
Nondeterminism Analysis of Functional Logic
Programs?

Draft of May 13, 2005

Bernd Braßel and Michael Hanus

Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
{bbr,mh}@informatik.uni-kiel.de

Abstract. Information about the nondeterminism behavior of a func-
tional logic program is important for various reasons. For instance, a non-
deterministic choice in I/O operations results in a run-time error. Thus,
it is desirable to ensure at compile time that a given program is not go-
ing to crash in this way. Furthermore, knowledge about nondeterminism
can be exploited to optimize programs. In particular, if functional logic
programs are compiled to target languages without builtin support for
nondeterministic computations, the transformation can be much simpler
if it is known that the source program is deterministic.
In this paper we present a nondeterminism analysis of functional logic
programs in form of a type/effect system. We present a type inferencer
to approximate the nondeterminism behavior via nonstandard types and
show its correctness w.r.t. the operational semantics of functional logic
programs. The type inference is based on a new compact representation
of sets of types and effects.

1 Introduction

Functional logic languages [8] aim to integrate the best features of functional and
logic languages in order to provide a variety of programming concepts to the pro-
grammer. For instance, the concepts of demand-driven evaluation, higher-order
functions, and polymorphic typing from functional programming can be com-
bined with logic programming features like computing with partial information
(logic variables), constraint solving, and non-deterministic search for solutions.
This combination leads to optimal evaluation strategies [2] and new design pat-
terns [3] that can be applied to provide better programming abstractions, e.g.,
for implementing graphical user interfaces [10] or programming dynamic web
pages [11].

One of the key points in this integration is the treatment of nondeterministic
computations. Usually, the top-level of an application written in a functional
logic language is a sequence of I/O operations that should be applied to the

? The research described in this paper has been partially supported by the German
Research Council (DFG) under grant Ha 2457/5-1.

outside world (e.g., see [25]). Since the outside world (e.g., file system, Inter-
net) cannot be copied in nondeterministic branches, all nondeterminism in logic
computations must be encapsulated, as proposed in [4, 14] for the declarative
multi-paradigm language Curry, otherwise a run-time error occurs. Therefore,
it is desirable to ensure at compile time that this cannot happen for a given
program. Since this is undecidable in general, one can try to approximate the
nondeterminism behavior by some program analysis. Another motivation for
such an analysis is their use in optimizing programs. For instance, if functional
logic programs are compiled to target languages without builtin support for
nondeterministic computations (e.g., imperative or functional languages), the
compilation process can be considerably simplified for deterministic source pro-
grams (which is the case for many application programs, e.g., dynamic web pages
[11] where logic variables are deterministically instantiated).

Existing determinism analyses for (functional) logic languages cannot be di-
rectly adapted to Curry due to its advanced lazy operational semantics ensuring
optimal evaluation for large classes of programs [2]. This demand-driven seman-
tics has the effect that the occurrence of nondeterministic choices depend on
the demandedness of argument evaluation (see also [15]). Therefore, analyses
for languages like Prolog [24, 6], Mercury [17], or HAL [7] do not apply because
they do not deal with lazy evaluation. On the other hand, analyses proposed for
narrowing-based functional logic languages dealing with lazy evaluation cannot
handle residuation, which additionally exists in Curry and is important to con-
nect external operations, and rely on the non-ambiguity condition [20] which is
too restrictive in practice. Furthermore, these analyses are either applied during
run time (like in Babel [20] and partially in K-Leaf [19]), or are unable to derive
groundness information for function calls in arguments (like in K-Leaf).

In this paper we present a static analysis of functional logic programs with a
demand-driven evaluation strategy. The analysis derives information about the
nondeterminism behavior of defined functions and has the form of a type/effect
system (see [22]). Such systems can be seen as extensions of classical type sys-
tems known from functional languages. In our analysis the types hold information
about the groundness of the considered expressions, and the effects provide in-
formation about the possible source of nondeterministic branches. The inclusion
of groundness information is necessary since the same function might evaluate
deterministically or not, depending on the instantiation of its arguments. The
idea of this type/effect system has been proposed in [15]. In the current paper
we propose a slightly modified system and show its correctness w.r.t. a recently
developed high-level operational semantics of functional logic programs [1] that
covers all operational aspects, in particular, the sharing of subterms which is im-
portant in practice but has not been addressed in [15]. Furthermore, we present
a new method to infer types and effects (type inference was not covered in [15])
and show the correctness of this inference. In order to make the type/effect in-
ference feasible, we introduce a new compact representation of sets of types and
effects.

2

P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)

| c(e1, . . . , en) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(e1, . . . , en) (function call) a, b, c, . . . ∈ C (Constructors)
| let {xk = ek} in e (let binding) f, g, h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) p1, p2, . . . ∈ Pat (Patterns)
| case e of {pk → ek} (rigid case)
| fcase e of {pk → ek} (flexible case)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of flat programs

2 The Type/Effect Analysis

In this section we define a type/effect system based on the ideas in [15] and
show its correctness w.r.t. the operational semantics of functional logic programs
developed in [1]. We assume familiarity with the basic ideas of functional logic
programming (see [8] for a survey).

2.1 Flat Functional Logic Programs

Since a determinism analysis of functional logic programs should provide infor-
mation about nondeterministic branches that might occur during run time, it
requires detailed information about the operational behavior of programs. Re-
cently, it has been shown that an intermediate flat representation of programs
[13] is a good basis to provide this information. In flat programs, the pattern
matching strategy (which determines the demand-driven evaluation of goals) is
explicitly given by case expressions. This flat representation constitutes the ker-
nel of modern functional logic languages like Curry [9, 16] or Toy [21]. Thus, our
approach is applicable for general lazy functional logic languages although the
examples and implementation are for Curry.

The syntax of flat programs is shown in Figure 1. There and in the following
we write ok to denote a sequence o1, . . . , ok. A flat program is a set of function
definitions, i.e., the arguments are pairwise different variables and the right-
hand side consists of variables, constructor/function applications, let bindings,
disjunctions to represent nondeterministic choices, and case expressions to rep-
resent pattern matching. The difference between case and fcase corresponds to
principles of residuation and narrowing: if the argument is a logic variable, case
suspends whereas fcase proceeds with a nondeterministically binding of the vari-
able in one branch of the case expression (see also Section 2.2). A flat program is
called normalized if the arguments of constructor and function calls are always
variables. Any flat program can be normalized by introducing new variables by
let expressions [1]. The operational semantics is defined only on normalized pro-
grams in order to model sharing, whereas our type-based analysis is defined for
flat programs.

3

Any Curry program can be translated into this flat representation. For in-
stance, the concatenation function on lists

append [] ys = ys
append (x:xs) ys = x : append xs ys

is represented by the (normalized) flat program

append xs ys = fcase xs of {[] -> ys,
z:zs -> let {a = append zs ys} in z:a }

Note that all variables occurring in the right-hand side of a function definition
must occur in the left-hand side or are introduced by an enclosing let binding.
In order to avoid a special declaration for logic variables, they are represented
as self-circular let bindings. For instance, the expression

let {xs=xs} in append xs [3,4]

introduces the logic variable xs in the expression “append xs [3,4]”.

2.2 Natural Semantics of Functional Logic Programs

[1] introduces a natural semantics of flat programs. As it adequately resembles
the behavior of modern multi-paradigm languages like Curry [9, 16] or Toy [21],
it is a good reference to show the correctness of program analyses for functional
logic languages. There are some special properties of this semantics we have to
consider in order to examine our type/effect analysis.

The only difference we have to consider is the treatment of circular data
structures which are allowed in [1]. Since the nondeterminism analysis of [15] as
well as ours do not consider such structures, we restrict the set of permissible
programs to those without circular data structures. Note that this is not a re-
striction in practice since the current definitions of Curry [9, 16] or Toy [21] do
not support such structures.

Definition 1 (Cycle restriction). The set of programs P⊗ is defined exactly
like P except for the definition of let-clauses: For any expression let {xn = en}
there must exist an ordering ord of the equations xn = en, i.e., a one-on-one
mapping between the equations and the numbers 1, . . . , n such that: For each
xi = ei the variable xi does not appear in any equation xj = ej with ord(xj =
ej) > ord(xi = ei). Furthermore, if xi appears in ei then ei = xi.

This definition allows only non-circular let-expressions with the only exception
being logic variables defined by “let x=x”.

Example 1. Consider the following definitions:

main = let {x = f y, y = c z z, z = 3} in f x
main’ = let {x = f y, y = c z z, z = f x} in f x

The let expression in function main can be ordered as

let {z = 3, y = c z z, x = f y} in f x

whereas the one in main’ is circular.

4

VarCons Γ [x 7→ t] : x ⇓ Γ [x 7→ t] : t where t is constructor-rooted

VarExp
Γ [x 7→ e] : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆[x 7→ v] : v

where e is not constructor-rooted
and e 6= x

Val Γ : v ⇓ Γ : v
where v is constructor-rooted

or a variable with Γ [v] = v

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let
Γ [yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

where ρ = {xk 7→ yk}
and yk are fresh variables

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn 7→ yn}

Guess
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Fig. 2. Natural semantics of normalized flat programs

Having defined the set of programs we want to examine, we now turn to the se-
mantics of these programs. In contrast to an operational semantics based on term
rewriting (e.g., [2, 16]), the semantics considered here correctly models sharing
of common subterms as necessary for optimal evaluation and done in implemen-
tations. Sharing is modeled by introducing heaps. A heap, here denoted by Γ,∆,
or Θ, is a partial mapping from variables to expressions (the empty heap is de-
noted by []). The value associated to variable x in heap Γ is denoted by Γ [x].
Γ [x 7→ e] denotes a heap with Γ [x] = e and can be read as “in Γ , x points to e”
(in the rules, this notation is used as a condition as well as an update of a heap).
A logic variable x is represented by a circular binding of the form Γ [x] = x. A
value v is a constructor-rooted term c(en) (i.e., a term whose outermost function
symbol is a constructor symbol) or a logic variable (w.r.t. the associated heap).

The natural semantics uses judgements of the form “Γ : e ⇓ ∆ : v” which
are interpreted as: “In the context of heap Γ , the expression e evaluates to value

5

v and produces a new heap ∆.” Figure 2 shows the rules defining this semantics
(also called big-step semantics) of normalized flat programs, where the current
program P is considered as a global constant. The rules VarCons and VarExp
are responsible to retrieve expressions from the heap, the difference being that
VarCons retrieves values, whereas the expressions retrieved by VarExp have to
be further evaluated. VarCons and Val form the base of proof trees generated
by the big-step semantics. They treat values, i.e., expressions which are either
logic variables or evaluated to head normal form. VarCons is merely a shortcut
for applying VarExp and Val once each. The rule Let introduces new bindings
for the heap, Fun is used to unfold function applications, and Or introduces a
nondeterministic branching. Select and Guess deal with case expressions. Select
determines the corresponding branch to continue with, if the first argument of
case was reduced to a constructor rooted term. Guess treats the case that the first
argument evaluates to a logic variable. If so, Guess introduces a nondeterministic
branching where the logic variable is bound non-deterministically to one of the
patterns of the case-expression. Remember that there are two kinds of case-
expressions in flat programs. Only fcase (with f for “flexible”) can introduce
nondeterminism if the number of branches is greater than one. In short, fcase
models narrowing whereas case is used to model the operational behavior of
residuation. We often write (f)case to denote both kinds of cases.

The restriction to non-circular data structures introduced in Definition 1
proves to be quite convenient. Using it, we can extract a complete substitution
from the heap by simply taking its transitive closure.

Definition 2 (σΓ). For a heap Γ the substitution σΓ is defined as the transitive
closure of Γ .

Unfolding main of Example 1 yields the heap Γ [x 7→ f y, y 7→ c z z, z 7→ 3].
For this heap, σΓ (z) = 3, σΓ (y) = c 3 3 and σΓ (x) = f(c 3 3).

Note that the main purpose of Definition 1 is to ensure that the substitution
σΓ cannot substitute a variable with an infinite term if Γ belongs to an execution
of a program in P⊗. This is the content of the next Lemma 1. First, we define
the notion of a heap belonging to an execution of a program in P⊗.

Definition 3 (Natural heap). A heap Γ is a natural heap if it was build in
the derivation of the natural semantics of some expression e, i.e., Γ is part of a
proof tree for [] : e ⇓ ∆ : v.

Lemma 1 (Well-founded heaps). Let Γ be a natural heap for [] : e ⇓ ∆ : v
w.r.t. program P ∈ P⊗, and Γ 1 := Γ , Γn := Γ ◦ Γn−1 for n > 1. Then there
is no non-trivial circular structure in Γ , i.e., there is no natural number n for
which an x exists with Γn(x) = t such that x occurs in t and t 6= x.

Proof: To see this, one has to consider the “heap-building” rules VarExp, Let,
and Guess. In case of Let, the referencing variables are fresh and, by definition
of P⊗, circular structures cannot be formulated by let-expressions. In case of
Guess, the only variable already used in the proof tree is x. x is mapped to ρ(pi),

6

VAR E ` x ::τ/ϕ if x :: τ/ϕ ∈ E

APP
E ` en ::τn/ϕn

E ` f en :: τ/
Sn

i=1 ϕi ∪ ϕ
if f ::τn

ϕ→ τ ∈ E

LET
E[xk ::A/∅] ` ek ::τk/ϕk E[xk ::τk/ϕk] ` e ::τ/ϕ

E ` let {xk = ek} in e :: τ/ϕ

OR
E ` e1 :: τ1/ϕ1 E ` e2 :: τ2/ϕ2

E ` or(e1, e2) :: max(τ1, τ2)/ϕ1 ∪ ϕ2 ∪ {or}

SELECT
E ` e ::τ/ϕ E[xkm ::τ/∅] ` ek ::τk/ϕk

E ` (f)case e of {pk(xkm) → ek} :: max(τk)/
Sk

i=1 ϕi ∪ ϕ

if, for fcase, τ = G or k = 1

GUESS
E ` e ::A/ϕ E[xkm ::A/∅] ` ek ::τk/ϕk k > 1

E ` fcase e of {pk(xkm) → ek} :: max(τk)/
Sk

i=1 ϕi ∪ ϕ ∪ {guess}

Fig. 3. Typing rules for flat expressions

which, by definition of ρ and pi, cannot contain x. In case of VarExp, the new
reference for x is on the right hand side of ⇓. As there is no rule to transfer heap
references from the right to the left, the heap on the right-hand side is built from
Let and Guess rules and, thus, contains no cycles. 2

This lemma concludes our consideration of the natural semantics. We turn to
our main object: the type/effect analysis.

2.3 Type/Effect Analysis Revisited

The basic ideas of the type/effect analysis used in this paper were first pro-
posed in [15]. Here we use a slightly different definition (e.g., without a rule for
subtyping but let clauses to describe sharing that is not covered in [15]) and
base it on the natural semantics introduced in the previous section. The analysis
uses the idea to attach to expressions and functions two kinds of information: a
type to describe the ground status and an effect to describe the nondetermin-
ism behavior. Similarly to standard types in typed functional languages, there
are also typing rules that define well-typed expressions w.r.t. this type/effect
system. These rules are shown in Figure 3. The analysis of a given program is
always performed w.r.t. a type environment E which associates types/effects to
functions and variables in the given program. Such an association is also called
type annotation and denoted by f :: τ/ϕ ∈ E (note that there may be more than
one type annotation for a function). The purpose of the type inference described
in Section 3 is the provide a method to guess appropriate type environments. In
this section, we assume that a correct type environment (see below) is given.

7

A type annotation for a function f is of the form f :: τn
ϕ→ τ . Each τ(i)

describes whether the corresponding argument or result of the function is a
ground value, denoted by G, or if it might contain logic variables, and, hence,
is of any value, denoted by A. The set of effects ϕ describes the possible causes
for nondeterminism which might occur while evaluating f . As can be seen in
Figure 3, each effect is either or or guess. The meaning of these effects is that
one of the nondeterministic rules Or or Guess could be applied while evaluating
an expression or function. For instance, consider the following function:

and False y = False
and True y = y

Its flat form is

and x y = fcase x of {False -> False; True -> y}

Correct types for and would be GA
∅→ A and GG

∅→ G. The first type can
be intuitively read as: “If the first argument is ground and the second possibly
contains a logic variable, then the result may also contain a logic variable.”
However, AG

∅→ A is not a valid type. If the first argument is a logic variable,
fcase will instantiate this variable nondeterministically (cf. Figure 2). Thus, the

correct type for these input arguments is AG
{guess}→ G. The difference in the

actual type check by the rules of Figure 3 is that rule SELECT is applicable for
input vector GA, where whereas the case AG is covered by rule GUESS.

Before defining the notion of correct type annotations, we introduce an order-
ing on the types in order to enable the comparison of different abstract results.
In general, an ordering is a reflexive, transitive and anti-symmetric relation.

Definition 4 (Type/effect ordering ≤). ≤ denotes an ordering on types and
effects that is the least order relation satisfying G ≤ A and, for effects φ, φ′,
φ ≤ φ′ iff φ ⊆ φ′. Types with effects are ordered by τ/φ ≤ τ ′/φ′ iff τ ≤ τ ′ and

φ ≤ φ′. For functional types τ1
φ→ τ2 ≤ τ ′1

φ′

→ τ ′2 iff τ ′1 ≤ τ1, τ2 ≤ τ ′2 and φ ≤ φ′.
Finally, for annotations we write f :: τ1 ≤ f :: τ2 iff τ1 ≤ τ2.

Note the difference between argument and result in the definition of ≤ for func-
tional types. Informally speaking, for functions with the same result type, it
holds: the bigger the argument type, the smaller is the type of the whole func-
tion. This makes perfect sense if we think of the type as a grade of nondetermin-
ism. A function of type A

∅→ G is more deterministic than one of type A
∅→ A.

However, A
∅→ A is still more deterministic than G

∅→ A because a function of
the latter type might not merely map logic variables to logic variables but could
introduce new ones.

The correctness of type annotations is now defined in two steps.

Definition 5 (Constructor-correct). A type environment E is called correct
with respect to constructor symbols, or constructor-correct for short, iff E con-
tains the types c ::τn

∅→ max(τn) for any constructor symbol c.

8

This definition implies that constructors do not influence the deterministic type
of their arguments at all. If any of the arguments of a constructor is of type
A, then the whole term is as well. Furthermore, constructors do never yield
any nondeterministic effect. Constructor-correctness is a requirement for our
definition of general correctness.

Definition 6 (Correctness). A type annotation f :: τn
ϕ→ τ contained in a

type environment E is correct for a definition f xn = e if E[xn :: τn/∅] ` e ::
τ/ϕ. A type environment is correct if it is constructor-correct and contains only
correct type annotations.

The aim of this section is to show that correct type environments correctly indi-
cate the nondeterminism caused by the evaluation of a given function. Whenever
the evaluation of a function call f ei involves a nondeterministic branching by
an or or a flexible case expression, a correct type environment must contain the
corresponding type indicating the effect or or guess. And whenever the correct
type environment indicates that a function f with arguments of a certain type
evaluates to a ground term, then no evaluation of f with corresponding argu-
ments yields a result containing a logic variable. The first step towards proving
this correctness is the observation that expressions of the same type are indis-
tinguishable by the type/effect system.

Lemma 2 (Substitution Lemma). Let E be a correct type environment for
a flat program. Then for each expression e holds: E[xn ::τn/∅] ` e :: τ/ϕ if and
only if replacing each xi with a term ei of the same type (via a substitution σ)
E ` ei :: τi/∅ still yields E ` σ(e) :: τ/ϕ. If some of the en have a non-empty
effect, i.e., E ` ei :: τi/ϕn, then E ` σ(e) :: τ/

⋃n
i=1 ϕi ∪ ϕ, i.e., the type τ of e

remains the same but the effect inferred for e is larger.

Proof: To verify the claim, one has to see that all inference rules are defined by
induction over the term structure. In the antecedent of each rule, the type of
subterm position is inferred. This finally leads to inferring the type of each xi or
ei, respectively, treating both identically. Thereby possible effects are gathered
faithfully, i.e., no effect is ever deleted and all effects of subterms are gathered.

2

Lemma 2 is a typical requirement in type systems. The correctness of the type
analysis is mainly based on the following theorem. There, we use the notation
Efree for a type environment that extends a type environment E by annotations
for free variables, i.e., if x :: τ/ϕ ∈ E, then x :: τ/ϕ ∈ Efree , otherwise x :: A/∅ ∈
Efree .

Theorem 1 (Type-descending). Let E be a correct type environment for a
non-circular program P⊗, e an expression with Γ : e ⇓ ∆ : v built in a proof tree
for an expression [] : e′ ⇓ ∆′ : v′, and Efree ` σΓ (e) :: τ/ϕ and Efree ` σ∆(v) ::
τ ′/ϕ′. Then τ ≥ τ ′ and ϕ ⊇ ϕ′.

9

Proof: Proof by induction over the depth of the proof tree for Γ : e ⇓ ∆ : v.
Base case: The proof tree is of length one. Then it can only consist of an appli-
cation of the rules VarCons or Val. In case of VarCons, σΓ [x7→t](x) = σΓ [x7→t](t),
since σΓ is idempotent, i.e. = σΓ ◦ σΓ . In case of Val, the two terms related via
⇓ are identical as well.
Inductive case: Suppose that the claim holds for all proof trees of a depth ≤ d.
We have to show that it holds for all proof trees with depth d + 1. We consider
the rule of the last step of the proof construction and distinguish the rule applied
there:
(VarExp): By induction hypothesis, the claim holds for σΓ [x7→e](e) and σ∆(v).
Analogously to (VarCons) above, σΓ [x7→e](x) is equal to σΓ [x7→e](e). Further-
more, proof trees for any [] : e′ ⇓ ∆′ : v′ cannot yield circular heap structures
(Lemma 1). Hence, σ∆[x7→v](v) = σ∆(v).
(Fun): By induction hypothesis, the claim holds for σΓ ◦ρ(e) and σ∆(v). Hence we
have to show that for Efree ` σΓ (f(xn)) ::τ/ϕ and Efree ` σΓ ◦ρ(e) ::τ ′/ϕ′ holds
τ ≥ τ ′ and ϕ ⊇ ϕ′. Let τn

ϕ→ τ be the type of f used in rule APP. By the type
inference rule APP, the type of σΓ (f(xn)) is derived by the types of the σΓ (xn),
which must match the τn, and the type of f in E: Efree ` σΓ (xn) ::τn/ϕn. As
inferred by the definition of correct type annotations, the result type τ of f
matches the type of e derived from E[xn ::τn/∅]. By the Substitution Lemma
replacing the variables xn by terms of the same type does not change the type
derived for e and hence τ = τ ′ and ϕ ⊇ ϕ′.
(Let): As the induction hypothesis holds for the antecedence of the rule Let, we
have to show for Efree ` σΓ (let {xk = ek} in e) :: τ/ϕ and Efree ` σ

Γ [yk7→ρ(ek)]
◦

ρ(e) ::τ ′/ϕ′ holds τ ≥ τ ′ and ϕ ⊇ ϕ′. By definition of the inference rule LET, the
claim follows directly from the Substitution Lemma.
(Or): By induction hypothesis the claim holds for ei and v. Because the inference
rule OR infers the maximum type of {e1, e2} and ei ∈ {e1, e2}, the claim also
holds for e1 or e2.
(Select): By induction hypothesis, the claim holds for σΓ (e) and σ∆(c(yn)),
σ∆ ◦ ρ(ei) and Θ(v) respectively. We have to establish a link between that two
pairs via the type of the (f)case-expression. Let τ :: ϕ be the type derived for
σΓ ((f)case e of {pk(xkm) → ek}), τ ′ ::ϕ′ the type derived for σΓ (e) and τ ′′ ::ϕ′′

the type derived for σ∆ ◦ ρ(ei) from the according Efree . By induction hypothe-
sis, the τ ′ is greater or equal than the type derived for σ∆(c(yn)). Because c is a
constructor symbol, the type of any of the σ∆(yn) is less or equal than the type
of σ∆(c(yn)) (Definition 5 and rule APP). In consequence, the type derived in
E[xm :: τ ′] for each of the ei from case pi(xm) 7→ ei is greater or equal than the
type derived for σ∆ ◦ ρ(ei) (definition of ρ in Select and Substitution Lemma).
Hence τ ′ ≥ τ ′′. Since max(τk) ≥ τ ′′, the desired claim that τ is greater or equal
than the type derived for σΘ(v) follows immediately.
(Guess): The consideration is identical to the one for Select with the simplifying
difference that the type A for e is known beforehand. 2

Theorem 1 implies that the type analysis correctly indicates the evaluation of
expressions to ground terms:

10

Corollary 1 (Correctness for ground terms). Let E be a correct type en-
vironment for a non-circular program P⊗. If, for some expression e, Efree `
e :: G/ϕ and e reduces in finitely many steps to a value v (i.e., a term without
defined function symbols), then v is a ground term.

Proof: Assume that v is not a ground term, i.e., v contains free variables. By
Definition 5, any correct type environment contains for a constructor symbol c

only types of the form c :: τn
∅→ max(τn). Thus, any correct analysis for v can

only yield v :: A/∅. As shown by Theorem 1 with [] : e ⇓ ∆ : v, the type of e
must be greater or equal than the type of v and, thus, could not have been G/ϕ
for any ϕ. 2

The last property to prove is that the analysis is not only decreasing for types
but also gathers all effects. This finally leads to the proposition that all potential
effects in the evaluation of a given expression are correctly predicted.

Lemma 3 (Gathering of effects). Let E be a correct type environment for a
non-circular program P⊗. Let T be a proof tree for Γ : e ⇓ ∆ : v where Γ is a
natural heap and Efree ` σΓ (e) :: τ/ϕ. Then, for any Γ ′ : e′ ⇓ ∆′ : v′ in T with
Efree ` σΓ (e′) ::τ ′/ϕ′, ϕ′ ⊆ ϕ holds.

Proof: By induction over the depth d of T : The base case d = 1 trivially holds
since e = e′.
Inductive case: Suppose that the claim holds for all proof trees of depth ≤ d.
We have to show that it holds for all proof trees with depth d + 1. To see this,
consider the last applied rule:
VarExp: σΓ (e) = σΓ (e′)
In case of Fun, Let, and Or, the definition of correct type annotations and the
inference rules LET and OR, respectively, yield the claim along with the substi-
tution lemma, because in all cases part of the inferable effect is defined by union
of the effects of the arguments. The same is true for Select and Guess. The only
difference is that an fcase with only one pattern will be subject to rule SELECT
but to the rule Guess of the natural semantics. In both cases, however, effects
are defined by union of the part effects. 2

The previous lemma implies the final important property of the type/effect sys-
tem:

Corollary 2 (Identification of nondeterminism). If, for a non-circular pro-
gram P ∈ P⊗ and expression e, there are two proof trees T and T ′ for [] : e ⇓
∆ : v and [] : e ⇓ ∆′ : v′ differing in more than variable names, then any type of
e w.r.t. a correct type environment for P contains an effect or or guess.

Proof: For the natural semantics the only source of nontrivial nondeterminism
are the rules Or and Guess (compare [1, Section 6]). If anywhere in T (or T ′) the
rule Or is applied, then, by definition of the inference rule OR and Lemma 3,
the effect will also be inferred for e. If anywhere in T (or T ′) the rule (Guess) is
applied, the situation is of the form:

Γ : e0 ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e0 of {pk → ek} ⇓ Θ : v

11

where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables.
Since x is a logic variable (σΓ (x) = x), any correct type environment E yields
Efree ` x ::A/∅. By Theorem 1, Efree ` e0 ::A/ϕ. This implies that the inference
rule GUESS can be applied to this situation if k > 1. If k = 1, the application
of Guess is not a source of the difference between T and T ′. The effect {guess},
once inferred, will be propagated down to e due to Lemma 3. 2

3 Type/Effect Inference

In this section we introduce a method to infer the types and effects introduced in
the previous section. In order to obtain a feasible inference method, we introduce
base annotations, a compact representation of sets of types and effects.

3.1 Base Annotations

The definition of well-typed programs is usually not sufficient. Instead one wants
to compute all of the correct type environments for a given program. On a first
glance, this problem seems quite hard, as for each n-ary function there are 2n+1

possible types even with an empty effect. However, a closer observation shows
that one need only to consider n+1 types, namely the type where all arguments
are ground (G) and the n types where a single argument is any (A) and all others
are ground. The remaining types can be deduced by combining these n + 1 base
types, which we also call a type base. For instance, the type for GGAGAG → τ
is the result of combining the type for GGGGAG → τ1 and GGAGGG → τ2.
We first show the soundness of this combination of two types.

Definition 7 (Supremum
⊔

, t, τ/ϕ/ϕ′). For two types τ and τ ′ the type
τtτ ′ is the supremum of both types (w.r.t. the standard type ordering). Likewise,
τ/ϕt τ ′/ϕ′ denotes the supremum of τ/ϕ and τ ′/ϕ′, i.e., τ t τ ′/ϕ∪ϕ′. For two
environments E and E′, EtE′ denotes

⊔
(E∪E′) where

⊔
x denotes the closure

of x under supremum. Finally, the notation τ/ϕ/ϕ′ is sometimes used to denote
τ/ϕ ∪ ϕ′.

Lemma 4 (Compositionality). If, for any function declaration f xn = e,

there are correct type annotations A = τn
ϕ→ τ and A′ = τ ′n

ϕ′

→ τ ′ for environ-
ments E and E′, respectively, then A t A′ is also a correct type for f for the
environment E t E′.

Proof: We show the claim by induction over the structure of e:
Base case: e is a variable e = x. Then x has to be one xi of the variables of xn

and, thus, τ = τi and τ ′ = τ ′i , ϕ = ϕ′ = ∅. Since the type for xi in A t A′ is
τi t τ ′i , the typing of e with τ t τ ′ = τi t τ ′i and ϕ ∪ ϕ′ = ∅ is also correct.
Inductive case: We assume that the claim holds for all terms smaller than e. We
have to show that it also holds for e. We show this by a case distinction over the
outermost structure of e:
e is an application e = g ym where yi ∈ {xn}, i ∈ {1 . . .m}: By the induction

12

hypothesis, E t E′ ` ej :: τj t τ ′j/ϕj ∪ ϕ′j for each j ∈ {1 . . . k}. Since E t E′

is closed under supremum, for the two annotations used for g in E and E′, the
supremum of these annotations is in E t E′.
e = let {xk = ek} in el: The claim follows directly from the induction hypothesis
because the LET rule just takes the type of the derivation for l and forms a union
of all the effects derived for el and all ek.
e = or(e1, e2): The claim follows directly from the induction hypothesis since
max(τ1, τ2) = τ1 t τ2, the effects are gathered and {or} is part of all derived
effects.
e = (f)case ec of {pk → ek}: Depending on the inferred type of ec and whether
k > 1, either rule SELECT or rule GUESS is applied. Either way the claim holds
regarding the branches, since max(max(τk),max(τ ′k)) = max(τk)tmax(τ ′k) and
all the effects are gathered in both rules. Furthermore, if rule GUESS was applied
and, hence, the type A was inferred for ec, the type of ec in E tE′ must also be
A, since A tA = A. 2

Definition 8 (Type base). Let f xn = e be a function declaration. A set of
type annotations {A,A1, . . . ,An} is called a type base for f if A = G . . .G

ϕ→ τ

and Ai = G . . .GAiG . . .G
ϕi→ τi (where Ai denotes that A is at the i-th position

for i ∈ {1 . . . n}) for types τ, τi and effects ϕ, ϕi.

Lemma 4 ensures that every correct type can be easily derived from a correct type
base. This fact is the basis for the improvement mentioned at the beginning of
this section. Instead of an exponential number of types, it is sufficient to consider
only the n+1 elements of a type base. Furthermore, we can pack the information
of the type base into a single structure with at most n elements. This structure is
defined as follows (note that t is used in base annotations as a term constructor
rather than the supremum function on types):

Definition 9 (Base annotation). Let f xn = e be a function declaration and
B a type base for f . The base annotation f for f is defined as follows. Let

τ0 = G

τ i =
{

τ i−1 if G . . .GAiG . . .G
ϕi→ G ∈ B

Πi t τ i−1 otherwise

ϕ = {guess(Πi) | f :: G . . .GAiG . . .G
ϕ→ τ, guess ∈ ϕ}

If G . . .G
ϕ0→ τ0 ∈ B, then f = τf/ϕf with

τf =
{

A if τ0 = A
τn otherwise and ϕf =

{
ϕ0 if guess ∈ ϕ0

ϕ0 ∪ ϕ otherwise

Here are some examples for correct base annotations:
-For each n-ary constructor c: c = Π1 t . . . tΠn/∅ if n > 0, otherwise c = G/∅
-f1 x = 1 : f1 = G/∅
-f2 = let {x=x} in x : f2 = A/∅
-f3 x y = y : f3 = Π2/∅
-f4 x y = fcase x of {1->1; 2->y}: f4 = Π2/{guess(Π1)}

13

This representation of groundness information has some similarities to the do-
main Prop of propositional formulas used in groundness analysis of logic pro-
grams [5]. However, we are interested in covering all sources of nondeterminism
which is usually the effect non-ground function arguments (apart from function
definitions with overlapping right-hand sides, represented by or). Therefore, we
use projections Πi in the base annotations to associate potential nondetermin-
istic behavior to the instantiation of particular arguments.

Later on, we will compute base annotations by a fix-point iteration. For this
purpose we need to decide whether two given base annotations are equivalent.
This is done by checking the equality of normal forms obtained by rewriting with
the following set of confluent and terminating rewrite rules.

Definition 10 (Normal form bτ/ϕc). We denote by bτc and bϕc the simpli-
fication of τ and ϕ, respectively, with the rules

G t τ → τ τ tG → τ
A t τ → A τ tA → A

Πi tΠj → Πj tΠi, i > j
τ t τ → τ

{guess(G)} → {}
guess(A) → guess
guess(τ) → guess(bτc)

(the simplification rules for guess become applicable after the transformation
shown in the subsequent definition, where the last rule only maintains the sorting
of the Π by index). Similarly, bτ/ϕc denotes component-wise simplification.

According to their definition, the base annotations of a given function can be
used to infer all of its types as shown by the following definition.

Definition 11 (Base annotations and types). Consider an n-ary function
f . To each base annotation f we associate a set of type annotations types(f) as
follows:

types(G/ϕ) = {τn
eff(τn,ϕ)→ G | τi ∈ {A,G}, i ∈ {1 . . . n}}

types(A/ϕ) = {τn
eff(τn,ϕ)→ A | τi ∈ {A,G}, i ∈ {1 . . . n}}

types(Πi1 t . . . tΠij /ϕ) =⊔
({G . . .G︸ ︷︷ ︸

τG

eff(τG,ϕ)→ G} ∪ {G . . .GAkG . . .G︸ ︷︷ ︸
τk

eff(τk,ϕ)→ A | k ∈ {i1 . . . ij}})

where eff(τn, ϕ) = b{Πn 7→ τn}ϕc.1
Straightforward, we extend this notation to sets containing base annotations,
replacing each annotation β with the elements of types(β).

Proposition 1 (Unique annotation, Definition β(τn)). For each base an-
notation β for an n-ary function and types τn there is a unique annotation
τn

ϕ→ τ in types(β). We denote this annotation by β(τn).

Proof: If β = G/ϕ or β = A/ϕ, this annotation is τn
ϕ→ G or τn

ϕ→ A, respec-
tively.
1 {Πn 7→ τn}ϕ denotes the replacement of all occurrences of Πi by τi in ϕ for i ∈
{1, . . . , n}.

14

VAR E 3 x ::τ/ϕ if x :: τ/ϕ ∈ E

APP
E 3 en ::τn/ϕn

E 3 f en :: b{Πn 7→ τn/ϕn}τ/{Πn 7→ τn}ϕc
if f :: τ/ϕ ∈ E

LET
E[xk ::A/∅] 3 ek ::τk/ϕk E[xk ::τk/ϕk] 3 e ::τ/ϕ

E 3 let {xk = ek} in e :: τ/ϕ

OR
E 3 e1 :: τ1/ϕ1 E 3 e2 :: τ2/ϕ2

E 3 or(e1, e2) :: τ1/ϕ1 t τ2/ϕ2 ∪ {or}

SELECT
E 3 e ::τ/ϕ E[xkm ::τ/∅] 3 ek ::τk/ϕk

E 3 (f)case e of {pk(xkm) → ek} ::
Fk

i=1 τi/ϕi ∪ ϕ

if, for fcase, τ = G or k = 1

GUESS
E 3 e ::τ/ϕ τ 6= G E[xkm ::τ/∅] 3 ek ::τi/ϕi k > 1

E 3 fcase e of {pk(xkm) → ek} ::
Fk

i=1 τi/ϕi ∪ ϕ ∪ b{guess(τ)}c

Fig. 4. Inference rules

If β = Πi1 t . . . tΠij /ϕ, then the annotation is τn
eff(τn,ϕ)→ τ , where τ = A, if

A ∈ {τi1 , . . . , τij
}, and τ = G, otherwise. 2

3.2 Inferring Base Annotation

After having defined the structure of base annotations, we are ready to define
the inference of them. Figure 4 shows the rules to infer base annotations for a
given expression. The complete inference is defined as a fix-point iteration on a
given flat program as follows.

Definition 12 (Type inference). The mapping Inf associates to a flat pro-
gram P a type environment. It is defined by the following fix-point iteration based
on the inference system in Figure 4:

Inf 0(P) = {c :: G/∅ | c is a 0-ary constructor} ∪
{c :: Π1 t . . . tΠn/∅ | c is an n-ary constructor, n > 0} ∪
{f :: G/∅ | f is a defined function}

Inf i+1(P) = {f :: bτ/ϕc | f xn = e ∈ P, Inf i(P)[xn :: Πn/∅] 3 e :: τ/ϕ}
Inf (P) = Inf j(P), if Inf j(P) = Inf j+1(P)

As an example for the type inference, consider the following flat program (c0

and c1 are data constructors of arity 0 and 1, respectively):

P1 =

f x = fcase x of {c0 → c0, c1 y → c0}
g = let {x = x} in x
h x = f g

15

Remember that “let {x = x}” defines a logic variable x so that g evaluates
to a new logic variable. The type environments are computed by the following
iterations:

Inf 0(P1) = {c0 :: G/∅, c1 :: Π1/∅, f :: G/∅, g :: G/∅, h :: G/∅}
Inf 1(P1) = {c0 :: G/∅, c1 :: Π1/∅, f :: G/guess(Π1), g :: A/∅, h :: G/∅}
Inf 2(P1) = {c0 :: G/∅, c1 :: Π1/∅, f :: G/guess(Π1), g :: A/∅, h :: G/guess}
Inf (P1) = Inf 2(P1)

Thus, the inference correctly shows that a call to h can result in nondeterministic
branches even for ground arguments. As a further example, consider the following
flat program:

P2 =

f1 x = fcase x of {c0 → g, c1 y → f2 x}
f2 x y = f1 y
g = let {x = x} in x

For this program the type environments are computed as follows:

Inf 0(P2) = {c0 :: G/∅, c1 :: Π1/∅, f1 :: G/∅, f2 :: G/∅, g :: G/∅}
Inf 1(P2) = {c0 :: G/∅, c1 :: Π1/∅, f1 :: G/guess(Π1), f2 :: G/∅, g :: A/∅}
Inf 2(P2) = {c0 :: G/∅, c1 :: Π1/∅, f1 :: A/guess(Π1), f2 :: G/guess(Π2), g :: A/∅}
Inf 3(P2) = {c0 :: G/∅, c1 :: Π1/∅, f1 :: A/guess(Π1), f2 :: A/guess(Π2), g :: A/∅}
Inf (P2) = Inf 3(P2)

The inference shows that a call to f2 might produces a non-ground result but
causes nondeterministic steps only if the second argument is non-ground.

3.3 Correctness of the Type Inference

We have defined a method to compute base annotations for all functions in
a given program. Now we show that this computation is correct and specify
what exactly “correct” means in this context. One important part of correctness
is the termination of the iteration. To show this, we define an ordering on base
annotations. Since this ordering is finite and the inference in each iteration always
increases the set of computed base annotations w.r.t. this order, termination is
ensured.

Definition 13 (Ordering on base annotations v). The ordering v is used
on types, effects, base annotations and type environments. It is defined as the
least ordering on base annotations satisfying the following properties:

– G v τ and τ v A for all types τ
– Πi1 t . . . tΠim v Πj1 t . . . tΠjn if {Πi1 , . . . ,Πim} ⊆ {Πj1 , . . . ,Πjn}
– guess(τ) v guess(τ ′) if τ v τ ′

– For effects ϕ, ϕ′: ϕ v ϕ′ if ∀x ∈ ϕ ∃x′ ∈ ϕ′ : x v x′

– Ordering on type/effects: τ/ϕ v τ ′/ϕ′ if τ v τ ′ and ϕ v ϕ′

– Ordering on environments: E v E′ if ∀x ∈ E ∃x′ ∈ E′ : x v x′

16

The next lemma shows the monotonicity of the inference, i.e., the inference
always computes greater types for greater environments (with respect to v).

Lemma 5 (3 respects v). Let E and E′ be two environments with E v E′.
Then, for each e with E 3 e :: τ/ϕ, there is a derivation E′ 3 e :: τ ′/ϕ′ with
τ/ϕ v τ ′/ϕ′.

Proof: The existence of the derivation E′ 3 e :: τ ′/ϕ′ is a direct consequence of
E′ containing a type for each expression in E. The prove of τ/ϕ v τ ′/ϕ′ is by
induction over the length l of the inference for e:
Base case l = 1, e = x: The claim holds by definition of E v E′.
Inductive case, the claim holds for all shorter derivations: Regard the last applied
rule.
(APP) If the claim holds for τ/ϕ, τ ′/ϕ′, xn :: τn/ϕn and x′n :: τ ′n/ϕ′n then it also
holds for the resulting annotations

b{Πn 7→ τn/ϕn}τ/{Πn 7→ τn}ϕc
and b{Πn 7→ τ ′n/ϕ′n}τ ′/{Πn 7→ τn}ϕ′c

according to definition of v: If τ = G or τ = A the claim trivially holds, and
if τ is a composition of some Πjs then τ ′/ϕ′ is either A or containing the same
(and maybe more) Πjs.
(LET) This rule directly derives the τ/ϕ type from the antecedent and thus the
claim directly stems from the induction hypothesis.
(OR) The claim follows directly from the inductive assumption since the derived
type is the supremum of the antecedent’s types.
(Select) If the SELECT rule was applied in both derivations for E and E′ then
the claim holds since the resulting type is the supremum of antecedents’ types
unified with one of the antecedents’ effect.
(GUESS) Analog to the treatment of the SELECT rule, the claim holds if both
derivations apply GUESS, as the resulting type is a supremum of antecedent
types.
(SELECT vs. GUESS) As E v E′ it can happen that in the derivation for E the
SELECT rule is applied, where the according derivation for E′ applies GUESS.
But as the resulting type for GUESS is identical to that of SELECT with the
only exception that GUESS adds a {guess(τ)} effect, the resulting type for E′ is
greater than the one derived in E.
As the other rules are defined by the structure of e there are no further overlaps
between them and the proof is finished accordingly. 2

The first application of Lemma 5 is the observation that, in the fix-point itera-
tion for Inf , the computed environments associate increasing types for defined
functions:

Lemma 6 (Type increase). Let P be a flat program and f a function defined
in P . If f :: τ/ϕ ∈ Inf i(P) and f :: τ ′/ϕ′ ∈ Inf i+1(P), then τ/ϕ v τ ′/ϕ′.

Proof: By induction on the iterations i, where we define Inf i(f) = τ/ϕ if
f :: τ/ϕ ∈ Inf i(P).

17

Base case i = 1. Since Inf 0(f) = G/∅ the claim holds trivially.
Inductive case Inf j(f) v Inf i(f) for all j ≤ i. Obviously the only rule that
might change the type of f from Inf i is APP, because it is the only rule access-
ing the function types in the environment. Thus, consider a function application
g xn and the types Inf i(g) = τi/ϕi and Inf i−1(g) = τi−1/ϕi−1. As the map-
pings {Πn 7→ τn/ϕn} and {Πn 7→ τn} stay the same for each Inf i and obviously
preserve the ordering v, the inferred type {Πn 7→ τn/ϕn}τi/{Πn 7→ τn}ϕi is
greater than the type derived before {Πn 7→ τn/ϕn}τi−1/{Πn 7→ τn}ϕi−1.
As 3 as a whole will compute a greater type for a greater environment (Lemma 5),
this observation about APP is enough to prove the claim. 2

Corollary 3 (Inf (P) is well defined). For each finite program P there is a
natural number n with Inf n(P) = Inf n+1(P).

Proof: Since there are only a finite number of base annotations for a given finite
program P , the definition of v does not allow infinite chains. Thus, the claim
follows directly from Lemma 6. 2

Corollary 3 states that the inference finally terminates. To complete the sound-
ness of the inference, we have to show that its computed results correctly and
completely correspond to the results of the type/effect analysis of Section 2.

Lemma 7 (Correspondence between 3 and `). Let f xn = e ∈ P and
τn ∈ {A,G} and for any i let Ei = Inf i(P)[xn :: τn/∅].
Then, for any i, the inference Ei 3 e :: β directly corresponds to a derivation
types(Ei) ` e :: β(τn) (as defined in Proposition 1).

Proof: By induction over the sum s of the lengths of the inferences for Inf 0(P)
. . . Inf i(P):
Base case, s = 1, e = xi or e = g() or e = c(): For all three forms of e, the en-
vironments E0 and types(E0) hold by definition the same base annotation and
type which is one of G/∅ or A/∅. Since G/∅() = G/∅ and A/∅() = A/∅, the
application of rule VAR is identical for 3 and `.
Inductive case: The claim holds for all shorter inferences. Consider the rule last
applied in Ei 3 e :: β:
VAR: Analogously to the base case e = xi and Ei and types(Ei) hold by defini-
tion the same type G/∅ or A/∅ and the application of rule VAR is identical for
`.
OR: By induction hypothesis, there are corresponding derivations for types(Ei) `
e1/2 :: τ1/2/ϕ1/2. Therefore, τ1/2 ∈ {A,G} and ϕ1/2 ⊆ {or, guess} and in conse-
quence max(τ1, τ2)/ϕ1 ∪ ϕ2 ∪ {or} = τ1/ϕ1 t τ2/ϕ2 ∪ {or}. The application of
the rule OR is hence identical for `.
SELECT: By induction hypothesis, all τ, τk are in {A,G} and all ϕ, ϕk are a
subset of {or, guess}. Therefore, max(τk)/

⋃k
i=1 ϕi∪ϕ =

⊔k
i=1 τi/ϕi∪ϕ and the

application of SELECT is identical for `.
GUESS: By induction hypothesis, all τ, τk are in {A,G} and all ϕ, ϕk are a sub-
set of {or, guess}. Therefore, τ must be A, or rule GUESS would not have been

18

applicable. As b{guess(A)}c = guess, also max(τk)/
⋃k

i=1 ϕi ∪ ϕ ∪ {guess} =⊔k
i=1 τi/ϕi ∪ ϕ ∪ b{guess(τ)}c and the application of GUESS is identical for `.

LET: The claim directly stems form the induction hypothesis because of the
identical structure of the rules for 3 and `. Note that both rules only assign
type A/∅ for the new variables.
APP: By induction hypothesis all τn are in {A,G} and all ϕn are a subset of
{or, guess}. Because of this, b{Πn 7→ τn/ϕn}τ/{Πn 7→ τn}ϕc = τ/ϕ(τn), by
Definition 11 and Proposition 1. As τ/ϕ(τn) is by definition also in types(τ/ϕ),
the application of APP in 3 directly corresponds to the one in `. 2

Theorem 2 (Correctness of the inference). Let P be a flat program, E(P) =
types(Inf (P)) and E be a correct environment (cf. Definition 6) for P . Then:

Soundness: E(P) is a correct environment in the sense of Definition 6.
Completeness: If A ∈ E is a type annotation, then E(P) contains a type

annotation A′ with A′ ≤ A (cf. Definition 4).

Proof:

Soundness:
A correct environment is by Definition 6 (a) constructor correct and (b) contains
only correct annotations for defined functions.
(a) By Definition 12, the Inf i(P) of the iteration to compute E(P) differ in
the types for defined functions only. Where constructors are concerned, Inf(P)
equals Inf 0(P) and, thus,
({c :: G/∅ | c0 ∈ P} ∪ {c :: τ | cn>0 ∈ P, τ ∈ types(Π1 t . . . tΠn/∅)}) ⊂ E(P)
where cn ∈ P means that c is an n-ary constructor called somewhere in P. By
Definition 11 of types(), this subset is exactly the one postulated by Definition 5
of constructor correctness. Hence, E(P) is constructor correct.
(b) E(P) contains only correct annotations because of the correspondence be-
tween 3 and ` shown by Lemma 7. Let f xn = e ∈ P and f :: β ∈ Inf (P). By
Lemma 7, for all τn ∈ {A,G}, Inf (P)[xn :: τn/∅]3e :: β′ directly corresponds to
a derivation E(P)[xn :: τn/∅] ` e :: β′(τn). And as Inf (P) is a fix-point regard-
ing 3, the correspondence yields that E(P) is a fix-point regarding `. Hence,
by Definition 6, f :: β′(τn) ∈ E(P), and in consequence f :: β′(τn) ∈ E(P) is
correct for f xn = e ∈ P .

Completeness:
By definition of ≤, for any annotation A = f :: τn

ϕ→ τ and any base annotation
β for f , the annotation β(τn) is comparable to A and we write for short β ≤ A
or A ≤ β, respectively. To prove a contradiction, we assume f :: β ∈ Inf (P) and
A = f :: τn

ϕ→ τ an annotation for f xn = e ∈ P with A < β. Furthermore,
let βi be the type annotations of f in all the sets Inf i(P) computed during
the fix-point iteration. As the iteration starts with β0 = G/∅, there must exist
greatest j, βj with βj ≤ A. By assumption, βj must be different from β. Also,
for Inf j(P) 3 e :: βk, βj < βk and βj(τn) < βk(τn). By Lemma 7, there exists
a derivation types(Inf j(P))[xn :: τn/∅] ` e :: βk(τn) and βj(τn) ≤ A ≤ βk(τn).
It is easy to verify that this means that either A = βj(τn) or A = βk(τn),

19

which contradicts the assumption: If A = βj(τn) then A is not correct and if
A = βk(τn) then j was not the greatest against its definition. 2

4 Implementation

We have implemented the type inference described in this paper for the func-
tional logic language Curry [9, 16]. The implementation is done in Curry and
exploits the meta-programming features and efficient data structures (e.g., ta-
bles, sets) of the PAKCS environment of Curry [12]. In the following we show
some details of this implementation.

The PAKCS environment provides a front end which compiles Curry pro-
grams into a structure almost identical to the flat programs presented in this
paper. There is also a library defining a Curry datatype corresponding to this
structure. This library is the base for meta programming in and for Curry. A
Curry module is mainly defined by a name, a list of datatype declarations and
a list of function declarations. Like in flat programs (cf. Figure 1), each function
is defined by a single rule, which consists of a list of variables and an expression.
We give the definition of expressions in some detail:2

data Expr = Var VarIndex
| Lit (Char|Int|Float)
| Free [VarIndex] Expr
| Or Expr Expr
| Comb (FuncCall|ConsCall) QName [Expr]
| Case (Flex|Rigid) VarIndex [Branch Pattern Expr]
| Let (VarIndex,Expr) Expr

data Pattern = LPattern (Char|Int|Float)
| Pattern QName [VarIndex]

There are a few small differences to flat programs: (a) the inclusion of literals
(Lit, LPattern) of the base types integer (Int), character (Char) or floating-
point number (Float), and (b) the Free construct to introduce logic variables
instead of a directly circular let binding. In all other aspects the correspondence
is direct: Constructor calls are denoted as (Comb ConsCall) and function calls
as (Comb FuncCall), both followed by a qualified name (QName) which is the
name of the function together wit that of the module it is defined in. fcase
corresponds to (Case Flex), case to (Case Rigid), and variables are numbered
(VarIndex is a synonym for Int).

The types and effects are defined in our implementation as:

data TypeEffectVar = V VarIndex
data Type = Ground | Any | VarSet (Set VarIndex)
data Effect = Effect Bool Bool (Set VarIndex)

2 We take the liberty defining variants like (Flex|Rigid) directly in the same type
declaration, although in Curry, we need a separate definition for them. We have also
blended out the support of higher-order features in Curry, since the corresponding
part of the nondeterminism analysis is not covered in this paper.

20

data TypeEffect = TE Type Effect | TEFunc VarIndex TypeEffect

The first boolean value in the definition of Effect correspond to the or effect,
whereas the second boolean and the Set VarIndex model the guess effect. In
order to avoid clashes among variable indices, the constructor TEFunc defines
which variable index corresponds to which argument of a given function. For
instance, a binary constructor C would have the type/effect

(TEFunc 0 (TEFunc 1 (TE VarSet {0,1} (Effect False emptySet))))

written as C::a->b->a+b/{} for ease of reading. Some convenient abbreviations
are:

noEffect = Effect False emptySet
teGround = TE Ground noEffect
teAny = TE Any noEffect
teVar i = TE (VarSet (addToSet i emptySet)) noEffect

There is also a simple manipulation function

addEffect :: Effect -> TypeEffect -> TypeEffect

which is used in the abbreviations:

addOr = addEffect (Effect True False emptySet)
addGuess = addEffect (Effect False True emptySet)
addGuesses vs = addEffect (Effect False False vs)

The only thing we need to know about the implementation of Set is that there
are functions:

emptySet::Set a : generate an empty set
elemSet :: a -> Set a -> Bool : test if given value is element of set
union :: Set a -> Set a -> Set a : union of two sets
unions :: [Set a] -> Set a : union of a list of sets
delFromSet :: Set a -> a -> Set a : delete element from given set
addToSet :: a -> Set a -> Set a : add element to given set
isEmpty :: Set a -> Bool : test if set contains no elements

The supremum on type/effects can now be defined in Curry as (|| denotes the
boolean disjunction):3

supremums = foldl supremum teGround
supremum (TE s v) (TE t w) = TE (supTypes s t) (supEffects v w)
supTypes Any _ = Any
supTypes Ground x = x
supTypes (VarSet _) Any = Any
supTypes (VarSet vs) Ground = VarSet vs
supTypes (VarSet vs) (VarSet vs’) = VarSet (union vs vs’)
supEffects (Effect o1 g1 s1) (Effect o2 g2 s2) =

Effect (o1||o2) (g1||g2) (union s1 s2)

3 Note that we define the supremum of TE-rooted terms only, the supremum of func-
tional terms is neither defined nor needed.

21

The environment is modeled by two tables, one to look up the type/effects
of already analyzed functions, and the other contains the types associated to
variables. We access these tables by the functions

lookup :: i -> Table i a -> a
addListToTable :: Table i a -> [(i,a)] -> Table i a

Now, the analysis of expressions can be defined as a case distinction on the
different patterns:

ana funcTable varTable (Var i) = lookup varTable i
ana _ _ (Lit _) = teGround
ana fT vT (Or e e’) = addOr (supremums (map (ana fT vT) [e,e’]))
ana fT vT (Comb _ name args) =

applys (lookup fT name) (map (ana fT vT) args)
ana fT vT (Free vs e) = ana fT newVT e
where newVT = addListToTable vT (zip vs (repeat teAny))

ana fT vT (Let (v,e) e’) = ana fT newVs e’
where newVs = addToTable vT (v,ana fT vT e)

ana fT vT (Case caseType i branches) = (case lookup vT i of
TE Any eff -> addEffect eff . if guess then addGuess else id
TE Ground eff -> addEffect eff
TE (VarSet vs) eff -> addEffect eff .
if elemSet i vs && guess then addGuesses [i] else id

) (supremums (map (anaBranch i fT (addToTable vT (i,teGround)))
branches))

where guess = caseType==Flex && length branches > 1

Thanks to the high programming level of Curry, the correspondence of the code
to the definition of the analysis is relatively strong. To conclude the presentation
of the source code, we give the definitions of two functions called from ana,
namely apply and anaBranch:
applys t ts = foldl apply t ts
apply (TEFunc i t) t’ = subst i t’ t
subst i t (TEFunc j t’) | i==j = TEFunc j t’

| otherwise = TEFunc j (subst i t t’)
subst i (TE t eff) (TE t’ eff’) = TE (subT i t t’) (subE i eff eff’)
subT _ _ Ground = Ground
subT _ _ Any = Any
subT i t (VarSet vs) = case t of

Ground -> let newVs = delFromSet vs i
in if isEmpty newVs then Ground else VarSet newVs

Any -> if elemSet i vs then Any else VarSet vs
VarSet vs’ -> VarSet (union vs vs’)

subE i (Effect or g vs) (Effect or’ g’ vs’)
| elemSet i vs’ = Effect (or||or’) (g||g’) (union vs vs’)
| otherwise = Effect or’ g’ vs’

anaBranch _ fT vT (Branch (LPattern _) e) = ana fT vT e

22

anaBranch i fT vT (Branch (Pattern _ vs) e) =
ana fT (addListToTable vT (zip vs (repeat (teVar i)))) e

In order to show a few concrete results, we give a simple example program (left
column) and the output generated by our implementation of the analysis (right
column):

data N = Z | S N

four = S(S(S(S Z))) four :: Ground/{}
x = let x free in x x :: Any/{}
inc Z = S Z
inc (S n) = S (inc n) inc :: a -> Ground/NarrowIf(a)

inc’ n = S n inc’ :: a -> a/{}
plus Z n = n
plus (S n) m = S (plus n m) plus :: a -> b -> b/NarrowIf(a)

eight = plus four four eight :: Ground/{}

5 Conclusions

We have presented a program analysis to approximate to nondeterminism be-
havior of functional logic programs. Unlike existing nondeterminism analyses for
logic languages, we have considered a language with a demand-driven evaluation
strategy. Such a strategy has good properties for executing (e.g., optimal evalu-
ation [2]) and writing programs (e.g., more modularity due to the use of infinite
data structures [18]), it considerably complicates the analysis of programs since,
in contrast to logic languages with an eager evaluation model (e.g., Prolog, Mer-
cury, HAL), there is no direct correspondence between the program structure
and its evaluation order. Therefore, we have abstracted the information about
the run-time behavior of the program in form of a non-standard type and effect
system. The program analysis is then an iterative type inference process based
on a compact structure to represent sets of types and effects.

For future work we plan to improve the preliminary implementation of the
type inference and apply it to larger application programs. Furthermore, we are
working on a compilation for the functional logic language Curry [9, 16] into the
functional language Haskell [23]. This compilation should take great advantage
of the presented analysis.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for
Declarative Multi-Paradigm Languages. Journal of Symbolic Computation, Vol. 40,
No. 1, pp. 795–829, 2005.

2. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

23

3. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pp. 67–87. Springer LNCS 2441, 2002.

4. B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming, Vol. 2004,
No. 6, 2004.

5. A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. IEEE Symposium on Logic
in Computer Science, pp. 322–327, 1991.

6. S.K. Debray and D.S. Warren. Detection and Optimization of Functional Compu-
tations in Prolog. In Proc. Third International Conference on Logic Programming
(London), pp. 490–504. Springer LNCS 225, 1986.

7. B. Demoen, M.J. Garćıa de la Banda, W. Harvey, K. Marriott, and P.J. Stuckey.
Herbrand constraint solving in HAL. In Proc. of ICLP’99, pp. 260–274. MIT Press,
1999.

8. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

9. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

10. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

11. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

12. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2004.

13. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

14. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pp. 374–390. Springer LNCS 1490, 1998.

15. M. Hanus and F. Steiner. Type-based Nondeterminism Checking in Functional
Logic Programs. In Proc. of the 2nd International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP 2000), pp. 202–213.
ACM Press, 2000.

16. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry, 2003.

17. F. Henderson, T. Somogyi, and Z. Conway. Determinism analysis in the Mercury
compiler. In Proc. of the Nineteenth Australian Computer Science Conference, pp.
337–346, 1996.

18. J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17–42. Addison Wesley, 1990.

19. F. Liu. Towards lazy evaluation, sharing and non-determinism in resolution based
functional logic languages. In Proc. of FPCA’93, pp. 201–209. ACM Press, 1993.

20. R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, pp. 59–87, 1995.

21. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

24

22. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

23. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

24. P. Van Roy, B. Demoen, and Y.D. Willems. Improving the execution speed of
compiled Prolog with modes, clause selection, and determinism. In Proc. of the
TAPSOFT ’87, pp. 111–125. Springer LNCS 250, 1987.

25. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

25

