Benelog'98

Multi-Paradigm

Declarative Programming

in Curry

Michael Hanus

RWTH Aachen

Declarative Programming

Common idea:

- description of logical relationships
- powerful abstractions, higher programming level
- reliable and maintainable programs
- pointer structures \Rightarrow algebraic data types
- complex procedures \Rightarrow comprehensible parts (pattern matching, local definitions)

Different paradigms:

- Functional programming: functions, equations, λ-calculus (lazy) deterministic reduction
- Logic programming: predicates, logical formulas, predicate logic constraint solving, search
\Rightarrow Functional logic languages:
- efficient deterministic reduction (if possible)
- flexibility of logic languages
- avoid non-declarative features of Prolog (arithmetic, I/O, cut)
- combine best of both worlds in a single model

Curry: A Truly Integrated Functional Logic Language

[Dagstuhl'96, POPL'97]

- multi-paradigm language, combines
- functional programming
- logic programming
- concurrent programming
- based on an optimal evaluation strategy
- conservative extension of lazy functional and (concurrent) logic programming
- conditional (constrained) rules
- higher-order, non-deterministic functions
- equational constraints
- encapsulated search, committed choice
- polymorphic type system, modules
- declarative (monadic) I/O
- external functions and constraint solvers

Curry Programs

Values: data terms containing constructors and variables (\approx Herbrand terms): (S x) [0, (S 0)]

```
data Bool = True | False
data Nat = O | S Nat
data List a = [] | a : List a
```

Functions: operations on values defined by equations (or rules):

$$
\begin{aligned}
& 0+y=y \\
& (S x)+y=S(x+y) \\
& \text { (S x) } \leq 0 \quad=\text { False } \\
& (S x) \leq(S y)=x \leq y \\
& \text { append [] es = yo } \\
& \text { append (x:xs) yo }=\mathrm{x} \text { : append } \mathrm{xs} \text { es }
\end{aligned}
$$

sub m $n \quad \mathrm{n}+\mathrm{d}=:=\mathrm{m}=\mathrm{d}$ where d free

Evaluation: Computing Values

- reduce expressions to their values
- replace equals by equals
- apply reduction step to a subterm (redex)
(rule's left-hand side must match the subterm)

$$
\begin{aligned}
0+y & =y & \leq y & =\text { True } \\
(S \mathrm{x})+\mathrm{y}=\mathrm{S}(\mathrm{x}+\mathrm{y}) & (\mathrm{S} x) & \leq 0 & =\text { False } \\
& (S \mathrm{x}) & \leq(\mathrm{S} y) & =\mathrm{x} \leq \mathrm{y}
\end{aligned}
$$

(S
$0)+(S$
0
$\rightarrow \quad \mathrm{S}$ ($\mathrm{O}+\mathrm{S}$
0)
$\rightarrow \quad \mathrm{S}$ (S
0)

Lazy strategy: select an outermost redex

$$
\begin{aligned}
& 0+0 \leq(\mathrm{S} 0)+(\mathrm{SO}) \\
& \rightarrow 0 \leq(\mathrm{S} 0)+(\mathrm{S} 0) \\
& \rightarrow \quad \text { True }
\end{aligned}
$$

$~$ evaluate only needed redexes
(efficiently computable with definitional trees)
\leadsto functional programming

Definitional Trees [Antoy 92]

- data structure to organize the rules of an operation
- each node has a distinct pattern
- branch nodes (case distinction), rule nodes

$$
\begin{aligned}
0 \leq y & =\text { True } \\
(\mathrm{S} x) \leq 0 & =\text { False } \\
(\mathrm{S} x) \leq(S \mathrm{y}) & =\mathrm{x} \leq \mathrm{y}
\end{aligned}
$$

Function call: $t_{1} \leq t_{2}$

1. Reduce t_{1} to head normal form

2 . If $t_{1}=0$: apply rule
3. If $t_{1}=\mathrm{S} \ldots$: reduce t_{2} to head normal form
4. If t_{1} variable: not reducible or bind t_{1} to 0 or ($\mathrm{S} x$)

Overlapping Rules: Non-deterministic Rewriting

$$
\begin{aligned}
\text { True } \vee \mathrm{x} & =\text { True } \\
x \vee \text { True } & =\text { True } \\
\text { False } \vee \text { False } & =\text { False }
\end{aligned}
$$

Problem: no needed argument:
$e_{1} \vee e_{2}$ evaluate e_{1} or e_{2} ?
Functional languages: Evaluate e_{1}, if not successful: e_{2}
Disadvantage: not normalizing (e_{1} may not terminate)
Solutions:

1. Parallel reduction of e_{1} and e_{2}
[Sekar/Ramakrishnan 93]
2. Non-deterministic reduction: try (don't know) e_{1} or e_{2}

Extension to definitional trees:
Introduce or-nodes to describe non-deterministic selection of redexes

From Functional Programming to Logic Programming

Functional programming: values, no free variables
Logic programming: computed answers for free variables Operational extension:
instantiate free variables, if necessary

$$
\begin{aligned}
& \mathrm{f} 0=2 \\
& \mathrm{f} 1=3
\end{aligned}
$$

Evaluate ($\mathrm{f} x$): - bind x to 0 and reduce (f 0) to 2 , or:

- bind x to 1 and reduce (f 1) to 3

Computation step: $\underbrace{\text { bind }}_{\text {logic }}$ and $\underbrace{\text { reduce }}_{\text {functional }}$

$$
e \leadsto \underbrace{\left\{\sigma_{1}\right\} e_{1}|\cdots|\left\{\sigma_{n}\right\} e_{n}}_{\text {disjunctive expression }}
$$

Reduce:
(f 0) ~ 2
Bind and reduce: ($f x$) $\leadsto\{x=0\} 2 \mid\{x=1\} 3$
Compute necessary bindings with needed strategy \leadsto needed narrowing [Antoy/Echahed/Hanus POPL'94]

Properties of Needed Narrowing

[Antoy/Echahed/Hanus POPL'94]

- Sound and complete (w.r.t. strict equality)
- Optimality:

1. No unnecessary steps:

Each narrowing step is needed, i.e., it cannot be avoided if a solution should be computed.
2. Shortest derivations:

If common subterms are shared, needed narrowing derivations have minimal length.
3. Independence of solutions:

Two solutions σ and σ^{\prime} computed by two distinct derivations are independent.

- Determinism:

No non-deterministic step during the evaluation of ground expressions (\approx functional programming)

- Restriction: inductively sequential rules (i.e., no overlapping left-hand sides)
- Extensible to
- conditional rules [Hanus ICLP'95]
- overlapping lhs [Antoy/Echahed/Hanus ICLP'97]
- multiple rhs [Antoy ALP'97]
- concurrent evaluation [Hanus POPL'97]

Strict Equality and Equational Constraints

Problems with equality in the presence of non-terminating rules:

1. Equality on infinite objects undecidable:
$\mathrm{f}=[0 \mid \mathrm{f}] \quad \mathrm{g}=[0 \mid \mathrm{g}]$

Is $f=g$ valid?
2. Semantics of non-terminating functions:

$$
f \mathrm{x}=\mathrm{f}(\mathrm{x}+1) \quad \mathrm{g} \mathrm{x}=\mathrm{g}(\mathrm{x}+1)
$$

Is $f 0=g 0$ valid?

Avoided by strict equality: identity on finite objects (both sides reducible to same ground data term)

Equational constraint $e_{1}=:=e_{2}$: satisfied if both sides evaluable to unifiable data terms
$\Rightarrow e_{1}=:=e_{2}$ does not hold if e_{1} or e_{2} undefined
$\Rightarrow e_{1}=:=e_{2}$ and e_{1}, e_{2} data terms \approx unification in LP

Non-deterministic Functions

Functions can have more than one result value:

> choose $\mathrm{x} y=\mathrm{x}$
> choose $\mathrm{x} y=\mathrm{y}$
choose $12 \sim 1$ | 2

Non-deterministic list insertion and permutations:

$$
\left.\begin{array}{lll}
\text { insert } x[] & =[x] \\
\text { insert } x(y: y s) & =\text { choose (} x: y: y s) \\
& \\
& \\
\text { (y:insert } x \text { ms) }
\end{array}\right] \begin{array}{ll}
\text { permute }[] & =[] \\
\text { permute }(x: x s) & =\text { insert } x \text { (permute } x s)
\end{array}
$$

permute $[1,2,3] \leadsto$
$[1,2,3]$ |
[2,1,3]
[2,3,1] |
[1,3,2] |
[3,1,2] |
[3,2,1]

Prolog: generate-and-test:

```
psort(Xs,Ys) :- permute(Xs,Ys), ordered(Ys).
```

Functional programming: list comprehensions:

```
psort xs = [ys | ys<-perms xs, sorted ys]
```

Prolog with coroutining: test-and-generate psort(Xs,Ys) :- ordered(Ys), permute(Xs,Ys).
(Problem: floundering, heuristics)
Functional logic programming: test-of-generate:

$$
\begin{aligned}
& \text { sorted }[]=[] \\
& \text { sorted }[x]=[x] \\
& \text { sorted (} x: y: y s) \mid x<=y=x \text { : sorted (} y: y s \text {) } \\
& \text { psort } x s=\text { sorted (permute } x s \text {) }
\end{aligned}
$$

Advantages:

- demand-driven generation of solutions (due to laziness)
- same efficiency as coroutining
- no floundering
- modular program structure

Example: Demand-driven Search

$$
\begin{aligned}
& \begin{array}{l}
\text { sorted }[] \quad=[] \\
\text { sorted }[\mathrm{x}]=[\mathrm{x}] \\
\text { sorted (x:y:ys) | } \mathrm{x}<=\mathrm{y} \\
\\
=\mathrm{x}
\end{array} \\
& \text { psort } \mathrm{xs}=\text { sorted (y:ys) }
\end{aligned}
$$

psort [5,4,3,2,1]
\leadsto sorted (permute $[5,4,3,2,1]$)
$\neg^{*} \underbrace{\text { sorted }(5: 4: \text { permute }[3,2,1])}_{\text {undefined: discard this alternative }} \mid \cdots$

Effect: Permutations of $[3,2,1]$ are not enumerated!

Permutation sort for $[n, n-1, \ldots, 2,1]$: \#or-branches

Length of the list:	4	5	6	8	10
generate-and-test	24	120	720	40320	3628800
test-of-generate	19	59	180	1637	14758

Encapsulated Search

[Hanus/Steiner PLILP'98]
Technique to avoid global search (backtracking) (non-backtrackable I/O, efficiency control,...)

Idea:

Compute until a non-deterministic step occurs, then give programmer control over this situation (generalization of Oz's operator [Schulte/Smolka 94])

Search:

- solve constraint containing search variable
- evaluate until failure, success, or non-determinism
- return result in a list
- bind search variable to different solutions \Rightarrow abstract search variable: $\backslash x->c \quad(\approx \lambda x . c)$

Primitive search operator:
try :: (a->Constraint) -> [a-> Constraint]
$\operatorname{try} \backslash x->1=:=2 \quad \sim[]$
failure
try $\backslash x->[x]=:=[0] \sim[\backslash x->x=:=0]$ success
$\operatorname{try} \backslash x->f x=:=3 \leadsto[\backslash x->x=:=0$ \& $f 0=:=3$,
\x-> $x=:=1 \& f 1=:=3]$

Encapsulated Search: Search Strategies

$\operatorname{try} \backslash x->c$: eval. c, stop after non-deterministic step
Depth-first search: collect all solutions

$$
\begin{aligned}
& \text { all }: \text { (a->Constraint) }->\text { [a->Constraint] } \\
& \text { all } g=\text { collect (try } g) \\
& \text { where } \\
& \text { collect }[] \quad=[] \\
& \text { collect }[\mathrm{g}] \quad=[\mathrm{g}] \\
& \text { collect (g1:g2:gs) }= \\
& \text { concat (map all (g1:g2:gs)) }
\end{aligned}
$$

all \l -> append l [1] =:= [0,1]
$\leadsto \quad[\backslash 1->1=:=[0]]$

Further search strategies:

- compute only first solution:

$$
\text { once } \mathrm{g}=\text { head (all g) }
$$

- findall, best solution search, parallel search, ...
- negation as failure:

$$
\text { naf } c=\left(a l l ~ \ _->c\right)=:=[]
$$

\leadsto control failures

Handling solutions

Extract value of the search variable by application:

$$
\begin{aligned}
& (\backslash x->x=:=1) \text { freevar } \\
& \Rightarrow \text { freevar }=:=1 \\
& \Rightarrow\{\text { freevar }=1\} \text { success }
\end{aligned}
$$

Prolog's findall:

$$
\begin{aligned}
& \text { unpack :: [a -> Constraint] -> [a] } \\
& \text { unpack [] = [] } \\
& \text { unpack (gigs) | g v = v : unpack gs } \\
& \text { where v free } \\
& \text { findall } g=\text { unpack (all g) }
\end{aligned}
$$

findall ($\backslash(\mathrm{x}, \mathrm{y})$-> append $\mathrm{x} y=:=[1,2])$
$\stackrel{*}{\Rightarrow}[([],[1,2]),([1],[2]),([1,2],[])]$

Exploiting laziness

Demand-driven encapsulated search easily obtained by laziness:

$$
\begin{aligned}
& \text { prolog } g=\text { printloop (all g) } \\
& \text { printloop [] = putStr("no") >> nl } \\
& \text { printloop (a:as) = browse a>>putStr "? " >> } \\
& \text { getChar >>= evalAnswer as } \\
& \text { evalAnswer as ';' = nl >>printloop as } \\
& \text { evalAnswer as '\n' = nl >>putStr "yes" >>nl }
\end{aligned}
$$

```
prolog \(x,y) -> append x y =:= [1,2]
```

$\stackrel{*}{\Rightarrow}([],[1,2])$? ;
([1], [2]) ? <-
yes
prolog $\backslash \mathrm{x}->1=:=2 \quad \stackrel{*}{\Rightarrow}$ no
$~$ Separation of Logic and Control
\sim Modularity:

- Prolog with breadth-first search:
prolog_bfs g = printloop (bfs g)
- Prolog with depth-bounded search: prolog_bound g b = printloop (bound g b)

From Function Logic Programming to Concurrent Programming

Disadvantage of narrowing:

- functions on recursive data structures
\sim narrowing may not terminate
- all rules must be explicitly known \leadsto combination with external functions unclear (basic arithmetic,...)

Solution:
Delay function calls if a particular argument is free
Distinguish:
rigid (consumer) and flexible (generator) functions
Necessary:
Concurrent conjunction of constraints: $c_{1} \& c_{2}$
Meaning: evaluate c_{1} and c_{2} concurrently, if possible
$\mathrm{x}+\mathrm{x}=:=\mathrm{y}$ \& $\mathrm{x}=:=2$
$\leadsto \quad\{x=2\} \quad 2+2=:=y \quad$ (suspend $x+x$)
$\leadsto\{x=2\} \quad 4=:=y \quad$ (evaluate $2+2$)
$\leadsto \quad\{\mathrm{x}=2, \mathrm{y}=4\}$

Parallel Functional Programming

[Goffin,Eden]

Parallel evaluation of arguments:

$$
\begin{aligned}
\mathrm{f} \text { t1 t2 }=\text { letpar } \mathrm{x} & =\mathrm{g} \text { t1 } \\
& \mathrm{y}=\mathrm{h} \text { t2 in } \mathrm{kx} \mathrm{y}
\end{aligned}
$$

with concurrent conjunction of equations:

$$
\begin{aligned}
& \text { f t1 t2 } \mid x=:=g \text { t1 \& } y=h \text { t2 }=k x y \\
& \text { where } x, y \text { free }
\end{aligned}
$$

Skeleton-based parallel programming:

Applying a function to all list elements (sequentially):

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

farm: parallel version of map

farm $f[]$	$=[]$
farm $f(x: x s)$	$\mid r=:=f x$ \& $r s=:=f a r m f x s$
	$=r: r s \quad$ where $r, r s$ free

Concurrent Objects with State

Modelling objects with state as a constraint function:

- first parameter: stream of messages (wait for input)
- second parameter: current state

Example: Bank account

\| Balance Int account eval rigid -- decla account [] _ account (Deposit $\mathrm{a}: \mathrm{ms}$) $\mathrm{n}=$ account (Withdraw a:ms) $\mathrm{n}=$ account (Balance $\mathrm{b}: \mathrm{ms}$) $\mathrm{n}=$ make_account $\mathrm{s}=$ account s	

make_account s, -- create account object

$$
\begin{aligned}
& s=[D e p o s i t ~ 200, \text { Withdraw } 50 \text {, Balance b] } \\
& \leadsto\{b=150, s=\ldots\}
\end{aligned}
$$

Soundness and Completeness

Relate derivations to standard rewriting $\rightarrow_{\mathcal{R}}$ ($\rightarrow_{\mathcal{R}}$ sound and complete w.r.t. model-theoretic semantics)

Soundness: If

$$
e \sim^{*}\left\{\sigma_{1}\right\} e_{1}|\ldots|\left\{\sigma_{n}\right\} e_{n}
$$

then $\sigma_{i}(e) \rightarrow_{\mathcal{R}}^{*} e_{i}$ for $i=1, \ldots, n$

Completeness: If $\sigma(e) \rightarrow{ }_{\mathcal{R}}^{*} c$ and

$$
e \sim^{*}\left\{\sigma_{1}\right\} e_{1}|\ldots|\left\{\sigma_{n}\right\} e_{n}
$$

then $\exists \varphi, i$ with $\sigma=\varphi \circ \sigma_{i}$ and $\varphi\left(e_{i}\right) \rightarrow_{\mathcal{R}}^{*} c$

Completeness w.r.t. flexible functions:

All functions are flexible: If $\sigma(e) \rightarrow_{\mathcal{R}}^{*} c$, then

$$
\exists \quad e \sim^{*} \quad\left\{\sigma_{1}\right\} e_{1}|\ldots|\left\{\sigma_{n}\right\} e_{n}
$$

with $e_{i}=c$ and $\sigma=\varphi \circ \sigma_{i}$ for some i and

Curry: Unification of Computation Models

Computation model	Restrictions on programs
Needed narrowing [POPL'94]	inductively sequential rules; optimal w.r.t. length of derivations and number of computed solutions
Weakly needed narrowing (\sim Babel)	only flexible functions
Resolution (\sim Prolog)	only (flexible) predicates (\sim constraints)
Lazy functional languages (\sim Haskell)	no free variables in expressions
parallel functional languages (~Goffin, Eden)	only rigid functions, concurrent conjunction
Residuation (\sim Life, Oz)	constraints are flexible; all other functions are rigid (default in Curry)

Programming in Curry

$$
\begin{aligned}
& \text { append :: [a] -> [a] -> [a] } \\
& \text { append eval flex -- append is flexible } \\
& \text { append [] ys }=y s \\
& \text { append (x:xs) ys }=x \text { : append xs ys }
\end{aligned}
$$

Functional programming:
append $[1,2][3,4] \leadsto[1,2,3,4]$
Logic programming (append is flexible):
append x y $=:=[1,2] \sim$
$\{\mathrm{x}=[], \mathrm{y}=[1,2]\} \quad|\{\mathrm{x}=[1], \mathrm{y}=[2]\} \quad|\{\mathrm{x}=[1,2], \mathrm{y}=[]\}$

Lazy functional programming:
first (S (S O)) (from 0) ~ [0, (S O)]
Lazy functional logic programming:
first $x(f r o m y)=:=[0] \leadsto\{x=(S \quad 0), y=0\}$

Functions vs. Predicates

rigid functions not always reasonable:

append []	$y s=y s$
append (x:xs) ys $=x:$ append $x s$ ys	

Concatenate known lists:
append $[1,2][3,4] \sim[1,2,3,4]$

Splitting a list:
append $\mathrm{x}[2]=:=[1,2] \leadsto$ not reducible (delay)

Escher [Lloyd 94]: provide additional split predicate (superfluous from a declarative point of view)

Prolog: define append always as a predicate \Rightarrow worse operational behavior than a function:

Curry: append (append x y) $z=:=$ [] finite search space (if append is flexible)

Prolog: append(X,Y,L), append(L, Z, []) infinite search space

Functional Logic Programming VS.

(Concurrent) Logic Programming

Implementation of functions by flattening \leadsto loss of functional dependencies:

first x (from x) $=:=$ []
$\leadsto\{\mathrm{x}=0\}[]=:=[] \quad \mid \quad\{\mathrm{x}=(\mathrm{S} \mathrm{n})\} \ldots$ failure...
$\leadsto\{x=0\}$

Translation of functions into predicates by flattening:

```
from(N, [N|R]) :- from(s(N),R).
first(0,L, []).
first(s(N), [E|L], [E|R]) :- first(N,L,R).
```

first(X,L,[]), from(X,L)
$\leadsto\left\{X^{\prime} \mapsto 0\right\} \operatorname{from}(0, L) \leadsto \operatorname{from}(s(0), L 1) \leadsto \cdots$

Higher-Order Features

Higher-order functions:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : map f xs
```

- higher-order features of functional languages (partial applications, λ-abstractions)
- first-order definition of application function (as in [Warren 82])
- application function is rigid
$~$ delay applications with unknown functions
- future extension(?): higher-order unification

Monadic Input/Output

- declarative I/O concept
- I/O: transformation on the outside world
- interactive program: compute actions
(transformation on the world)
- type of actions: IO $\mathrm{t} \approx$ World $->$ (t , World)

```
getChar :: IO Char
getLine :: IO String
putLine :: String -> IO ()
```

getChar applied to a world
\leadsto character + new (transformed) world

- compose actions:
($\gg=$) : : IO a -> (a -> IO b) -> IO b
getLine >>= putLine:
copies a line from input to output
- no I/O in disjunctions ("cannot copy the world"): encapsulate search between I/O actions

External Functions

- infinite set of defining equations

$$
\begin{aligned}
0+0 & =0 \\
0+1 & =1 \\
0+2 & =2 \\
\ldots & \\
2+1 & =3
\end{aligned}
$$

- definition not accessible
- external implementation (without side effects)
- suspend external function calls until arguments are fully known, i.e., ground [Bonnier/Maluszynski 88, Boye 91]
- external function interface
- implementation of basic arithmetic
(+, -, $*, \ldots$: external functions)

Not possible in narrowing-based languages!

Arithmetic

$0,1,2, \ldots$: constructors
$+,-, *, \ldots$: external functions
$\mathrm{x}=:=2+3 * 4 \quad \sim \quad\{\mathrm{x}=14\}$
$\mathrm{x}=:=2 * 3+\mathrm{y} \quad \leadsto \quad\{ \} \mathrm{x}=:=6+\mathrm{y} \quad$ (suspend)
$x+x=:=y \& x=:=2$
$\leadsto\{x=2\} \quad 2+2=:=\mathrm{y}$ (suspend $\mathrm{x}+\mathrm{x}$)
$\leadsto\{x=2\} \quad 4=:=y \quad$ (evaluate $2+2$)
$\leadsto \quad\{\mathrm{x}=2, \mathrm{y}=4\}$
\Rightarrow Functions as passive constraints (Life)

$$
\begin{aligned}
& \text { digit } 0=\text { success } \\
& \ldots \\
& \text { digit } 9=\text { success }
\end{aligned}
$$

$\mathrm{x}+\mathrm{x}=:=\mathrm{y}$ \& $\mathrm{x} * \mathrm{x}=:=\mathrm{y}$ \& digit x
$\sim\{x=0, y=0\} \mid\{x=2, y=4\}$

Implementations of Curry

- First prototypical implementations available
- Interpreter in Prolog: TasteCurry-System (RWTH Aachen, Portland State University) http://www-i2.informatik.rwth-aachen.de/
~hanus/tastecurry
- [Hanus LOPSTR'95]: Efficient implementation of needed narrowing by transformation into Prolog \leadsto Sloth-System [Mariño/Rey WFLP'98]
- Compiler Curry \rightarrow Java [Hanus/Sadre ILPS'97]
(Java threads for concurrency and non-determinism)
- portable
- simplified implementation
(garbage collection, threads)
- slow but (hopefully!) better Java implementations in the future
- abstract Curry machine [Lux WFLP'98]

Why Integration of Declarative Paradigms?

- more expressive than pure functional languages (compute with partial information/constraints)
- more structural information than in pure logic programs (functional dependencies)
- more efficient than logic programs (determinism, laziness)
- functions: declarative notion to improve control in logic programming
- avoid impure features of Prolog (arithmetic, I/O)
- combine research efforts in FP and LP
\sim Do not teach two paradigms, but one:

Declarative Programming

[Hanus PLILP'97]

Curry:
 A True Integration of Declarative Paradigms

Functional programming: lazy evaluation, deterministic evaluation of ground expressions, higher-order functions, polymorphic types, monadic I/O
\Longrightarrow extension of Haskell

Logic programming: logical variables, partial data structures, search facilities, concurrent constraint solving

Curry:

- efficiency (functional programming) + expressivity (search, concurrency)
- possible with "good" evaluation strategies
- one paradigm: declarative programming

More infos on Curry:
http://www-i2.informatik.rwth-aachen.de/~hanus/curry

