## Overlapping Rules and Logic Variables

 inFunctional Logic Programs

Michael Hanus

Christian-Albrechts-Universität Kiel
(joint work with Sergio Antoy, Portland State University)

## Functional Logic Languages

Approach to amalgamate ideas of declarative programming

- efficient execution principles of functional languages (determinism, laziness)
- flexibility of logic languages (constraints, built-in search)
- avoid non-declarative features of Prolog (arithmetic, I/O, cut)
- combine best of both worlds in a single model (higher-order functions, declarative I/O, concurrent constraints)
- Advantages:
$\rightarrow$ optimal evaluation strategies [JACM'00,ALP'97]
$\rightarrow$ new design patterns [FLOPS'02]
$\rightarrow$ better abstractions for application programming (GUI programming [PADL'00], web programming [PADL’01, PPDP'06])


## Functional Logic Languages

Approach to amalgamate ideas of declarative programming

- efficient execution principles of functional languages (determinism, laziness)
- flexibility of logic languages (constraints, built-in search)
- avoid non-declarative features of Prolog (arithmetic, I/O, cut)
- combine best of both worlds in a single model (higher-order functions, declarative I/O, concurrent constraints)
- Advantages:
$\rightarrow$ optimal evaluation strategies [JACM'00,ALP'97]
$\rightarrow$ new design patterns [FLOPS'02]
$\rightarrow$ better abstractions for application programming (GUI programming [PADL'00], web programming [PADL’01, PPDP'06])

Minimal kernel language for FLP?

Functional Languages (e.g., Haskell)

## Functional Languages (e.g., Haskell)

```
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
```


## Functional Languages (e.g., Haskell)

+ logic variables (expressive power)

```
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
last xs | ys ++ [x] =:= xs = x where x,ys free
```


## Functional Languages (e.g., Haskell)

+ logic variables (expressive power)

```
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
last xs | ys++[x] =:= xs = x where x,ys free
```

+ overlapping rules (demand-driven search)

```
insert e [] = [e]
insert e (x:xs) = e : x : xs -- overlapping
insert e (x:xs) = x : insert e xs -- rules
```


## Functional Languages (e.g., Haskell)

+ logic variables (expressive power)

```
[] ++ ys = ys
(x:xs) ++ ys = \(x\) : xs ++ ys
last xs | ys++[x] =:= xs \(=x\) where \(x, y s\) free
```

+ overlapping rules (demand-driven search)

```
insert e [] = [e]
insert e (x:xs) = e : x : xs -- overlapping
insert e (x:xs) = x : insert e xs -- rules
perm [] = []
perm (x:xs) = insert x (perm xs)
perm [1,2,3] ~ [1,2,3] | [1,3,2] | [2,1,3] | ...
```

$=$ functional logic languages
Main result of this paper: only one of these extensions is sufficient!

## Term Rewriting Systems (TRS)

## Formal model for functional logic languages:

## Term Rewriting Systems (TRS)

## Formal model for functional logic languages:

Datatypes ( $\approx$ admissible values): enumerate all data constructors

| data Bool | $=$ True | $\mid l$ |
| :--- | :--- | :--- |
| False |  |  |
| data Nat | $=0$ | $\mid$ |
| S Nat |  |  |
| data List | $=[]$ | $\mid$ |
| Nat $:$ List |  |  |

## Term Rewriting Systems (TRS)

## Formal model for functional logic languages:

Datatypes ( $\approx$ admissible values): enumerate all data constructors

| data Bool | $=$ | True | False |
| :--- | :--- | :--- | :--- | :--- |
| data Nat | $=0$ | $\mid$ | S Nat |
| data List | $=[]$ | $\mid$ | Nat $:$ List |

Rewrite rules: define operations on values


| $\operatorname{add}(0, y)$ | $\rightarrow y$ | positive $(0)$ |
| :--- | :--- | :--- |
| $\operatorname{add}(S(x), y)$ | $\rightarrow$ False |  |
| $S(\operatorname{add}(x, y))$ | positive $(S(x))$ | $\rightarrow$ True |

Extra variable: rule variable not occurring in left-hand side

## Classes of Term Rewriting Systems

## Classes of Term Rewriting Systems

Inductively sequential term rewriting systems:
$\rightarrow$ no overlapping left-hand sides in rules
$\rightarrow$ operations inductively defi ned on datatypes

| $\operatorname{leq}(0, x)$ | $\rightarrow$ True | cond (True,$x) \rightarrow x$ |
| :--- | :--- | :--- |
| $\operatorname{leq}(S(x), 0)$ | $\rightarrow$ False |  |
| $\operatorname{leq}(S(x), S(y))$ | $\rightarrow$ leq $(x, y)$ | seven $\rightarrow S(S(S(S(S(S(S(0)))))))$ |

## Classes of Term Rewriting Systems

Inductively sequential term rewriting systems:
$\rightarrow$ no overlapping left-hand sides in rules
$\rightarrow$ operations inductively defi ned on datatypes

| $\operatorname{leq}(0, x)$ | $\rightarrow$ True | cond(True,$x) \rightarrow x$ |
| :--- | :--- | :--- |
| $\operatorname{leq}(S(x), 0)$ | $\rightarrow$ False |  |
| $\operatorname{leq}(S(x), S(y))$ | $\rightarrow$ leq $(x, y)$ | seven $\rightarrow S(S(S(S(S(S(S(0)))))))$ |

ISX: inductively sequential TRS with extra variables

```
smallnum }->\mathrm{ cond(leq(x,seven),x)
```


## Classes of Term Rewriting Systems

Inductively sequential term rewriting systems:
$\rightarrow$ no overlapping left-hand sides in rules
$\rightarrow$ operations inductively defi ned on datatypes

| $\operatorname{leq}(0, x)$ | $\rightarrow$ True | cond(True,$x) \rightarrow x$ |
| :--- | :--- | :--- |
| $\operatorname{leq}(S(x), 0)$ | $\rightarrow$ False |  |
| $\operatorname{leq}(S(x), S(y))$ | $\rightarrow$ leq $(x, y)$ | seven $\rightarrow S(S(S(S(S(S(S(0)))))))$ |

ISX: inductively sequential TRS with extra variables

```
smallnum }->\mathrm{ cond(leq(x,seven),x)
```

OIS: overlapping inductively sequential TRS: allow rules with multiple right-hand sides: $l \rightarrow r_{1} ? \cdots ? r_{k}$

```
parent(x) }->\mathrm{ mother(x) ? father(x)
```


## Classes of Term Rewriting Systems

Inductively sequential term rewriting systems:
$\rightarrow$ no overlapping left-hand sides in rules
$\rightarrow$ operations inductively defi ned on datatypes

| $\operatorname{leq}(0, x)$ | $\rightarrow$ True | cond(True, $x) \rightarrow x$ |
| :--- | :--- | :--- |
| $\operatorname{leq}(S(x), 0)$ | $\rightarrow$ False |  |
| $\operatorname{leq}(S(x), S(y))$ | $\rightarrow$ leq $(x, y)$ | seven $\rightarrow S(S(S(S(S(S(S(0)))))))$ |

ISX: inductively sequential TRS with extra variables

```
smallnum }->\mathrm{ cond(leq(x,seven),x)
```

OIS: overlapping inductively sequential TRS: allow rules with multiple right-hand sides: $l \rightarrow r_{1} ? \cdots ? r_{k}$

```
parent(x) }->\mathrm{ mother(x) ? father(x)
```

Main result: OIS with rewriting $\Longleftrightarrow$ ISX with narrowing

## Evaluation: Rewriting vs. Narrowing

Functional evaluation: (lazy) rewriting
$\operatorname{add}(\mathrm{S}(0), \mathrm{S}(0)) \rightarrow \mathrm{S}(\operatorname{add}(0, \mathrm{~S}(0))) \rightarrow \mathrm{S}(\mathrm{S}(0))$

## Evaluation: Rewriting vs. Narrowing

Functional evaluation: (lazy) rewriting
$\operatorname{add}(\mathrm{S}(0), \mathrm{S}(0)) \rightarrow \mathrm{S}(\operatorname{add}(0, \mathrm{~S}(0))) \rightarrow \mathrm{S}(\mathrm{S}(0))$

Functional logic evaluation: narrowing: guess values + rewriting
$\operatorname{add}(\mathrm{x}, \mathrm{S}(\mathrm{O}))=:=\mathrm{S}(\mathrm{S}(\mathrm{S}(\mathrm{O}))) \quad \leadsto \quad\{\mathrm{x} \mapsto \mathrm{S}(\mathrm{S}(\mathrm{O}))\}$

## Evaluation: Rewriting vs. Narrowing

Functional evaluation: (lazy) rewriting
add(S(0),S(0)) $\rightarrow \mathrm{S}(\operatorname{add}(0, \mathrm{~S}(0))) \quad \rightarrow \mathrm{S}(\mathrm{S}(0))$

Functional logic evaluation: narrowing: guess values + rewriting
$\operatorname{add}(\mathrm{x}, \mathrm{S}(0))=:=\mathrm{S}(\mathrm{S}(\mathrm{S}(0))) \quad \leadsto \quad\{\mathrm{x} \mapsto \mathrm{S}(\mathrm{S}(\mathrm{O}))\}$

Needed narrowing: demand-driven variable instantiation and rewriting
leq( $\mathrm{x}, \mathrm{add}(0, \mathrm{~S}(0))) \quad \sim_{\{\mathrm{x} \mapsto 0\}} \quad$ True
Sound, complete, optimal evaluation strategy [JACM'00]

## Eliminating Overlapping Rules

Transformation $O E$ : OIS $\longrightarrow$ ISX:
Replace overlapping rule $f\left(\overline{t_{n}}\right) \rightarrow r_{1} ? \cdots ? r_{k}$ by:
$f\left(\overline{t_{n}}\right) \rightarrow f^{\prime}\left(y, \overline{x_{l}}\right) \quad\left(\right.$ where $\operatorname{Var}\left(\overline{t_{n}}\right)=\left\{x_{1}, \ldots, x_{l}\right\}, y$ fresh, $f^{\prime}$ new)
$f^{\prime}\left(I_{1}, \overline{x_{l}}\right) \quad \rightarrow \quad r_{1}$
$\vdots$
$f^{\prime}\left(I_{k}, \overline{x_{l}}\right) \quad \rightarrow \quad r_{k}$
data $\quad \operatorname{Ix}=I_{1}|\cdots| I_{k} \quad$ (index type, e.g., natural numbers)

## Eliminating Overlapping Rules

Transformation $O E:$ OIS $\longrightarrow I S X:$
Replace overlapping rule $f\left(\overline{t_{n}}\right) \rightarrow r_{1} ? \cdots ? r_{k}$ by:
$f\left(\overline{t_{n}}\right) \rightarrow f^{\prime}\left(y, \overline{x_{l}}\right) \quad$ (where $\mathcal{V} \operatorname{Var}\left(\overline{t_{n}}\right)=\left\{x_{1}, \ldots, x_{l}\right\}, y$ fresh, $f^{\prime}$ new)
$f^{\prime}\left(I_{1}, \overline{x_{l}}\right) \rightarrow r_{1}$
!
$f^{\prime}\left(I_{k}, \overline{x_{l}}\right) \rightarrow r_{k}$
data $\mathrm{Ix}=I_{1}|\ldots| I_{k} \quad$ (index type, e.g., natural numbers)
Example: parent (x) $\rightarrow$ mother ( x ) ? father $(\mathrm{x})$
$O E \mapsto \quad$ data Iparent = IO | I1
parent $(x) \rightarrow$ parent' $(y, x)$
parent' (IO,x) $\rightarrow$ mother (x)
parent' (I1, x) $\rightarrow$ father ( x )

## Eliminating Overlapping Rules: Results

Proposition: $\mathcal{R} \in \operatorname{OIS} \Rightarrow O E(\mathcal{R}) \in \operatorname{ISX}$

## Eliminating Overlapping Rules: Results

Proposition: $\mathcal{R} \in \mathrm{OIS} \Rightarrow O E(\mathcal{R}) \in \mathrm{ISX}$

Correctness w.r.t. results computed by needed narrowing:

Theorem: $\mathcal{R} \in \mathrm{OIS}, \mathcal{R}^{\prime}=\operatorname{OE}(\mathcal{R}), t, s$ terms of $\mathcal{R}$ :
Soundness: $t \stackrel{\mathbb{N N}^{*}}{\sigma_{\sigma^{\prime}}} s$ w.r.t. $\mathcal{R}^{\prime} \Rightarrow \exists t \stackrel{N \mathbb{N}}{ }_{\sim_{\sigma}} s$ w.r.t. $\mathcal{R}$ with $\sigma=\mathcal{V}_{\text {ar }(t)} \sigma^{\prime}$
Completeness: $t \stackrel{\mathrm{NN}^{*}}{\sim} \sigma$ w.r.t. $\mathcal{R} \Rightarrow \exists t \stackrel{\mathrm{NN}^{*}}{\sim} \sigma^{\prime} s$ w.r.t. $\mathcal{R}^{\prime}$ with $\sigma=\operatorname{Var}(t) \sigma^{\prime}$

## Eliminating Overlapping Rules: Results

Proposition: $\mathcal{R} \in \mathrm{OIS} \Rightarrow O E(\mathcal{R}) \in \mathrm{ISX}$

Correctness w.r.t. results computed by needed narrowing:

Theorem: $\mathcal{R} \in$ OIS, $\mathcal{R}^{\prime}=O E(\mathcal{R}), t, s$ terms of $\mathcal{R}$ :
Soundness: $t \stackrel{\mathbb{N N}^{*}}{\sim} \sigma^{\prime} s$ w.r.t. $\mathcal{R}^{\prime} \Rightarrow \exists t \stackrel{\mathbb{N N}^{*}}{\rightarrow} \sigma$ w.r.t. $\mathcal{R}$ with $\sigma=\operatorname{Var}(t) \sigma^{\prime}$
Completeness: $t \stackrel{\mathrm{NN}^{*}}{\sim} \sigma$ w.r.t. $\mathcal{R} \Rightarrow \exists t \stackrel{\mathrm{NN}^{*}}{\sim} \sigma^{\prime} s$ w.r.t. $\mathcal{R}^{\prime}$ with $\sigma=\operatorname{Var}(t) \sigma^{\prime}$
$\Rightarrow$ Implementations need not implement overlapping rules (done in several implementations but without formal justification)

## Eliminating Logic Variables

Transformation $X E:$ ISX $\longrightarrow$ OIS $^{-}$
(extra variable elimination)

OIS- : overlapping inductively sequential without extra variables

Evaluation in $\mathrm{OIS}^{-}$: rewriting (not narrowing)

Thus: programs transformed by XE
$\leadsto$ implementation without handling of logic variables and substitutions

## Eliminating Logic Variables

Transformation $X E:$ ISX $\longrightarrow$ OIS $^{-}$
(extra variable elimination)

OIS- : overlapping inductively sequential without extra variables

Evaluation in $\mathrm{OIS}^{-}$: rewriting (not narrowing)

Thus: programs transformed by XE
$\leadsto$ implementation without handling of logic variables and substitutions

Basic idea of $X E$ : replace extra variables in rules by value generators

## Value Generators

$S$ : sort defined by datatype declaration

$$
\text { data } S=C_{1} t_{11} \ldots t_{1 a_{1}}|\ldots| C_{n} t_{n 1} \ldots t_{n a_{n}}
$$

Value generator operation instOf $S$ defined by (overlapping) rules

$$
\begin{aligned}
\text { inst0f } S & \rightarrow C_{1}\left(\text { instOf } t_{11}, \ldots, \text { inst0f } t_{1 a_{1}}\right) \\
& ? \ldots \\
& ? C_{n}\left(\text { inst0f } t_{n 1}, \ldots, \text { inst0f } t_{n a_{n}}\right)
\end{aligned}
$$

## Value Generators

$S$ : sort defined by datatype declaration

$$
\operatorname{data} S=C_{1} t_{11} \ldots t_{1 a_{1}}|\ldots| C_{n} t_{n 1} \ldots t_{n a_{n}}
$$

Value generator operation inst0f $S$ defined by (overlapping) rules


```
    ?...
    ? C C (instOft tr1,\ldots,instOft man
```

Example: data TreeNat $=$ Leaf | Branch Nat TreeNat TreeNat

```
instOfTreeNat -> Leaf
    ? Branch(instOfNat,instOfTreeNat,instOfTreeNat)
instOfTreeNat -> O ? S(instOfNat)
```


## Value Generators

$S$ : sort defined by datatype declaration

$$
\operatorname{data} S=C_{1} t_{11} \ldots t_{1 a_{1}}|\ldots| C_{n} t_{n 1} \ldots t_{n a_{n}}
$$

Value generator operation instOf $S$ defined by (overlapping) rules


```
    ? ...
    ? C C (instOft tr1,\ldots,instOft man
```

Example: data TreeNat $=$ Leaf | Branch Nat TreeNat TreeNat

```
instOfTreeNat -> Leaf
    ? Branch(instOfNat,instOfTreeNat,instOfTreeNat)
instOfTreeNat -> O ? S(instOfNat)
```

Lemma: $\forall$ ground constructor terms $t$ of sort $S$ : inst0f $S \xrightarrow{*} t$

## Extra Variable Elimination

Transformation $X E$ : OIS $\longrightarrow \mathrm{OIS}^{-}$
replace each extra variable $v$ of sort $S$ in a rule by inst0f $S$

## Extra Variable Elimination

Transformation $X E$ : OIS $\longrightarrow \mathrm{OIS}^{-}$
replace each extra variable $v$ of sort $S$ in a rule by inst0f $S$

Example: even $\rightarrow \operatorname{add}(x, x)$
$X E \mapsto$ even $\rightarrow$ add(instOfNat,instOfNat)

## Extra Variable Elimination

Transformation XE: OIS $\longrightarrow \mathrm{OIS}^{-}$
replace each extra variable $v$ of sort $S$ in a rule by instOf $S$

Example: even $\rightarrow$ add $(x, x)$
$X E \mapsto$ even $\rightarrow$ add(instOfNat,instOfNat)

Lemma (Completeness of $X E$ ): $t \stackrel{*}{\sim} u$ w.r.t. $\mathcal{R} \Rightarrow$ $X E(t) \xrightarrow{*} v$ w.r.t. $X E(\mathcal{R})$ ( $v$ : ground constructor instance of $u$ )

## Extra Variable Elimination

Transformation XE: OIS $\longrightarrow$ OIS $^{-}$
replace each extra variable $v$ of sort $S$ in a rule by inst0f $S$

Example: even $\rightarrow$ add $(\mathrm{x}, \mathrm{x})$
$X E \mapsto$ even $\rightarrow$ add(instOfNat,instOfNat)

Lemma (Completeness of $X E$ ): $t \stackrel{*}{\sim} u$ w.r.t. $\mathcal{R} \Rightarrow$ $X E(t) \xrightarrow{*} v$ w.r.t. $X E(\mathcal{R})(v$ : ground constructor instance of $u)$
$X E$ is not sound:
even $\rightarrow$ add(instOfNat,instOfNat) $\xrightarrow{+} \operatorname{add}(0, S(0)) \rightarrow S(0)$

## Extra Variable Elimination

Transformation XE: OIS $\longrightarrow$ OIS $^{-}$
replace each extra variable $v$ of sort $S$ in a rule by instOf $S$

Example: even $\rightarrow$ add ( $\mathrm{x}, \mathrm{x}$ )
$X E \mapsto$ even $\rightarrow$ add(instOfNat,instOfNat)

Lemma (Completeness of $X E$ ): $t \stackrel{*}{\sim} u$ w.r.t. $\mathcal{R} \Rightarrow$ $X E(t) \xrightarrow{*} v$ w.r.t. $X E(\mathcal{R})(v$ : ground constructor instance of $u)$
$X E$ is not sound:
even $\rightarrow$ add(instOfNat,instOfNat) $\xrightarrow{+} \operatorname{add}(0, S(0)) \rightarrow S(0)$

Solution: identical reductions for extra variable generators

## Admissible Derivations

Admissible derivation: apply to occurrences of instOf (originating from same extra variable) identical reduction steps

## Admissible Derivations

Admissible derivation: apply to occurrences of instOf (originating from same extra variable) identical reduction steps

Implementation: use let bindings available in many languages
Example: even $\rightarrow \operatorname{add}(\mathrm{x}, \mathrm{x})$
$X E P \mapsto$ even $\rightarrow$ let $\mathrm{x}=$ instOfNat in $\operatorname{add}(\mathrm{x}, \mathrm{x})$

## Admissible Derivations

Admissible derivation: apply to occurrences of instOf (originating from same extra variable) identical reduction steps

Implementation: use let bindings available in many languages
Example: even $\rightarrow$ add $(\mathrm{x}, \mathrm{x})$
$X E P \mapsto$ even $\rightarrow$ let $\mathrm{x}=$ instOfNat in $\operatorname{add}(\mathrm{x}, \mathrm{x})$

Formalization (details in paper) by transformation $X E P$ :
term/substitution pairs where substitution contains inst0f operations

## Admissible Derivations

Admissible derivation: apply to occurrences of instOf (originating from same extra variable) identical reduction steps

Implementation: use let bindings available in many languages
Example: even $\rightarrow \operatorname{add}(\mathrm{x}, \mathrm{x})$
$X E P \mapsto$ even $\rightarrow$ let $\mathrm{x}=$ instOfNat in $\operatorname{add}(\mathrm{x}, \mathrm{x})$

Formalization (details in paper) by transformation $X E P$ :
term/substitution pairs where substitution contains inst0f operations

Theorem: transformation $X E P$ is sound and complete

## Eliminating Extra Variables: Initial Goals

Transformation $X E P$ shows:
logic variables can be eliminated if overlapping rules are supported

## Eliminating Extra Variables: Initial Goals

Transformation XEP shows:
logic variables can be eliminated if overlapping rules are supported

Initial goals with logic variables: $t$ with $\operatorname{Var}(t)=\left\{x_{1}, \ldots, x_{n}\right\}$
$\leadsto$ start computation with initial term $\left(t, x_{1}, \ldots, x_{n}\right)$ :
Result $\left(e, b_{1}, \ldots, b_{n}\right)$ :
$e \approx$ computed value
$b_{1}, \ldots, b_{n} \approx$ computed answer

## Conclusions

Two transformations on functional logic programs:

1. eliminate overlapping rules by extra variables
$\rightarrow$ any functional logic program can be mapped into ISX
$\rightarrow$ ISX $\approx$ core language for functional logic programming
$\rightarrow$ practice: ISX already used as core in some implementations
2. eliminate extra variables by new operations (overlapping rules)
$\rightarrow$ correctness requires admissible derivations
$\rightarrow$ implement admissible derivations by sharing / let expressions

## Conclusions

## Two transformations on functional logic programs:

1. eliminate overlapping rules by extra variables
$\rightarrow$ any functional logic program can be mapped into ISX
$\rightarrow$ ISX $\approx$ core language for functional logic programming
$\rightarrow$ practice: ISX already used as core in some implementations
2. eliminate extra variables by new operations (overlapping rules)
$\rightarrow$ correctness requires admissible derivations
$\rightarrow$ implement admissible derivations by sharing / let expressions
Results useful for
$\rightarrow$ better understanding of functional logic programming features
$\rightarrow$ simpler core languages (support overlapping rules or extra variables)
$\rightarrow$ simpler implementations
$\rightarrow$ simplify tool support (e.g., current tracers, profi lers, slicers, partial evaluators: core language with overlapping rules and extra variables)
$\rightarrow$ better understanding of the role of logic variables
