Multi-paradigm Declarative Languages

Michael Hanus

Christian-Albrechts-University of Kiel Programming Languages and Compiler Construction

ICLP 2007

Do not no code algorithms and stepwise execution

Describe logical relationships

- → powerful abstractions
 - domain specific languages
- → higher programming level
- \rightsquigarrow reliable and maintainable programs
 - pointer structures \Rightarrow algebraic data types
 - complex procedures ⇒ comprehensible parts (pattern matching, local definitions)

Declarative languages based on different formalisms, e.g.,

Functional Languages

- Iambda calculus
- functions
- o directed equations
- reduction of expressions

Logic Languages

- predicate logic
- predicates
- definite clauses
- goal solving by resolution

Constraint Languages

- constraint structures
- constraints
- specific constraint solvers

Functional Languages

- higher-order functions
- expressive type systems
- demand-driven evaluation
- optimality, modularity

Logic Languages

- compute with partial information
- nondeterministic search
- unification

Constraint Languages

- specific domains
- efficient constraint solving

Goal: combine best of declarative paradigms in a single model

- efficient execution principles of functional languages (determinism, laziness)
- flexibility of logic languages (computation with partial information, built-in search)
- application-domains of constraint languages (constraint solvers for specific domains)
- avoid non-declarative features of Prolog (arithmetic, cut, I/O, side-effects)

12

Extend logic languages

- add functional notation as syntactic sugar (Ciao-Prolog, Mercury, HAL, Oz,...)
- defining equations, nested functional expressions
- translation into logic kernel
- don't exploit functional information for execution

Extend functional languages

- add logic features (logic variables, nondeterminism) (Escher, TOY, Curry,...)
- functional syntax, logic programming use
- retain efficient (demand-driven) evaluation whenever possible
- additional mechanism for logic-oriented computations

As a language for concrete examples, we use

Curry [POPL'97,...]

- multi-paradigm declarative language
- extension of Haskell (non-strict functional language)
- developed by an international initiative
- provide a standard for functional logic languages (research, teaching, application)
- several implementations and various tools available

~> http://www.informatik.uni-kiel.de/~curry

Functional program: set of functions defined by equations/rules

double x = x + x

Functional computation: replace subterms by equal subterms

double $(1+2) \Rightarrow (1+2) + (1+2) \Rightarrow 3 + (1+2) \Rightarrow 3+3 \Rightarrow 6$

Another computation:

 $\underline{\text{double (1+2)}} \Rightarrow (1+2) + \underline{(1+2)} \Rightarrow \underline{(1+2)} + 3 \Rightarrow \underline{3+3} \Rightarrow 6$

And another computation:

double (1+2) \Rightarrow double 3 \Rightarrow 3+3 \Rightarrow 6

double x = x + x

double $(1+2) \Rightarrow (1+2) + (1+2) \Rightarrow 3 + (1+2) \Rightarrow 3+3 \Rightarrow 6$	double	(1+2)	\Rightarrow	(1+2) + (1+2)	\Rightarrow	3+(1+2)	\Rightarrow	<u>3+3</u>	\Rightarrow	6
--	--------	-------	---------------	---------------	---------------	---------	---------------	------------	---------------	---

 $\underline{\text{double (1+2)}} \Rightarrow (1+2) + \underline{(1+2)} \Rightarrow \underline{(1+2)} + 3 \Rightarrow \underline{3+3} \Rightarrow 6$

double $(1+2) \Rightarrow double 3 \Rightarrow 3+3 \Rightarrow 6$

All derivations ~> same result: referential transparency

- computed result independent of evaluation order
- no side effects
- simplifies reasoning and maintenance

Several strategies: what are good strategies?

Values in declarative languages: terms

data Bool = True | False

Definition by pattern matching:

not	True	=	False
not	False	=	True

Replacing equals by equals still valid:

not (not False) \Rightarrow <u>not True</u> \Rightarrow False

List of elements of type a

data List a = [] | a : List a

Some notation: [a] \approx List a [e_1, e_2, \dots, e_n] $\approx e_1:e_2:\dots:e_n:$ []

List concatenation "++"

(++) :	: [a	a] -	-> [a]	->	[a]
[]	++	ys	=	УS	5	
(x:xs)	++	ys	=	Х	:	xs++ys

 $[1,2,3] ++ [4] \Rightarrow^* [1,2,3,4]$

List concatenation "++"

(++) :: [a] -> [a] -> [a] [] ++ ys = ys (x:xs) ++ ys = x : xs++ys

Use "++" to specify other list functions:

Last element of a list: last xs = e iff $\exists ys: ys ++ [e] = xs$

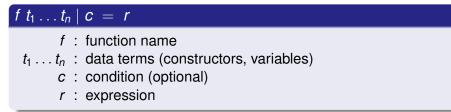
Direct implementation in a functional logic language:

- search for solutions w.r.t. existentially quantified variables
- solve equations over nested functional expressions

Definition of last in Curry

last xs | ys++[e] =:=xs = e where ys,e free

Set of functions defined by equations (or rules)



Constructor-based term rewriting system

Rules with extra variables

last xs | ys++[e] =:= xs = e where ys, e free

allowed in contrast to traditional rewrite systems non-constructive, forbidgen to provide efficient evaluation strategy Rewriting not sufficient in the presence of logic variables ~---

Narrowing = variable instantiation + rewriting

Narrowing step: $t \rightsquigarrow_{p,l \rightarrow r,\sigma} t'$ p: non-variable position in t $l \rightarrow r$: program rule (variant) σ : unifier for $t|_p$ and lt': $\sigma(t[r]_p)$

Why not most general unifiers?

Narrowing with mgu's is not optimal											
data Nat = O S Nat	leq 0 _ = True										
add O y = y	leq (S _) O = False										
add (S x) $y = S(add x y)$	leq (S x) (S y) = leq x y										

 $leq v (add w O) <u>leq v (add w O)</u> \rightsquigarrow_{\{v \mapsto O\}} True$

Another narrowing computation:

 $leq v (add w 0) \rightsquigarrow_{\{w \mapsto 0\}} leq v 0 leq v 0 ~_{\{v \mapsto S z\}} False$

And another narrowing computation:

 $leq v (add w 0) \rightsquigarrow_{\{w \mapsto 0\}} leq v 0 \rightsquigarrow_{\{v \mapsto 0\}} True superfluous!$

Avoid last derivation by non-mgu in first step:

 $leq v (add w 0) \rightsquigarrow_{\{v \mapsto S z, w \mapsto 0\}} leq (S z) 0$

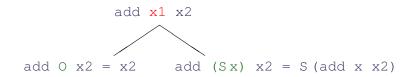
Needed Narrowing [JACM'00]

- constructive method to compute positions and unifiers
- defined on inductively sequential rewrite systems
- basic idea: organize all rules in a definitional tree: branch nodes (case distinction), rule nodes

Definitional tree of

add O
$$y = y$$

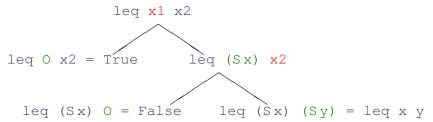
add (S x) $y = S(add x y)$



Definitional Trees

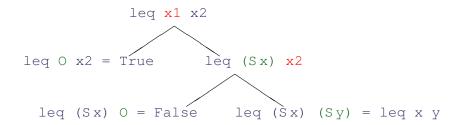
leq	0		_		=	True	€	
leq	(S	_)	0		=	Fals	se	
leq	(S	X)	(S	y)	=	leq	Х	У

Definitional tree:



- contains all rules of a function
- can be computed at compile time
- guides the narrowing strategy

Needed Narrowing with Definitional Trees



Evaluate function call leq t_1 t_2

- Reduce t₁ to head normal form
- 2 If $t_1 = 0$: apply rule
- If $t_1 = (S...)$: reduce t_2 to head normal form
- If t_1 variable: bind t_1 to \bigcirc or (S_) and proceed

 $leq v (add w 0) \rightsquigarrow_{\{v \mapsto S z, w \mapsto 0\}} leq (S z) 0$

Needed narrowing solves equations $t_1 = := t_2$

```
Interpretation of "=:=":
```

- strict equality on terms
- $t_1 = := t_2$ satisfied if both sides reducible to same value (finite data term)
- undefined on infinite terms

f = 0 : f g = 0 : g

 $\rightsquigarrow \texttt{f}=\texttt{:}=\texttt{g}$ does not hold

- constructive form of equality (definable by standard rewrite rules)
- used in current functional and logic languages

Sound and complete (w.r.t. strict equality)

Optimal strategy:

- No unnecessary steps: Each step is needed, i.e., unavoidable to compute a solution.
- Shortest derivations: If common subterms are shared, derivations have minimal length.
- Minimal set of computed solutions: Solutions computed by two distinct derivations are independent.

Oeterminism:

No nondeterministic step during evaluation of ground expressions (\approx functional programming)

Overlapping rules: <i>parallel-or</i>										
or True	_ =	= True								
or _	True =	= True								
or False	False =	= False								

or s t: reduce s or t?

Solution of current functional logic languages:

- nondeterministically select one of the arguments
- extend definitional trees with or nodes
- extend needed narrowing to weakly needed narrowing

Theoretically better, practically more costly:

parallel evaluation of both arguments

Functional languages: each function call has at most one value

Functional logic languages can handle more:

No	nd	ete	ern	ninistic choice
Х	?	У	=	X
Х	?	У	=	У

0?1 (don't know) evaluates to 0 or 1

Nondeterministic operations/functions

- interpretation: mapping from values into sets of values
- declarative semantics [JLP'99]
- supported in modern functional logic languages
- advantage compared to predicates: demand-driven evaluation

Nondetermi	nistic list	ins	sertio	on	1									
insert e	[]	=	[e]											
insert e	(x:xs)	=	(e	:	Х	:	xs)	?	(x	:	insert	е	xs)	

Permutations of a list

perm	[]	=	[]			
perm	(x:xs)	=	insert	Х	(perm xs	3)

Permutation sort

sorted []	= []
sorted [x]	= [x]
sorted (x1:x2:xs) x1 \leq x2	= $x1$: sorted ($x2:xs$)
<pre>psort xs = sorted (perm xs)</pre>	

Reduced search space due to demand-driven evaluation of (perm xs)

Michael Hanus (CAU Kiel)

Multi-paradigm Declarative Languages

Advantages of nondeterministic operations as generators:

- demand-driven generation of solutions
- modular program structure, no floundering

psort [5,4,3,2,1] \rightsquigarrow sorted (permute [5,4,3,2,1]) \rightsquigarrow^* sorted (5:4:permute [3,2,1]) undefined: discard this alternative

Effect: Permutations of [3, 2, 1] are not enumerated!

Permutation sort for [*n*, *n*-1, ..., 2, 1]: #or-branches/disjunctions

Length of the list:	4	5	6	8	10
generate-and-test	24	120	720	40320	3628800
test-of-generate	19	59	180	1637	14758

Subtle aspect of nondeterministic operations: treatment as arguments

	coin = 0 ?	1				dc	bub	le = x+x	
dou	ble coin								
\rightsquigarrow	coin+coin	\rightsquigarrow^*	0	1	1		2	need-time choice	3
\rightsquigarrow	double 0	double	1	\rightsquigarrow^*	0		2	call-time choice	2

Call-time choice

- semantics with "least astonishment"
- declarative foundation: CRWL calculus [JLP'99]
- implementation: demand-driven + sharing
- used in current functional logic languages

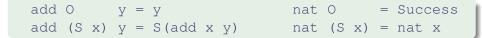
Narrowing

- resolution extended to functional logic programming
- sound, complete
- efficient (optimal) by exploiting functional information

Alternative principle: Residuation (Escher, Life, NUE-Prolog, Oz,...)

- evaluate functions only deterministically
- suspend function calls if necessary
- encode nondeterminism in predicates or disjunctions
- concurrency primitive required:

"c1 & c2" evaluates constraints c1 and c2 concurrently



Evaluate function add by residuation:

add y O =	=:= S O & nat y <u>nat y</u>
→{y horal states and	\underline{add} (S x) O =:= S O & nat x
\rightarrow {}	\underline{S} (add x O) =:= \underline{S} O & nat x
$\rightarrow_{\{\}}$	add x O =:= O & $\underline{\text{nat } x}$
$\rightarrow_{\{X\mapsto 0\}}$	<u>add 0 0</u> =:= 0 & Success
\rightarrow {}	<u>O =:= O</u> & Success
$\rightarrow_{\{\}}$	Success & Success
\rightarrow {}	Success

Narrowing

- sound and complete
- possible nondeterministic evaluation of functions
- optimal for particular classes of programs

Residuation

- incomplete (floundering)
- deterministic evaluation of functions
- supports concurrency (declarative concurrency)
- method to connect external functions

No clear winner ~> combine narrowing + residuation

Possible by adding *flexible/rigid* tags in definitional trees

- flexible function: evaluated by narrowing
- rigid function: suspends on free argument variable

External Operations

C.

Narrowing not applicable (no explicit defining rules available)

Appropriate model: residuation

Declarative interpretation: defined by infinite set of rules

External arithmetic op	perations
0 + 0 = 0	0 * 0 = 0
0 + 1 = 1	1 * 1 = 1
1 + 1 = 2	2 * 2 = 4
	•••

Implemented in some other language:

- rules not accessible
- can't deal with unevaluated/free arguments
- reduce arguments to ground values before the call
- suspend in case of free variable (residuation)

Important technique for generic programming and code reuse

Map a function on all list elements

```
map :: (a->b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
map double [1,2,3] ~** [2,4,6]
map (\x->x*x) [2,3,4] ~** [4,9,16]
```

Implementation:

- \bullet primitive operation apply: apply fe \rightsquigarrow fe
- sufficient to support higher-order functional programming

Problem: application of unknown functions?

- instantiate function variable: costly
- pragmatic solution: function application is rigid (i.e., no guessing)

- occur in conditions of conditional rules
- restrict applicability: solve constraints before applying rule
- no syntactic extension necessary: constraint ≈ expression of type Success

Basic constraints

```
-- strict equality
(=:=) :: a -> a -> Success
-- concurrenct conjunction
(&) :: Success -> Success
-- always satisfied
success :: Success
```

last xs | ys++[e] =:=xs = e where ys,e free

Constraints are ordinary expressions ~> pass as arguments or results

Constraint combinator

allValid	:: [Su	CCE	ess	5]	->	Succes	SS
allValid	[]	=	รเ	acc	cess	3	
allValid	(c:cs)	=	С	&	all	Valid	CS

Constraint programming: add constraints to deal with specific domains

Finite domain constraints						
domain	::	[Int] -> Int -> Int -> Success				
allDifferent	::	[Int] -> Success				
labeling	::	[LabelingOption] -> [Int] -> Success				

Integration of constraint programming as in CLP

Combined with lazy higher-order programming

Michael Hanus (CAU Kiel)

Multi-paradigm Declarative Languages

SuDoku puzzle: 9×9 matrix of digits

Representation: matrix m (list of lists of FD variables)

SuDoku Solver with FD Constraints	SuDoku	Solver	with FD	Constraints
-----------------------------------	--------	--------	---------	-------------

sudoku :: [[Int]] -> Success	
sudoku m =	
domain (concat m) 1 9	&
allValid (map allDifferent m)	&
allValid (map allDifferent (transpose m))	&
allValid (map allDifferent (squaresOfNine m))	&
labeling [FirstFailConstrained] (concat m)	

9			2			5		
Γ	4			6			3	
		3						6
			9			2		
				5			8	
		7			4			3
7						1		
	5			2			4	
		1			6			9

Requirement on programs: constructor-based rules

Last element of a list last (xs++[e]) = e -- not allowed

Eliminate non-constructor pattern:

last xs | ys++[e] =:=xs = e where ys,e free

Disadvantage: strict equality evaluates all arguments

last[failed,3] ~** failure (instead of 3)

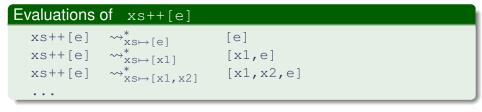
Solution: allow function patterns (patterns with defined functions) Possible due to functional logic kernel!

Michael Hanus (CAU Kiel)

Multi-paradigm Declarative Languages

Function Patterns: Transformational Semantics

Function pattern \approx set of patterns where functions are evaluated



Interpret	ation of 1	ast (xs++[e]) = e
last	[e]	= e
last	[x1,e]	= e
last	[x1,x2,e]	= е

• last [failed,3] $\rightsquigarrow^* 3$

implementation: demand-driven function pattern unification

powerful concept to express transformation problems

Michael Hanus (CAU Kiel)

Multi-paradigm Declarative Languages

Encapsulating nondeterministic search is important

- $\bullet\,$ declarative I/O \approx transformation on the outside world
- "can't clone the outside world"
- nondeterministic search between I/O must be encapsulated
- complication: demand-driven evaluation + sharing + "findall"

let y=coin in findall(...y...)

- evaluate coin inside or outside the capsule?
- order of solutions might depend on evaluation time

Better: encapsulate search on I/O (top) level

Search primitive on I/O level

- strong encapsulation (clone search expression): avoid sharing problems
- compute search tree demand-driven
- define concrete search strategies as tree traversals

Application areas: areas of individual paradigms +

Functional logic design patterns

- constraint constructor: generate only valid data (functions, constraints, programming with failure)
- locally defined global identifier: structures with unique references (functions, logic variables)

...

General advantage: high-level interfaces for application libraries

- GUIs
- web programming
- databases
- distributed programming

^{...}

Graphical User Interfaces (GUIs)

- Iayout structure: hierarchical structure ~> algebraic data type
- Iogical structure: dependencies in structure ~> logic variables
- event handlers ~> functions associated to layout structures
- advantages: compositional, less error prone

Specification of a counter GUI

Col[Entry [WRef val, Text "0", Background "yellow"], Row[Button (updateValue incr val) [Text "Increment"], Button (setValue val "0") [Text "Reset"], Button exitGUI [Text "Stop"]]] where val free

Combining declarative paradigms is possible and useful

- functional notation: more than syntactic sugar
- exploit functions: better strategies without loosing generality
- needed narrowing: sound, complete, optimal
- demand-driven search \rightsquigarrow search space reduction
- $\bullet\,$ residuation \rightsquigarrow concurrency, clean connection to external functions
- more declarative style of programming: no cuts, no side effects,...
- appropriate abstractions for high-level software development

One paradigm: Declarative Programming