Benelog'98

Multi-Paradigm

Declarative Programming

in Curry

Michael Hanus

RWTH Aachen

Declarative Programming

Common idea:

- description of logical relationships
- powerful abstractions, higher programming level
- reliable and maintainable programs
 - pointer structures \Rightarrow algebraic data types
 - $\text{ complex procedures} \Rightarrow \text{ comprehensible parts}$ (pattern matching, local definitions)

Different paradigms:

- Functional programming: functions, equations, λ-calculus (lazy) deterministic reduction
- Logic programming:

predicates, logical formulas, predicate logic constraint solving, search

\Rightarrow Functional logic languages:

- efficient deterministic reduction (if possible)
- flexibility of logic languages
- avoid non-declarative features of Prolog (arithmetic, I/O, cut)
- combine best of both worlds in a single model

Curry: A Truly Integrated Functional Logic Language

[Dagstuhl'96, POPL'97]

- multi-paradigm language, combines
 - functional programming
 - logic programming
 - concurrent programming
- based on an optimal evaluation strategy
- conservative extension of lazy functional and (concurrent) logic programming
- conditional (constrained) rules
- higher-order, non-deterministic functions
- equational constraints
- encapsulated search, committed choice
- polymorphic type system, modules
- declarative (monadic) I/O
- external functions and constraint solvers

Curry Programs

Values: data terms containing constructors and variables (\approx Herbrand terms): (S x) [O,(S O)]

data Bool	= True	e False	
data Nat	= 0	S Nat	
data List	a = []	a : List a	

Functions: operations on values defined by equations (or rules):

Evaluation: Computing Values

- reduce expressions to their values
- replace equals by equals
- apply reduction step to a subterm (redex) (rule's left-hand side must *match* the subterm)

0 + y = y	$0 \leq y$	r = True
(S x) + y = S(x+	-y) (S x) \leq 0) = False
	(S x) \leq ((S y) = $x \le y$
$(S O)+(S O) \rightarrow$	S (O+(S O))	\rightarrow S (S O)

Lazy strategy: select an outermost redex

 $\begin{array}{rrrr} \texttt{0+0} &\leq & \texttt{(S 0)+(S 0)} \\ \rightarrow & \texttt{0} &\leq & \texttt{(S 0)+(S 0)} \\ \rightarrow & \texttt{True} \end{array}$

- \rightsquigarrow evaluate only needed redexes (efficiently computable with definitional trees)
- \rightsquigarrow functional programming

Definitional Trees [Antoy 92]

- data structure to organize the rules of an operation
- each node has a distinct *pattern*
- *branch* nodes (case distinction), *rule* nodes

0	\leq	у		=	True
(S x)	\leq	0		=	False
(S x)	\leq	(S	y)	=	$\mathtt{x} \leq \mathtt{y}$

Function call: $t_1 \leq t_2$

- 1. Reduce t_1 to head normal form
- 2. If $t_1 = 0$: apply rule
- 3. If $t_1 = S \ldots$: reduce t_2 to head normal form
- 4. If t_1 variable: not reducible or bind t_1 to 0 or (S x)

Overlapping Rules: Non-deterministic Rewriting

True	\lor	x	=	True
x	\vee	True	=	True
False	\vee	False	=	False

Problem: no needed argument:

 $(e_1 \lor e_2)$ evaluate e_1 or e_2 ?

Functional languages: Evaluate e_1 , if not successful: e_2

Disadvantage: not normalizing $(e_1 \text{ may not terminate})$

Solutions:

- 1. Parallel reduction of e_1 and e_2 [Sekar/Ramakrishnan 93]
- 2. Non-deterministic reduction: try (don't know) e_1 or e_2

Extension to definitional trees: Introduce *or*-nodes to describe non-deterministic selection of redexes

From Functional Programming to Logic Programming

Functional programming: values, no free variables

Logic programming: computed answers for free variables

Operational extension:

instantiate free variables, if necessary

f	0 = 2
f	1 = 3

Evaluate (f x): - bind x to 0 and reduce (f 0) to 2, or: - bind x to 1 and reduce (f 1) to 3

Computation step: bind and reduce logic functional $e \sim \{\sigma_1\} e_1 | \cdots | \{\sigma_n\} e_n$ disjunctive expression Reduce: (f 0) \sim 2 Bind and reduce: (f x) $\sim \{x=0\} 2 | \{x=1\} 3$

Compute necessary bindings with *needed* strategy $\sim needed narrowing$ [Antoy/Echahed/Hanus POPL'94]

8

Properties of Needed Narrowing

[Antoy/Echahed/Hanus POPL'94]

• **Sound** and **complete** (w.r.t. strict equality)

• Optimality:

1. No unnecessary steps:

Each narrowing step is needed, i.e., it cannot be avoided if a solution should be computed.

2. Shortest derivations:

If common subterms are shared, needed narrowing derivations have minimal length.

3. Independence of solutions:

Two solutions σ and σ' computed by two distinct derivations are independent.

• Determinism:

No non-deterministic step during the evaluation of ground expressions (\approx functional programming)

• **Restriction: inductively sequential rules** (i.e., no overlapping left-hand sides)

- Extensible to
 - conditional rules [Hanus ICLP'95]
 - overlapping lhs [Antoy/Echahed/Hanus ICLP'97]
 - multiple rhs [Antoy ALP'97]
 - concurrent evaluation [Hanus POPL'97]

Strict Equality and Equational Constraints

Problems with equality in the presence of non-terminating rules:

1. Equality on infinite objects undecidable:

	f =	[0 f]	g = [0 g]
Is	f = g	valid?	

2. Semantics of non-terminating functions:

	f x = f (x+1)	g x = g (x+1)
Is	f 0 = g 0 valid?	

Avoided by **strict equality**: identity on *finite* objects (both sides reducible to same ground data term)

Equational constraint $e_1 = := e_2:$

satisfied if both sides evaluable to unifiable data terms

 $\Rightarrow e_1 = := e_2$ does not hold if e_1 or e_2 undefined

 $\Rightarrow e_1 = := e_2$ and e_1, e_2 data terms \approx unification in LP

Non-deterministic Functions

Functions can have more than one result value:

choose $x y = x$	
choose x y = y	J

choose 1 2 \rightsquigarrow 1 | 2

Non-deterministic list insertion and permutations:

permute $[1,2,3] \rightsquigarrow$ [1,2,3] | [2,1,3] | [2,3,1] |[1,3,2] | [3,1,2] | [3,2,1]

Programming Demand-driven Search

Prolog: generate-and-test:

psort(Xs,Ys) :- permute(Xs,Ys), ordered(Ys).

Functional programming: list comprehensions:

[psort xs = [ys | ys<-perms xs, sorted ys]</pre>

Prolog with coroutining: test-and-generate

psort(Xs,Ys) :- ordered(Ys), permute(Xs,Ys).

(Problem: floundering, heuristics)

Functional logic programming: test-of-generate:

```
sorted [] = []
sorted [x] = [x]
sorted (x:y:ys) | x<=y = x : sorted (y:ys)
psort xs = sorted (permute xs)</pre>
```

Advantages:

- demand-driven generation of solutions (due to laziness)
- same efficiency as coroutining
- no floundering
- modular program structure

Example: Demand-driven Search

Effect: Permutations of [3,2,1] are not enumerated!

Permutation sort for $[n, n-1, \dots, 2, 1]$: #or-branches

Length of the list:	4	5	6	8	10
generate-and-test	24	120	720	40320	3628800
test-of-generate	19	59	180	1637	14758

Encapsulated Search

[Hanus/Steiner PLILP'98]

Technique to avoid global search (backtracking) (non-backtrackable I/O, efficiency control,...)

Idea:

Compute until a non-deterministic step occurs, then give programmer control over this situation (generalization of Oz's operator [Schulte/Smolka 94])

Search:

- solve constraint containing search variable
- evaluate until *failure*, *success*, or *non-determinism*
- return result in a list
- bind search variable to different solutions \Rightarrow abstract search variable: $x \rightarrow c \quad (\approx \lambda x.c)$

Primitive search operator:

try :: (a->Con	straint) -> [a->C	onstraint]
try \x-> 1=:=2	\sim []	failure
try $x > [x] = := [0]$	\rightarrow [\x->x=:=0]	success
try \x->f x =:= 3	\rightarrow [\x->x=:=0 &	f O =:= 3,
	$x \rightarrow x = := 1 \&$	f 1 =:= 3]
		disjunction 14

Encapsulated Search: Search Strategies

try $x \rightarrow c$: eval. c, stop after non-deterministic step

Depth-first search: collect all solutions

all $\l ->$ append 1 [1] =:= [0,1] \rightarrow [$\l ->$ 1=:= [0]]

Further search strategies:

• compute only first solution:

once g = head (all g)

- findall, best solution search, parallel search, ...
- negation as failure:

naf c = (all $\ = = []$

 \rightsquigarrow control failures

Handling solutions

Extract value of the search variable by application:

 $(x \rightarrow x = := 1)$ freevar \Rightarrow freevar =:= 1 \Rightarrow {freevar = 1} success

Prolog's findall:

findall ($(x,y) \rightarrow append x y =:= [1,2]$)

 $\stackrel{*}{\Rightarrow} [([], [1, 2]), ([1], [2]), ([1, 2], [])]$

Exploiting laziness

Demand-driven encapsulated search easily obtained by laziness:

prolog g = printloop (all g)
printloop [] = putStr("no") >> nl
printloop (a:as) = browse a>> putStr "? ">>
 getChar >>= evalAnswer as
evalAnswer as ';' = nl>> printloop as
evalAnswer as '\n' = nl>> putStr "yes" >> nl

prolog
$$\langle (x,y) \rangle \rightarrow$$
 append x y =:= [1,2]
 $\stackrel{*}{\Rightarrow}$ ([],[1,2]) ? ;
([1],[2]) ? <-
yes
prolog $\langle x \rangle \rightarrow$ 1=:=2 $\stackrel{*}{\Rightarrow}$ no

\rightsquigarrow Separation of Logic and Control

\rightsquigarrow Modularity:

- Prolog with breadth-first search: prolog_bfs g = printloop (bfs g)
- Prolog with depth-bounded search: prolog_bound g b = printloop (bound g b)

From Function Logic Programming to Concurrent Programming

Disadvantage of narrowing:

- functions on recursive data structures \rightarrow narrowing may not terminate
- all rules must be explicitly known \rightarrow combination with external functions unclear (basic arithmetic,...)

Solution:

Delay function calls if a particular argument is free

Distinguish: *rigid* (consumer) and *flexible* (generator) functions

Necessary: Concurrent conjunction of constraints: $c_1 \& c_2$ Meaning: evaluate c_1 and c_2 concurrently, if possible

Parallel Functional Programming

[Goffin,Eden]

Parallel evaluation of arguments:

f t1 t2 = letpar x = g t1y = h t2 in $k \ge y$

with concurrent conjunction of equations:

f t1 t2 | x =:= g t1 & y = h t2 = k x y where x,y free

Skeleton-based parallel programming:

Applying a function to all list elements (sequentially):
 map f [] = []
 map f (x:xs) = f x : map f xs

farm: parallel version of map

Concurrent Objects with State

Modelling objects with state as a constraint function:

- first parameter: stream of messages (wait for input)
- second parameter: current state

Example: Bank account

```
data Messages = Deposit Int | Withdraw Int
                               Balance Int
account eval rigid -- declare a rigid func.
account [] _ = success
account (Deposit a:ms) n = account ms (n+a)
account (Withdrawa:ms) n = account ms (n-a)
account (Balance b:ms) n = b=:=n&accountms n
make_account s = account s 0
```

```
make_account s, -- create account object
s = [Deposit 200, Withdraw 50, Balance b]
~> {b=150, s=...}
```

Soundness and Completeness

Relate derivations to standard rewriting $\rightarrow_{\mathcal{R}}$ ($\rightarrow_{\mathcal{R}}$ sound and complete w.r.t. model-theoretic semantics)

Soundness: If

$$e \rightsquigarrow^* \{\sigma_1\} e_1 | \dots | \{\sigma_n\} e_n$$

then $\sigma_i(e) \to_{\mathcal{R}}^* e_i$ for $i = 1, \dots, n$

Completeness: If $\sigma(e) \to_{\mathcal{R}}^* c$ and

 $e \quad \leadsto^* \quad \{\sigma_1\} e_1 \mid \ldots \mid \{\sigma_n\} e_n$

then $\exists \varphi, i \text{ with } \sigma = \varphi \circ \sigma_i \text{ and } \varphi(e_i) \to_{\mathcal{R}}^* c$

Completeness w.r.t. flexible functions: All functions are *flexible*: If $\sigma(e) \rightarrow_{\mathcal{R}}^{*} c$, then

$$\exists e \rightsquigarrow^* \{\sigma_1\} e_1 | \dots | \{\sigma_n\} e_n$$

with $e_i = c$ and $\sigma = \varphi \circ \sigma_i$ for some *i* and φ

Curry: Unification of Computation Models

Computation model	Restrictions on programs
Needed narrowing [POPL'94]	inductively sequential rules; optimal w.r.t. length of derivations and number of computed solutions
Weakly needed narrowing (~Babel)	only flexible functions
Resolution (\sim Prolog)	only (flexible) predicates (\sim constraints)
Lazy functional languages $(\sim Haskell)$	no free variables in expressions
parallel functional languages (~Goffin, Eden)	only rigid functions, concurrent conjunction
$\begin{array}{c} \text{Residuation} \\ (\sim \text{Life, Oz}) \end{array}$	constraints are flexible; all other functions are rigid (default in Curry)

22

Programming in Curry

append :: [a] -> [a] -> [a] append eval flex -- append is flexible append [] ys = ys append (x:xs) ys = x : append xs ys

Functional programming:

append [1,2] [3,4] \rightarrow [1,2,3,4]

Logic programming (append is *flexible*):

append x y =:= [1,2] \rightarrow

 ${x=[],y=[1,2]} | {x=[1],y=[2]} | {x=[1,2],y=[]}$

		from n	=	n	•	from	(S	n)
first	0	XS	=	[]				
first	(S n)	(x:xs)	=	x	:	first	n	XS

Lazy functional programming:

first (S(S O)) (from O) $\sim [O, (S O)]$

Lazy functional logic programming:

first x (from y) =:= [0] $\rightarrow \{x=(S \ 0), y=0\}$

Functions vs. Predicates

rigid functions not always reasonable:

append [] ys = ys append (x:xs) ys = x : append xs ys

Concatenate known lists:

append [1,2] [3,4] \rightarrow [1,2,3,4]

Splitting a list:

append x [2] =:= [1,2] \rightarrow not reducible (delay)

Escher [Lloyd 94]: provide additional split predicate (superfluous from a declarative point of view)

Prolog: define **append** always as a predicate \Rightarrow worse operational behavior than a function:

Curry: append (append x y) z =:= [] finite search space (if append is flexible)

Prolog: append(X,Y,L), append(L,Z,[])
infinite search space

Functional Logic Programming vs. (Concurrent) Logic Programming

Implementation of functions by flattening \rightarrow loss of functional dependencies:

 $\begin{cases} from n = n : from (S n) \\ first 0 xs = [] \\ first (S n) (x:xs) = x : first n xs \end{cases}$ $first x (from x) =:= [] \\ \sim \{x=0\} [] =:= [] | \{x=(S n)\} \dots failure \dots \\ \sim \{x=0\} \end{cases}$

Translation of functions into predicates by flattening:

from(N,[N|R]) :- from(s(N),R).
first(0,L,[]).
first(s(N),[E|L],[E|R]) :- first(N,L,R).
first(X,L,[]), from(X,L)

 $\sim_{\{X \mapsto 0\}}$ from(0,L) \sim from(s(0),L1) $\sim \cdots$

Higher-order functions:

(map ::	(a ->	b) -> [a] -> [b]	
map f	[]	= []	
map f	(x:xs)	= $(f x)$: map f xs	

map (append [1]) [[2],[3]] \sim [[1,2],[1,3]]

- higher-order features of functional languages (partial applications, λ -abstractions)
- first-order definition of application function (as in [Warren 82])
- application function is *rigid* → delay applications with unknown functions
- future extension(?): higher-order unification

Monadic Input/Output

- declarative I/O concept
- I/O: transformation on the outside world
- interactive program: compute **actions** (transformation on the *world*)

• type of actions: (IO t \approx World -> (t,World)

getChar :: IO Char getLine :: IO String putLine :: String -> IO ()

```
getChar applied to a world
\rightarrow character + new (transformed) world
```

- compose actions: (>>=) :: IO a -> (a -> IO b) -> IO b getLine >>= putLine: copies a line from input to output
- no I/O in disjunctions ("cannot copy the world"): encapsulate search between I/O actions

External Functions

• infinite set of defining equations

0+0 = 0 0+1 = 1 0+2 = 2 ... 2+1 = 3 ...

- definition not accessible
- external implementation (without side effects)
- suspend external function calls until arguments are fully known, i.e., ground [Bonnier/Maluszynski 88, Boye 91]
- external function interface
- implementation of basic arithmetic (+, -, *,...: external functions)

Not possible in narrowing-based languages!

Arithmetic

0, 1, 2, ...: constructors +, -, *,...: external functions $x = := 2+3*4 \quad \rightsquigarrow \quad \{x=14\}$ $x = := 2*3+y \quad \rightsquigarrow \quad \{\} \ x = := 6+y \quad (suspend)$ x+x = := y & x = := 2 $\rightsquigarrow \quad \{x=2\} \ 2+2 = := y \quad (suspend \ x+x)$ $\rightsquigarrow \quad \{x=2\} \ 4 = := y \quad (evaluate \ 2+2)$ $\rightsquigarrow \quad \{x=2, \ y=4\}$

 \Rightarrow Functions as passive constraints (Life)

digit 0 = success
....
digit 9 = success

x+x=:=y & x*x=:=y & digit x

$$\rightarrow$$
 {x=0, y=0} | {x=2, y=4}

Implementations of Curry

- First prototypical implementations available
- Interpreter in Prolog: TasteCurry-System (RWTH Aachen, Portland State University)
 http://www-i2.informatik.rwth-aachen.de/ ~hanus/tastecurry
- [Hanus LOPSTR'95]: Efficient implementation of needed narrowing by transformation into Prolog
 → Sloth-System [Mariño/Rey WFLP'98]
- Compiler Curry→Java [Hanus/Sadre ILPS'97] (Java threads for concurrency and non-determinism)
 - portable
 - simplified implementation
 (garbage collection, threads)
 - slow but (hopefully!) better Java implementations in the future
- abstract Curry machine [Lux WFLP'98]

Why Integration of Declarative Paradigms?

- more expressive than pure functional languages (compute with partial information/constraints)
- more structural information than in pure logic programs (functional dependencies)
- more efficient than logic programs (determinism, laziness)
- functions: declarative notion to improve control in logic programming
- avoid impure features of Prolog (arithmetic, I/O)
- combine research efforts in FP and LP
- \rightarrow Do not teach two paradigms, but one:

Declarative Programming

[Hanus PLILP'97]

Curry: A True Integration of Declarative Paradigms

Functional programming: lazy evaluation, deterministic evaluation of ground expressions, higher-order functions, polymorphic types, monadic I/O

 \implies extension of Haskell

Logic programming: logical variables, partial data structures, search facilities, concurrent constraint solving

Curry:

- efficiency (functional programming) + expressivity (search, concurrency)
- possible with "good" evaluation strategies
- one paradigm: declarative programming

More infos on Curry:

http://www-i2.informatik.rwth-aachen.de/~hanus/curry