de/~curry

CAU Kiel Michael Hanus 52

CURRY: A T RUE INTEGRATION OF DECLARATIVE PARADIGMS

Functional programming: lazy evaluation, deterministic evaluation of
ground expressions, higher-order functions, polymorphic types,
monadic I/O =⇒ extension of Haskell

Logic programming: logical variables, partial data structures, search
facilities, concurrent constraint solving

Curry:
➜ efficiency (functional programming) + expressivity (search, concurrency)

➜ possible with “good” evaluation strategies

➜ one paradigm: declarative programming

Curry supports appropriate abstractions for software development
; functional logic design patterns [FLOPS’02]

More infos on Curry:
http://www.informatik.uni-kiel.de/~curry

CAU Kiel Michael Hanus 52

