
Benelog’98

Multi-Paradigm

Declarative Programming

in Curry

Michael Hanus

RWTH Aachen

1

Declarative Programming

Common idea:

• description of logical relationships

• powerful abstractions, higher programming level

• reliable and maintainable programs

– pointer structures ⇒ algebraic data types

– complex procedures ⇒ comprehensible parts
(pattern matching, local definitions)

Different paradigms:

• Functional programming:

functions, equations, λ-calculus

(lazy) deterministic reduction

• Logic programming:

predicates, logical formulas, predicate logic

constraint solving, search

⇒ Functional logic languages:

– efficient deterministic reduction (if possible)

– flexibility of logic languages

– avoid non-declarative features of Prolog

(arithmetic, I/O, cut)

– combine best of both worlds in a single model
2

Curry: A Truly Integrated

Functional Logic Language

[Dagstuhl’96, POPL’97]

• multi-paradigm language, combines

– functional programming

– logic programming

– concurrent programming

• based on an optimal evaluation strategy

• conservative extension of lazy functional and

(concurrent) logic programming

• conditional (constrained) rules

• higher-order, non-deterministic functions

• equational constraints

• encapsulated search, committed choice

• polymorphic type system, modules

• declarative (monadic) I/O

• external functions and constraint solvers

3

Curry Programs

Values: data terms containing constructors and

variables (≈ Herbrand terms): (S x) [O,(S O)]

�

�

�

�

data Bool = True | False

data Nat = O | S Nat

data List a = [] | a : List a

Functions: operations on values defined by

equations (or rules):

f t1 . . . tn | c = r

defined
operation data terms

constraint
(conjunction
of equations)

expression

�

�

�

�

O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

append [] ys = ys

append (x:xs) ys = x : append xs ys

sub m n | n + d =:= m = d where d free

4

Evaluation: Computing Values

• reduce expressions to their values

• replace equals by equals

• apply reduction step to a subterm (redex)

(rule’s left-hand side must match the subterm)

�

�

�

�

O + y = y O ≤ y = True

(S x) + y = S(x+y) (S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

(S O)+(S O) → S (O+(S O)) → S (S O)

Lazy strategy: select an outermost redex

O+O ≤ (S O)+(S O)

→ O ≤ (S O)+(S O)

→ True

� evaluate only needed redexes

(efficiently computable with definitional trees)

� functional programming

5

Definitional Trees [Antoy 92]

• data structure to organize the rules of an operation

• each node has a distinct pattern

• branch nodes (case distinction), rule nodes

�

�

�

�

O ≤ y = True

(S x) ≤ O = False

(S x) ≤ (S y) = x≤ y

x1 ≤ x2

O ≤ x2

True

(S x3) ≤ x2

(S x3) ≤ O

False

(S x3) ≤ (S x4)

x3 ≤ x4

Function call: t1 ≤ t2

1. Reduce t1 to head normal form

2. If t1 = O: apply rule

3. If t1 = S . . .: reduce t2 to head normal form

4. If t1 variable: not reducible or bind t1 to O or (S x)

6

Overlapping Rules:

Non-deterministic Rewriting

�

�

�

�

True ∨ x = True

x ∨ True = True

False ∨ False = False

Problem: no needed argument:

�

�

�

�e1 ∨ e2 evaluate e1 or e2?

Functional languages: Evaluate e1, if not successful: e2

Disadvantage: not normalizing (e1 may not terminate)

Solutions:

1. Parallel reduction of e1 and e2

[Sekar/Ramakrishnan 93]

2. Non-deterministic reduction:

try (don’t know) e1 or e2

Extension to definitional trees:

Introduce or-nodes to describe non-deterministic

selection of redexes

7

From Functional Programming

to Logic Programming

Functional programming: values, no free variables

Logic programming: computed answers for free variables

Operational extension:

instantiate free variables, if necessary

�

�

�

�

f 0 = 2

f 1 = 3

Evaluate (f x): – bind x to 0 and reduce (f 0) to 2, or:

– bind x to 1 and reduce (f 1) to 3

Computation step: bind
︸ ︷︷ ︸

logic

and reduce
︸ ︷︷ ︸

functional

e � {σ1} e1 | · · · | {σn} en
︸ ︷︷ ︸

disjunctive expression

Reduce: (f 0) � 2

Bind and reduce: (f x) � {x=0} 2 | {x=1} 3

Compute necessary bindings with needed strategy
� needed narrowing [Antoy/Echahed/Hanus POPL’94]

8

Properties of Needed Narrowing

[Antoy/Echahed/Hanus POPL’94]

• Sound and complete (w.r.t. strict equality)

• Optimality:

1. No unnecessary steps:

Each narrowing step is needed, i.e., it cannot be

avoided if a solution should be computed.

2. Shortest derivations:

If common subterms are shared, needed

narrowing derivations have minimal length.

3. Independence of solutions:

Two solutions σ and σ′ computed by two

distinct derivations are independent.

• Determinism:

No non-deterministic step during the evaluation of

ground expressions (≈ functional programming)

• Restriction: inductively sequential rules

(i.e., no overlapping left-hand sides)

• Extensible to

– conditional rules [Hanus ICLP’95]

– overlapping lhs [Antoy/Echahed/Hanus ICLP’97]

– multiple rhs [Antoy ALP’97]

– concurrent evaluation [Hanus POPL’97]
9

Strict Equality and

Equational Constraints

Problems with equality in the presence of

non-terminating rules:

1. Equality on infinite objects undecidable:
�

�

�

�f = [0|f] g = [0|g]

Is f = g valid?

2. Semantics of non-terminating functions:
�

�

�

�f x = f (x+1) g x = g (x+1)

Is f 0 = g 0 valid?

Avoided by strict equality: identity on finite objects

(both sides reducible to same ground data term)

Equational constraint e1 =:= e2:

satisfied if both sides evaluable to unifiable data terms

⇒ e1 =:= e2 does not hold if e1 or e2 undefined

⇒ e1 =:= e2 and e1, e2 data terms ≈ unification in LP

10

Non-deterministic Functions

Functions can have more than one result value:
�

�

�

�

choose x y = x

choose x y = y

choose 1 2 � 1 | 2

Non-deterministic list insertion and permutations:

�

�

�

�

insert x [] = [x]

insert x (y:ys) = choose (x:y:ys)

(y:insert x ys)

permute [] = []

permute (x:xs) = insert x (permute xs)

permute [1,2,3] �

[1,2,3] | [2,1,3] | [2,3,1] |

[1,3,2] | [3,1,2] | [3,2,1]

11

Programming Demand-driven Search

Prolog: generate-and-test:
�

�

�

�psort(Xs,Ys) :- permute(Xs,Ys), ordered(Ys).

Functional programming: list comprehensions:
�

�

�

�psort xs = [ys | ys<-perms xs, sorted ys]

Prolog with coroutining: test-and-generate
�

�

�

�psort(Xs,Ys) :- ordered(Ys), permute(Xs,Ys).

(Problem: floundering, heuristics)

Functional logic programming: test-of-generate:
�

�

�

�

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x<=y = x : sorted (y:ys)

psort xs = sorted (permute xs)

Advantages:

• demand-driven generation of solutions

(due to laziness)

• same efficiency as coroutining

• no floundering

• modular program structure
12

Example: Demand-driven Search

�

�

�

�

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | x<=y

= x : sorted (y:ys)

psort xs = sorted (permute xs)

psort [5,4,3,2,1]

� sorted (permute [5,4,3,2,1])

� ∗ sorted (5 : 4 : permute [3,2,1])
︸ ︷︷ ︸

undefined: discard this alternative

| · · ·

� · · ·

Effect: Permutations of [3,2,1] are not enumerated!

Permutation sort for [n,n−1,. . .,2,1]: #or-branches

Length of the list: 4 5 6 8 10

generate-and-test 24 120 720 40320 3628800

test-of-generate 19 59 180 1637 14758

13

Encapsulated Search

[Hanus/Steiner PLILP’98]

Technique to avoid global search (backtracking)

(non-backtrackable I/O, efficiency control,. . .)

Idea:

Compute until a non-deterministic step occurs,

then give programmer control over this situation

(generalization of Oz’s operator [Schulte/Smolka 94])

Search:

• solve constraint containing search variable

• evaluate until failure, success, or non-determinism

• return result in a list

• bind search variable to different solutions

⇒ abstract search variable: \x->c (≈ λx.c)

Primitive search operator:

�

�

�

�try :: (a -> Constraint) -> [a -> Constraint]

try \x-> 1=:=2 � [] failure

try \x-> [x]=:=[0] � [\x-> x=:=0] success

try \x-> f x =:= 3 � [\x-> x=:=0 & f 0 =:= 3,

\x-> x=:=1 & f 1 =:= 3]

disjunction
14

Encapsulated Search:

Search Strategies

try \x->c: eval. c, stop after non-deterministic step

Depth-first search: collect all solutions
�

�

�

�

all :: (a -> Constraint) -> [a -> Constraint]

all g = collect (try g)

where

collect [] = []

collect [g] = [g]

collect (g1:g2:gs) =

concat (map all (g1:g2:gs))

all \l -> append l [1] =:= [0,1]
� [\l -> l =:= [0]]

Further search strategies:

• compute only first solution:

once g = head (all g)

• findall, best solution search, parallel search, . . .

• negation as failure:

naf c = (all _->c) =:= []

� control failures

15

Handling solutions

Extract value of the search variable by application:

(\x->x=:=1) freevar

⇒ freevar=:=1

⇒ {freevar=1} success

Prolog’s findall:

�

�

�

�

unpack :: [a -> Constraint] -> [a]

unpack [] = []

unpack (g:gs) | g v = v : unpack gs

where v free

findall g = unpack (all g)

findall (\(x,y) -> append x y =:= [1,2])

∗
⇒ [([],[1,2]),([1],[2]),([1,2],[])]

16

Exploiting laziness

Demand-driven encapsulated search easily obtained by

laziness:
�

�

�

�

prolog g = printloop (all g)

printloop [] = putStr("no") >> nl

printloop (a:as) = browse a >> putStr "? " >>

getChar >>= evalAnswer as

evalAnswer as ’;’ = nl >> printloop as

evalAnswer as ’\n’ = nl >> putStr "yes" >> nl

prolog \(x,y) -> append x y =:= [1,2]
∗
⇒ ([],[1,2]) ? ;

([1],[2]) ? <-

yes

prolog \x -> 1 =:= 2
∗
⇒ no

� Separation of Logic and Control

� Modularity:

• Prolog with breadth-first search:

prolog_bfs g = printloop (bfs g)

• Prolog with depth-bounded search:

prolog_bound g b = printloop (bound g b)
17

From Function Logic Programming

to Concurrent Programming

Disadvantage of narrowing:

– functions on recursive data structures
� narrowing may not terminate

– all rules must be explicitly known
� combination with external functions unclear

(basic arithmetic,. . .)

Solution:

Delay function calls if a particular argument is free

Distinguish:

rigid (consumer) and flexible (generator) functions

Necessary:

Concurrent conjunction of constraints: c1 & c2

Meaning: evaluate c1 and c2 concurrently, if possible

x+x=:=y & x=:=2
� {x=2} 2+2=:=y (suspend x+x)
� {x=2} 4=:=y (evaluate 2+2)
� {x=2, y=4}

18

Parallel Functional Programming

[Goffin,Eden]

Parallel evaluation of arguments:

f t1 t2 = letpar x = g t1

y = h t2 in k x y

with concurrent conjunction of equations:

�

�

�

�

f t1 t2 | x =:= g t1 & y = h t2 = k x y

where x,y free

Skeleton-based parallel programming:

Applying a function to all list elements (sequentially):

map f [] = []

map f (x:xs) = f x : map f xs

farm: parallel version of map

�

�

�

�

farm f [] = []

farm f (x:xs) | r =:= f x & rs =:= farm f xs

= r : rs where r,rs free

19

Concurrent Objects with State

Modelling objects with state as a constraint function:

• first parameter: stream of messages (wait for input)

• second parameter: current state

Example: Bank account

�

�

�

�

data Messages = Deposit Int | Withdraw Int

| Balance Int

account eval rigid -- declare a rigid func.

account [] _ = success

account (Deposit a : ms) n = account ms (n+a)

account (Withdraw a : ms) n = account ms (n-a)

account (Balance b : ms) n = b=:=n & account ms n

make_account s = account s 0

make_account s, -- create account object

s = [Deposit 200, Withdraw 50, Balance b]

� {b=150, s=...}

20

Soundness and Completeness

Relate derivations to standard rewriting →R

(→R sound and complete w.r.t. model-theoretic

semantics)

Soundness: If

e � ∗ {σ1} e1 | . . . | {σn} en

then σi(e) →
∗
R ei for i = 1, . . . , n

Completeness: If σ(e) →∗
R c and

e � ∗ {σ1} e1 | . . . | {σn} en

then ∃ϕ, i with σ = ϕ ◦ σi and ϕ(ei) →
∗
R c

Completeness w.r.t. flexible functions:

All functions are flexible: If σ(e) →∗
R c , then

∃ e � ∗ {σ1} e1 | . . . | {σn} en

with ei = c and σ = ϕ ◦ σi for some i and ϕ

21

Curry: Unification of Computation Models

Computation model Restrictions on programs

Needed narrowing

[POPL’94]

inductively sequential rules;

optimal w.r.t. length of derivations and number

of computed solutions

Weakly needed narrowing

(∼Babel)

only flexible functions

Resolution (∼Prolog) only (flexible) predicates (∼ constraints)

Lazy functional languages

(∼Haskell)

no free variables in expressions

parallel functional

languages (∼Goffin, Eden)

only rigid functions, concurrent conjunction

Residuation

(∼Life, Oz)

constraints are flexible;

all other functions are rigid (default in Curry)2
2

Programming in Curry

�

�

�

�

append :: [a] -> [a] -> [a]

append eval flex -- append is flexible

append [] ys = ys

append (x:xs) ys = x : append xs ys

Functional programming:

append [1,2] [3,4] � [1,2,3,4]

Logic programming (append is flexible):

append x y =:= [1,2] �

{x=[],y=[1,2]} | {x=[1],y=[2]} | {x=[1,2],y=[]}

�

�

�

�

from n = n : from (S n)

first O xs = []

first (S n) (x:xs) = x : first n xs

Lazy functional programming:

first (S (S O)) (from O) � [O,(S O)]

Lazy functional logic programming:

first x (from y) =:= [0] � {x=(S O),y=O}

23

Functions vs. Predicates

rigid functions not always reasonable:

�

�

�

�

append [] ys = ys

append (x:xs) ys = x : append xs ys

Concatenate known lists:

append [1,2] [3,4] � [1,2,3,4]

Splitting a list:

append x [2] =:= [1,2] � not reducible (delay)

Escher [Lloyd 94]: provide additional split predicate

(superfluous from a declarative point of view)

Prolog: define append always as a predicate

⇒ worse operational behavior than a function:

Curry: append (append x y) z =:= []

finite search space (if append is flexible)

Prolog: append(X,Y,L), append(L,Z,[])

infinite search space

24

Functional Logic Programming

vs.

(Concurrent) Logic Programming

Implementation of functions by flattening
� loss of functional dependencies:

�

�

�

�

from n = n : from (S n)

first O xs = []

first (S n) (x:xs) = x : first n xs

first x (from x) =:= []
� {x=0} [] =:= [] | {x=(S n)} ...failure...
� {x=0}

Translation of functions into predicates by flattening:

�

�

�

�

from(N,[N|R]) :- from(s(N),R).

first(0,L,[]).

first(s(N),[E|L],[E|R]) :- first(N,L,R).

first(X,L,[]), from(X,L)
�

{X7→0} from(0,L) � from(s(0),L1) � · · ·

25

Higher-Order Features

Higher-order functions:

�

�

�

�

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

map (append [1]) [[2],[3]] � [[1,2],[1,3]]

• higher-order features of functional languages

(partial applications, λ-abstractions)

• first-order definition of application function (as in

[Warren 82])

• application function is rigid

� delay applications with unknown functions

• future extension(?): higher-order unification

26

Monadic Input/Output

• declarative I/O concept

• I/O: transformation on the outside world

• interactive program: compute actions

(transformation on the world)

• type of actions:
�

�

�

�IO t ≈ World -> (t,World)

getChar :: IO Char

getLine :: IO String

putLine :: String -> IO ()

getChar applied to a world
� character + new (transformed) world

• compose actions:

(>>=) :: IO a -> (a -> IO b) -> IO b

getLine >>= putLine:

copies a line from input to output

• no I/O in disjunctions (“cannot copy the world”):

encapsulate search between I/O actions

27

External Functions

• infinite set of defining equations

0+0 = 0

0+1 = 1

0+2 = 2

...

2+1 = 3

...

• definition not accessible

• external implementation (without side effects)

• suspend external function calls until arguments are

fully known, i.e., ground

[Bonnier/Maluszynski 88, Boye 91]

• external function interface

• implementation of basic arithmetic

(+, -, *,. . . : external functions)

Not possible in narrowing-based languages!

28

Arithmetic

0, 1, 2, . . .: constructors

+, -, *,. . . : external functions

x =:= 2+3*4 � {x=14}

x =:= 2*3+y � {} x =:= 6+y (suspend)

x+x =:= y & x =:= 2
� {x=2} 2+2 =:= y (suspend x+x)
� {x=2} 4 =:= y (evaluate 2+2)
� {x=2, y=4}

⇒ Functions as passive constraints (Life)

�

�

�

�

digit 0 = success

...

digit 9 = success

x+x =:= y & x*x =:= y & digit x

� {x=0, y=0} | {x=2, y=4}

29

Implementations of Curry

• First prototypical implementations available

• Interpreter in Prolog: TasteCurry-System

(RWTH Aachen, Portland State University)

http://www-i2.informatik.rwth-aachen.de/
~hanus/tastecurry

• [Hanus LOPSTR’95]: Efficient implementation of

needed narrowing by transformation into Prolog
� Sloth-System [Mariño/Rey WFLP’98]

• Compiler Curry→Java [Hanus/Sadre ILPS’97]

(Java threads for concurrency and non-determinism)

– portable

– simplified implementation

(garbage collection, threads)

– slow but (hopefully!) better Java

implementations in the future

• abstract Curry machine [Lux WFLP’98]

30

Why Integration of

Declarative Paradigms?

• more expressive than pure functional languages

(compute with partial information/constraints)

• more structural information than in pure logic

programs (functional dependencies)

• more efficient than logic programs

(determinism, laziness)

• functions: declarative notion to improve control in

logic programming

• avoid impure features of Prolog

(arithmetic, I/O)

• combine research efforts in FP and LP

� Do not teach two paradigms, but one:

Declarative Programming

[Hanus PLILP’97]

31

Curry:

A True Integration of

Declarative Paradigms

Functional programming: lazy evaluation,

deterministic evaluation of ground expressions,

higher-order functions, polymorphic types,

monadic I/O

=⇒ extension of Haskell

Logic programming: logical variables, partial data

structures, search facilities, concurrent constraint

solving

Curry:

• efficiency (functional programming)

+ expressivity (search, concurrency)

• possible with “good” evaluation strategies

• one paradigm: declarative programming

More infos on Curry:

http://www-i2.informatik.rwth-aachen.de/~hanus/curry

32

