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Abstract

Functional logic languages with a sound and complete operational semantics are
mainly based on an inference rule called narrowing. Narrowing extends functional
evaluation by goal solving capabilities as in logic programming. Due to the huge
search space of simple narrowing, steadily improved narrowing strategies have been
developed in the past. Needed narrowing is currently the best narrowing strategy for
first-order functional logic programs due to its optimality properties w.r.t. the length of
derivations and the number of computed solutions. In this paper, we extend the needed
narrowing strategy to higher-order functions and A-terms as data structures. By the
use of definitional trees, our strategy computes only incomparable solutions. Thus,
it is the first calculus for higher-order functional logic programming which provides
for such an optimality result. Since we allow higher-order logical variables denoting
A-terms, applications go beyond current functional and logic programming languages.

*A preliminary short version of this paper appeared in the Proceedings of the Seventh International
Conference on Rewriting Techniques and Applications (RTA’96), Springer LNCS 1103, pp. 138-152, 1996.

tInformatik II, RWTH Aachen, D-52056 Aachen, Germany, hanus@informatik.rwth-aachen.de

tFakultat fiir Informatik, Technische Universitit Miinchen, D-80290 Miinchen, Germany,
prehofer@informatik.tu-muenchen.de



1 Introduction

Functional logic languages [8] with a sound and complete operational semantics are mainly
based on narrowing. Narrowing, originally introduced in automated theorem proving [35],
is used to solve goals by finding appropriate values for variables occurring in arguments of
functions. A narrowing step instantiates variables in a goal and applies a reduction step to
a redex of the instantiated goal. The instantiation of goal variables is usually computed by
unifying a subterm of the goal with the left-hand side of some rule.

Example 1.1 Consider the following rules defining the less-or-equal predicate on natural
numbers which are represented by terms built from 0 and s:

0 < X —  true
s(X) <0 —  false
s(X) < s(Y) - X<Y

To solve the goal s(X) <Y, we perform a first narrowing step by instantiating Y to s(Y7) and
applying the third rule, and a second narrowing step by instantiating X to 0 and applying
the first rule:

S(X) LY ~pyesmy X <Y1 ~yxeoy true

Since the goal is reduced to true, the computed solution is {X — 0,Y +— s(Y7)}.

Due to the huge search space of simple narrowing, steadily improved narrowing strategies
have been developed in the past. Needed narrowing [2] is based on the idea to evaluate only
subterms which are needed in order to compute some result. For instance, in a goal t; < s,
it is always necessary to evaluate t; (to some head normal form) since all three rules in
Example 1.1 have a non-variable first argument. On the other hand, the evaluation of ¢,
is only needed if ¢; is of the form s(---). Thus, if ¢; is a free variable, needed narrowing
instantiates it to a constructor, here 0 or s. Depending on this instantiation, either the first
rule is applied or the second argument ¢, is evaluated. Needed narrowing is the currently best
narrowing strategy for first-order functional logic programs due to its optimality properties
w.r.t. the length of derivations and the number of computed solutions [2]. Since needed
narrowing is defined for inductively sequential rewrite systems [1] (these are constructor-based
rewrite system with discriminating left-hand sides, i.e., typical functional programs), it can
be efficiently implemented by pattern-matching and unification due to its local computation
of a narrowing step (see, e.g., [9]).

On ground terms, needed narrowing falls back to the classical notion of “needed reduc-
tion” in the sense of Huet and Lévy [13]. Evaluation by needed narrowing has also some
similarities to pattern matching and lazy evaluation in functional languages like Haskell [12]
or Miranda [29]. Note, however, that needed narrowing or needed reduction is a more power-
ful evaluation strategy than the simpler left-to-right pattern matching in current functional
languages. For instance, consider the rules

f(0,0) — 0
f(X,s(N)) — 0

and a non-terminating function L. Since only the evaluation of the second argument of f
is needed in order to apply a reduction rule, needed narrowing does not evaluate the first



argument of the function call f(L,s(0)). Thus, needed narrowing reduces this expression to
0, in contrast to Miranda or Haskell which do not terminate on this function call. In general,
needed narrowing/rewriting always computes a normal form if it exists [1].

In this paper, we extend the needed narrowing strategy to higher-order functions and
A-terms as data structures. In contrast to current functional languages, we permit free
(existentially quantified) variables and A-abstractions in expressions, and the latter also
in left-hand sides of rewrite rules. This allows to manipulate objects, such as formulas
and programs, whose representation requires structures containing abstractions or bound
variables. For instance, this has interesting applications in the verification and synthesis of
software and hardware [32, 33, 34]. Furthermore, quantified goals are possible, as a goal
Vx.s = V.t is equivalent to Az.s = Ax.t.

As a simple example of such higher-order functional logic programs, we define the differ-
ential of a function at some point.

Example 1.2 Consider the following rules defining a higher-order function diff, where
diff(F, X)) computes the differential of F' at X (we abbreviate s(0) by 1):

diff A\y.y, X) — 1
diff( Ay.sin(F(y)), X) — cos(F(X))* diff( \y.F(y), X)
diff Ay.In(F(y)), X)  —  diff(A\y.F(y), X)/F(X)

With these rules, we can compute the differential of the double application of the function
Sin:

Az.diff( Ay.sin(sin(y)),x) — Ax.cos(sin(x)) * diff( \y.sin(y), )
—  Az.cos(sin(x)) x cos(x) * diff( \y.y, x)
—  Az.cos(sin(x)) * cos(x) * 1

Since we also allow free variables in expressions which are solved by narrowing, our calculus
is able to synthesize new functions satisfying some goal. For instance, the equation

Az diff A\y.sin(F(z,9))), ) = A\x.cos(z)
is solved by instantiating the higher-order variable F' by the projection function Az, y.y.

The interesting point in this example is the structure of the left-hand side of the rules.
In order to apply a rule for diff, the first argument must always be evaluated to the form
Ay.o(--+) with v € {y, sin, In}, whereas the second argument can be arbitrary. In this sense,
the first argument of diff is needed in contrast to the second. This property provides an
efficient evaluation strategy similar to the first-order case. Thus, the main contributions of
this paper are as follows.

e We introduce a class of higher-order inductively sequential rewrite rules which can be
defined via definitional trees. Although this class is a restriction of general higher-order
rewrite systems, it covers higher-order functional languages.

e As higher-order rewrite steps can be expensive in general, we show that finding a
redex with inductively sequential rules can be performed as in the first-order case.
Furthermore, so-called flex-flex pairs do not have to be considered in this case, in
contrast to general higher-order unification.



e Since our narrowing calculus LNT is oriented towards previous work on higher-order
narrowing [33], we show that LNT coincides with needed narrowing in the first-order
case. Note that steps of classic narrowing strategies (e.g., [14, 35]) are defined as a
variable instantiation followed by the reduction of some subterm, whereas more recent
lazy narrowing strategies [11, 15, 20, 22] manipulate equation systems in the style
of Martelli and Montanari’s unification algorithm [19] and always reduce outermost
function symbols instead of subterms. Thus, we present, for the first time, a needed
narrowing calculus in the Martelli/Montanari style and show its equivalence with the
original formulation. This leads to a better understanding and a formal comparison of
the different calculi.

e For the higher-order case, we show soundness and completeness with respect to higher-
order needed reductions, which we define via definitional trees.

e We show that the calculus is optimal w.r.t. the solutions computed, i.e., no solution is
produced twice. Optimality of higher-order reductions is subject of current research. It
is however shown that higher-order needed reductions are in fact needed for reduction
to a constructor normal form. Thus, this strategy is the first calculus for higher-order
functional logic programming which provides for optimality results. Moreover, it falls
back to the optimal needed narrowing strategy if the higher-order features are not
used, i.e., our calculus is a conservative extension of an optimal first-order narrowing
calculus.

e Since we allow higher-order logical variables denoting A-terms (similar to AProlog [25]
or Escher [17]), applications go beyond current functional and logic programming lan-
guages. In general, our calculus can compute solutions for variables of functional type.
Although this is very powerful, we show that the incurring higher-order unification can
sometimes be avoided by techniques similar to [4].

After recalling basic notions from the A-calculus and term rewriting, we relate in Section 3 the
original first-order needed narrowing calculus with the lazy narrowing calculus LNT in the
style of Martelli and Montanari and show the equivalence of both calculi. Section 4 introduces
higher-order inductively sequential rewrite systems and the extension of our calculus LNT
to such programs is shown in Section 5. We proof soundness and completeness results in
Section 6 and an optimality result in Section 7. Finally, Section 8 discusses criteria to avoid
the sometimes operationally complex higher-order unification features of LNT.

2 Preliminaries

We briefly introduce the simply typed A-calculus (see e.g. [10]). We assume the following
variable conventions:

e F G, H,P X,Y denote free variables,
e a,b ¢ f,g (function) constants, and

e 1.1,z bound variables.



Type judgments are written as t : 7. Further, we often use s and ¢ for terms and u, v, w for
constants or bound variables. The set of types 7 for the simply typed A-terms is generated
by a set 7, of base types (e.g. int, bool) and the function type constructor —. The syntax
for A-terms is given by

t = F | x| cl| Xt | (thts)
A list of syntactic objects si,...,s, where n > 0 is abbreviated by 5,. For instance,
n-fold abstraction and application are written as AT,.s = Ax;...\x,.s and a(5,) =

((+--(as1)---) sp), respectively. Substitutions are finite mappings from variables to terms,
denoted by {X, — t,}, and extend homomorphically from variables to terms. Free and
bound variables of a term ¢ will be denoted as FV(t) and BV(t), respectively. A term ¢ is
ground if FV(t) = {}. The conversions in A-calculus are defined as:

e a-conversion: \z.t =, \y.({z — y}t),
e [-conversion: (A\z.s)t =5 {z — t}s, and
e 7-conversion: if x ¢ FV(t), then \z.(tx) =, .

The long #n-normal form [26] of a term ¢, denoted by ¢]}, is the n-expanded form of the
B-normal form of ¢. It is well known [10] that s =.g, t iff SIZ =a tIg As long fBn-normal
forms exist for typed A-terms, we will in general assume that terms are in long fn-normal
form. For brevity, we may write variables in n-normal form, e.g. X instead of A%, . X (T,).
We assume that the transformation into long #n-normal form is an implicit operation, e.g.
when applying a substitution to a term.

A substitution 6 is in long An-normal form if all terms in the image of € are in long
On-normal form. The convention that a-equivalent terms are identified and that free and
bound variables are kept disjoint (see also [5]) is used in the following. Furthermore, we
assume that bound variables with different binders have different names. Define Dom/(6) =
{X | 0X # X} and Rng(0) = Uxepom@e) FV(0X). Two substitutions are equal on a
set of variables W, written as 6 =y ¢, if 0o = @'« for all @ € W. The restriction of
a substitution to a set of variables W is defined as Oy = 0o if « € W and Opa = «
otherwise. A substitution # is idempotent iff # = #6. We will in general assume that
substitutions are idempotent. A substitution 8" is more general than 6 over a set of variables
W, written as 8 <y 0, if 8 =y, 06’ for some substitution o. We describe positions in A-terms
by sequences over natural numbers. The subterm at a position p in a A-term ¢ is denoted
by t|,. A term ¢ with the subterm at position p replaced by s is written as ¢[s],,.

A term t in (-normal form is called a higher-order pattern if every free occurrence
of a variable F' is in a subterm F'(w,) of ¢ such that the @, are n-equivalent to a list of
distinct bound variables. Unification of patterns is decidable and a most general unifier
exists if they are unifiable [23]. Examples of higher-order patterns are Az, y.F(x,y) and
Az.f(G(Az.z(z))), where the latter is at least third-order. Non-patterns are for instance
Az, y.F(a,y) and \z.G(H(x)).

A rewrite rule [26] is a pair [ — r such that [ is a higher-order pattern but not a free
variable, [ and r are long n-normal forms of the same base type, and FV(I) O FV(r).



Assuming a rule [ — r and a position p in a term s in long Gn-normal form, a rewrite step
from s to t is defined as

s—iit = s|, =00 N t=s[0r], .

For a rewrite step we often omit some of the parameters [ — r,p and 6. It is a standard
assumption in functional logic programming that constant symbols are divided into free
constructor symbols and defined symbols. A symbol f is called a defined symbol or
operation, if a rule f(---) — t exists. A constructor term is a term without defined
symbols. Constructor symbols and constructor terms are denoted by ¢ and d. A term f(,)
is called operation-rooted (respectively constructor-rooted) if f is a defined symbol
(respectively constructor). A higher-order rewrite system (HRS) R is a set of rewrite
rules. A term is in R-normal form if no rule from R applies and a substitution @ is
R-normalized if all terms in the image of # are in R-normal form.

By applying rewrite steps, we can compute the value of a functional expression. However,
in the presence of free variables, we have to compute values for these free variables such that
the instantiated expression is reducible. This is the motivation for narrowing which will be
precisely defined in the following sections. Narrowing is intended to solve goals, where a goal
is an expression of Boolean type that should be reduced to the constant true. This is general
enough to cover the equation solving capabilities of current functional logic languages with
a lazy operational semantics, like BABEL [24] or K-LEAF [6], since the strict equality ~
can be defined as a binary operation by a set of orthogonal rewrite rules.

We follow the same approach and interpret equations as terms by defining the symbol ~
as a binary operation (more precisely, one operation for each base type). The operation ~
is defined by the following rules, where A is assumed to be a right-associative infix symbol,
and c is a constructor of arity 0 in the first rule and arity n > 0 in the second rule.

c~c — true
Xy, ., X)) ~ce(Xy,.. ., X)) — (Xi=Y)A-A(X,xY,)
truenNX — X

With these rules an equation is valid if it can be rewritten to true (see [2, 6, 24] for more
details about strict equality).! This interpretation of equality in goals is also taken in
functional logic languages with higher-order features [7].

The substitution o is a solution of a goal G iff o(G) can be rewritten to true. An
important consequence of this restriction on goals is the fact that during the successful
rewriting of a goal the topmost symbol is always an operation or the constant true. This
property will be used to simplify the narrowing calculus.

Notice that a subterm s|, may contain free variables which used to be bound in s. For
rewriting it is possible to ignore this, as only matching of a left-hand side of a rewrite rule
is needed. For narrowing, we need unification and hence we use the following construction
to lift a rule into a binding context to facilitate the technical treatment. An Tg-lifter of a
term ¢ away from W is a substitution 0 = {F — (pF)(T%) | F € FV(t)} where p is a
renaming such that Dom(p) = FV(t), Rng(p) "W ={} and pF : 174y — -+ — 7, — 7 if
Ty T, .., T T and F @ 7. A term ¢ (rewrite rule | — r) is Tg-lifted if an Tg-lifter has

'Note that normal forms may not exist in general due to non-terminating rewrite rules.



been applied to ¢ (I and r). For example, {G — G'(z)} is an z-lifter of g(G) away from any
W not containing G’.

3 First-Order Definitional Trees

Definitional trees are introduced in [1] to define efficient normalization strategies for (first-
order) term rewriting. The idea is to represent all rules for a defined symbol in a tree and to
control the selection of the next redex by this tree. This technique is extended to narrowing
in [2] where it is shown that a narrowing strategy based on definitional trees is optimal in
the length of narrowing derivations and the number of computed solutions. We will extend
definitional trees to the higher-order case in order to obtain a similar strategy for higher-
order narrowing. To state a clear relationship between the first-order and the higher-order
case, we review the first-order case in this section and present the needed narrowing calculus
in a new form, which is more appropriate with regard to the extension to the higher-order
case. Thus, we assume in this section that all terms are first-order, i.e., A-abstractions and
functional variables do not occur.

A traditional narrowing step [8] is defined by computing a most general unifier of a
subterm of the current term and the left-hand side of a rewrite rule, applying this unifier
to the current term and replacing the subterm by the instantiated right-hand side of the
rule. More precisely, a term ¢ is narrowed into a term ¢’ if there exist a non-variable
position p in t (i.e., t|, is not a free variable), a variant [ — 7 of a rewrite rule with
FV(t)NFV(l — r) = {} and a most general unifier o of ¢|, and ! such that ¢t = o(t[r],).
In this case we write ¢ o v t'.2 We write ty ~* t, if there is a narrowing derivation
lg ~o, 11 ~ogy o0~y t, With 0 = 0, ---090;7. In order to compute all solutions by
narrowing, we have to apply all rules at all non-variable subterms in parallel. Since this
simple method leads to a huge and often infinite search space, many improvements have
been proposed in the past (see [8] for a survey). A narrowing strategy determines the
position where the next narrowing step should be applied. As shown in [2], an optimal
narrowing strategy can be obtained by dropping the requirement for most general unifiers
and controlling the instantiation of variables and selection of narrowing positions by a data
structure, called definitional tree. To provide a precise definition of this needed narrowing
strategy, we first recall the notion of a definitional tree. 7 is a definitional tree with
pattern 7 iff its depth is finite and one of the following cases holds:

T =rule(l — r), where [ — r is a variant of a rule in R such that | = 7.

T = branch(r,o0,7;,), where o is an occurrence of a variable in 7, ¢ are pairwise different
constructors of the type of 7|, (k > 0), and, for i = 1,... k, 7; is a definitional tree
with pattern 7[c;(X,,)],, where n; is the arity of ¢; and X,,, are new distinct variables.

We denote by pat(T) the pattern of the definitional tree 7. A definitional tree of an
n-ary function f is a definitional tree 7" with pattern f(X,,), where X,, are distinct variables,
such that for each rule [ — r with [ = f(%,) there is a node rule(l’ — r') in 7 with [ variant

2Since we are interested only in the instantiation of the goal variables, we omit the bindings of the other
local variables in the narrowing steps.



of '3 For instance, the rules in Example 1.1 can be represented by the following definitional
tree:

branch(X <Y, 1,rule(0 <Y — true),
branch(s(X') <Y, 2, rule(s(X’) <
rule(s(X’) < s(Y') — X' <Y")))

This tree can be illustrated by the following picture:

‘O§Y|—>t7’ue‘ S(X’I) <Y

|
s(X') <0 — false| |s(X') <s(Y')— X' <Y’

A definitional tree starts always with the most general pattern for a defined symbol and
branches on the instantiation of a variable to constructor-headed terms, here 0 and s(X').
It is essential that each rewrite rule occurs only once as a leaf of the tree. Thus, when
evaluating the arguments of a term f(¢,,) to constructor terms, the tree can be incrementally
traversed to find the matching rule.

A function f is called inductively sequential if there exists a definitional tree of f
such that each rule node corresponds to exactly one rule of the rewrite system R. The term
rewriting system R is called inductively sequential if each function defined by R is inductively
sequential. Thus, inductively sequential rewrite rules are a subclass of constructor-based
orthogonal rewrite systems which are appropriate to reflect current functional languages.

3.1 Narrowing with Definitional Trees

A definitional tree defines a strategy to apply narrowing steps. To narrow a term t, we
consider the definitional tree 7 of the outermost function symbol of ¢ (note that, by our
restriction on goals, the outermost symbol is always a Boolean function).

T =rule(l — r): Apply rule I — 7 to ¢ (note that ¢ is always an instance of 1).
T = branch(r,0,7;,): Consider the subterm ¢,.
1. If t|, has a function symbol at the top, we narrow this subterm (to a head normal

form) by recursively applying our strategy to t|,.

2. If t|, has a constructor symbol at the top, we narrow ¢ with 7;, where the pattern
of 7; unifies with ¢, otherwise (if no pattern unifies) we fail.

3. If t|, is a variable, we non-deterministically select a subtree 7, unify ¢ with the
pattern of 7; (i.e., t|, is instantiated to the constructor of the pattern of 7; at
position o), and narrow this instance of ¢ with 7;.

3This corresponds to Antoy’s notion [1] except that we ignore exempt nodes.



This strategy is called needed narrowing [2] and is the currently best narrowing strategy
due to its optimality w.r.t. the length of derivations (if terms are shared) and the number of
computed solutions.

A formal description of this strategy in terms of an inference system is shown in Figure 1.
If we want to narrow the operation-rooted term ¢ to some constructor, we apply inference
steps to the term t until we obtain the constructor or we fail.* An Eval-goal is any sequence
obtained from such an initial goal by applying inference steps of this calculus. The inference
rule Initial decorates the initial term with the appropriate definitional tree. If this tree is
a rule, then the inference rule Apply applies an instance of this rule to the current term.
Select selects the appropriate subtree of the current definitional tree, and Instantiate
non-deterministically selects a subtree of the current definitional tree and instantiates the
variable at the current position to the appropriate pattern. The rule Eval Subterm initiates
the evaluation of the subterm at the current position by creating a new Eval-goal for this
subterm.® If a rewrite rule has been applied to this subterm (by inference rule Apply),
the rewritten subterm is inserted at the current position by the inference rule Replace
Subterm.

Example 3.1 Consider the rules of Example 1.1 and the initial goal s(X) < Y. The
following derivation shows the computation of the answer {X — 0,Y — s(Y3)} in the
needed narrowing calculus. In contrast to traditional narrowing steps, where a subterm
is directly unified with the left-hand side of some rewrite rule, the derivation steps in the
needed narrowing calculus explicitly show the selection of the subterm and the instantiation
of the goal variables.

s(X)<Y
= Initial
Eval(s(X) <Y, branch(X, <Yy, 1, rule(---),branch(s(Xs) < Y1,...)))

= Select
Eval(s(X) <Y, branch(s(Xs2) < Y1,2,rule(s(Xs) <0 — ---),rule(s(X2) < s(Ya) — --+)))

{Y—s(Y2)}
jI nstantiate

Eval(s(X) < s(Y3), rule(s(Xs) < s(Ys) — Xy <Y3))

= Apply
X <Y,

= Initial
Eval(X < Ya,branch(Xs < Yz, 1,rule(0 <Ys — true), branch(s(Xy) <Y3,...)))

{X—0}
:>Instantiate

Eval(0 < Ys,rule(0 < Y5 — true)) = appy true

4This description of needed narrowing is slightly different than in [2] but more appropriate for the sub-
sequent proofs. In [2], the term to be narrowed is always traversed from the root to the narrowing position
in each narrowing step, whereas the traversal is represented here by a sequence of Eval-goals.

5As in proof procedures for logic programming, we assume that we take a definitional tree with fresh
variables in each such evaluation step.



Initial
t =8 Eval(t, T)
if t = f(t,) and 7 is a definitional tree of f

Apply
Eval(t,rule(l — 7)),G =1 o(r),G
ifo(l) =t
Select

Eval(t,branch(m,0,73)),G =1 Eval(t,T;),G
if t|, = c(t,) and pat(T;)|, = ¢(X,,)
Instantiate
Eval(t,branch(m,0,Ty)), G =° o(Eval(t,T;), Q)
if t|, = X (variable) and o = {X + pat(7;)|,}
Eval Subterm
Eval(t,branch(m,0,73)),G =1 Eval(t|,, T), Eval(t, branch(x, 0, T;)), G
if t|, = f(t,) and 7 is a definitional tree of f
Replace Subterm
t', Eval(t, branch(r,0,T;)), G = Eval(t[t'],, branch(x,0,T;)), G
if ¢/ # Eval(...,...)

Figure 1: Calculus for needed narrowing

3.2 Narrowing with Case Expressions

In order to extend this strategy to higher-order functions, another representation is useful
since an explicit representation of the structure of definitional trees in the rewrite rules
provides more explicit control which leads to a simpler calculus. Also, it is shown in [30]
that the direct application of narrowing steps to inner subterms should be avoided in the
presence of A-bound variables. This new representation will lead to an interesting comparison
of needed rewrite sequences and leftmost outermost rewriting with case expressions.

For this purpose we transform the needed narrowing calculus into a lazy narrowing cal-
culus in the spirit of Martelli/Montanari’s inference rules. In a first step, we integrate the
definitional trees into the rewrite rules by extending the language of terms and by providing
case constructs to express the concrete narrowing strategy. A case expression has the form

case X of c1(Xn,) : X1y en(Xy,) @ X

where X is a variable, ¢y, ..., ¢; are different constructors of the type of X, and Xy, ..., A} are
terms possibly containing case expressions. The variables X,,, are called pattern variables
and are local variables which occur only in the corresponding subexpression Aj.

Using case expressions, each inductively sequential function symbol can be defined by
exactly one rewrite rule, where the left-hand side consists always of the function symbol

10



applied to different variables and the right-hand side is a representation of the corresponding
definitional tree by case expressions. For instance, the rules for the function < defined in
Example 1.1 are represented by the following rewrite rule:

X<Y — case X of 0 : true,
s(X1) : caseY of 0 . false,
s(Yi) + Xi <1

Although this is not a rewrite rule in the traditional sense (due to the fresh pattern variables),
we will provide a unique operational reading by specifying a particular semantics to case
expressions. A case expression can be considered as a function symbol whose semantics
is defined by a set of rewrite rules. For instance, the last case expression is considered
as a function of arity 5 (“case(X,0,true, s(X1),case(Y,...))”, but we still use the mixfix
notation in this paper) together with the following rewrite rules (where “.” denotes an
arbitrary anonymous variable):

case 0 of 0:T, _ :_ — T
case s(X)of _:_, s(X):T — T

To be more precise, we translate a definitional tree 7 into a term with case expressions by
the use of the translation function Case(7):

Case(rule(l — 1)) = r

Case(branch(m,0,T;)) = case 7|, of pat(Ty)|, : Case(Ty),. .., pat(Ty)|, : Case(Ty)

If 7 is the definitional tree with pattern f(X,,) of the n-ary function f, then

f(X,) — Case(T)

is the new rewrite rule for f. A case expression case X of p, : X, can be considered as a
function with arity 2n + 1 where the semantics is defined by the following n rewrite rules:®

case pyof p1:X,...,_:_. — X
case p, of _: _,....pp: X — X
If we apply a narrowing step to an expression of the form case t of py : t1,...,pn : t,, there

are two principal possibilities:

1. If t is a variable, we can apply any of the n defining rules for case, i.e., there are n
possible narrowing steps

case t of p1:ty,...,pn ity ~o o(t;)

with 0 = {t — p;} (i € {1,...,n}). This corresponds to an instantiation step in the
needed narrowing calculus.

5To be more precise, different case functions are needed for case expressions with different patterns, i.e.,
the case functions should be indexed by the case patterns. However, for the sake of readability, we do not
write these indices and allow the overloading of the case function symbols.

11



2. If t is a constructor-rooted term c(3) and p; = ¢(Xy) for some i € {1,...,n}, then
caset of p1:ty,...,pn ity ~p o(ly)

for o = { X} — s} We write ~»y instead of ~», since we are interested only in the
instantiation of goal variables and the pattern variables occur only locally in the ex-
pression t;. This step corresponds to a selection step in the needed narrowing calculus.

In the following, we denote by R an inductively sequential rewrite system, by R’ its translated
version containing exactly one rewrite rule for each function defined by R, and by R, the
additional case rewrite rules. We will show a strong correspondence between derivations
in the needed narrowing calculus and leftmost-outermost narrowing derivations. Leftmost-
outermost narrowing means that the selected subterm is the leftmost-outermost one among
all possible narrowing positions.”

Example 3.2 Consider again the rules of Example 1.1 and the initial goal s(X) <Y. The
following derivation is a sequence of leftmost-outermost narrowing steps to compute the
answer {X — 0,Y — s(Y7)}. The applied rewrite rules are the single rule for < together
with the rewrite rules for case expressions as shown above.

s(X)<Y

~ () case s(X) of 0:true, s(Xy): (case Y of 0: false, s(Y7): X1 < Y1)
~ 0 case Y of 0: false, s(Y): X <Y

~yes(v)y X <Y

~ () case X of 0:true, s(Xs): (case Yy of 0: false, s(Ya): Xo <Y5)
(X0} true

To relate needed narrowing derivations and leftmost-outermost derivations with case expres-
sions, we define the following translation £C from Eval-goals into terms with case expressions.

EC(t) =t

EC(Eval(t, T)) = o(Case(T)) where o(pat(7T)) =t

EC(G, Eval(t,branch(r,0,T;))) = case EC(G) of py : Xy

where EC(Eval(t,branch(r,0,7;,))) = case s of pi : X

Hence, a single Eval-goal is translated into the definitional tree represented by case expres-
sions and instantiated with the arguments of the goal. A sequence of Ewval-goals, which may

occur due to nested function evaluations, is folded into a single case expression by inserting
the first goals into the first argument of the final case expression. For instance, the Eval-goal

0, Eval(04 0 <Y, branch(X; <Y1, 1,rule(0 <Y; — true),branch(s(Xz2) < Y1,...)))

7A position p is leftmost-outermost in a set P of positions if there is no p’ € P with p’ prefix of p, or
p=q-i-¢dandp=q-j-¢" and i < j.
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is translated by £C into the term
case 0 of 0 :true, s(Xy): (case Y of 0: false, s(Y7): X; <Y))

The following lemma shows that each inference step in the needed narrowing calculus w.r.t.
R corresponds to zero or one leftmost-outermost narrowing steps w.r.t. R’ U R..

Lemma 3.3 Let G be an Eval-goal, t = EC(G), and G =7 G’ be an inference step in the
needed narrowing calculus. Then, either EC(G') =t and o = {}, or there exists a unique
leftmost-outermost narrowing step t ~, t' w.r.t. R' UR,. with EC(G") =1'.

Proof We distinguish the different cases for the applied inference rule of the needed narrow-
ing calculus. Note that G has the form Eval(s,T), Gy except for the inference rules Initial
and Replace Subterm.

1. The inference rule Initial is applied: Then G =t = f(t,) for some function f. Let
T be a definitional tree for f with pattern f(X,) and ¢ = {X,, — ¢,}. Then t ~g
©(Case(T)) is a unique leftmost-outermost narrowing step w.r.t. R’ U R,.. Moreover,

EC(G") = EC(Eval(t,T)) = p(Case(T)).

2. The inference rule Apply is used: Then o = {}, 7 = rule(l — r), ¢(I) = s for some
substitution ¢, and G’ = ¢(r),Go. If Gy = {}, then t = EC(G) = p(r) = EC(G')
by definition of £C. If Gy # {}, then, by definition of £C, t and £C(G’) may only
differ in the case argument of some case expression, where ¢ contains the subterm
EC(Ewval(s,T)) and EC(G’) contains the subterm (r) at this case argument. However,
EC(Ewval(s,T)) = p(r) by definition of EC.

3. The inference rule Select is applied: Then Tibrcmch(ﬁ,o,Tk), sl, = c(tn), o = {},

and G' = Eval(s,T;), Gy where pat(7;) = ¢(X,,). First, consider the case Gy = {}.
Then

t = p(case m|, of pat(Ty)l|, : Case(Ty))

with p(7) = s. Since s|, = c(t,), ¢(7)|o = ¢(X,). Due to the form of the case rules,
exactly one case rule (the i-th rule) can be applied to ¢, i.e., t ~g ¢'(¢(Case(T;)))
with ¢ = {X,, — t,} and pat(7;) = 7[c(X,)]o. Since () = s and s|, = c(t,),
O (@(pat(7T;))) = s. Thus, EC(Eval(s,T;)) = ¢'(¢(Case(T;))).

If Go # {}, t is a term consisting of nested case expressions and
EC(Eval(s, branch(w,0,7;))) is the leftmost-outermost position in ¢ where a narrow-
ing step can be applied (by definition of £C). Hence we apply a leftmost-outermost
narrowing step to this subterm of ¢ analogously to the case Go = {}.

4. The inference rule Instantiate is applied: Then 7 = branch(m,0,7T}), s|, = X, 0 =
{X — pat(T;)}, and G' = o(Eval(s,T;),Gy). Consider the case Gy = {} (the case

Go # {} can be treated analogously as in the previous case). Then

t = p(case 7|, of pat(Tx)l|, : Case(Ty))
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with ¢(m) = s. Since s|, = X and due to the form of the case rules, exactly one
case rule (the i-th rule) can be applied to ¢ in order to instantiate X to the same
pattern, i.e., t ~, o(p(Case(7;))). Since p(r) = s and o(s|,) = o(X) = pat(T;)|,,
o(e(pat(T;))) = s. Thus, EC(Eval(s,T;)) = o(p(Case(T;))).

5. The inference rule Eval Subterm is applied: Then T = branch(rw,0,T;), sl, = f(tn),
o ={}, and G' = Eval(s|,, T"),Eval(s,T),Gy where T’ is a definitional tree of f.
Consider the case Gy = {} (the case Gy # {} can be treated analogously). Then

t = p(case m|, of pat(Tx)l|, : Case(Ty))

with ¢(m) = s. Since s|, = f(t,) = @(m)|,, no case rule is applicable to the root of
t. Thus, ¢(7|,) is the subterm at the leftmost-outermost narrowing position, and the
only applicable rule is f(X,,) — Case(7T") (if f(X,) is the pattern of 7”). Thus,

t ~qy case T(Case(T")) of pat(Ty)|, : p(Case(Ty))
with 7 = {X,, — t,} is the only possible leftmost-outermost narrowing step. Moreover,

EC(Eval(slo, T'),Eval(s,T))
case EC(Eval(sl,, T")) of pat(Tx)|, : p(Case(Ty))
= case 7(Case(T")) of pat(Tx)l|, : p(Case(Ty)) .

The last equality holds by definition of £C since 7(pat(7")) = 7(f(X,)) = f(t,) = sl

6. The inference rule Replace Subterm is applied: Then G = r,Eval(s,T), Gy, T =
branch(r,0,7;), o = {}, and G’ = Eval(s[r],, T ), Gy. Consider the case Gy = {} (the
case Gy # {} can be treated analogously). Then

t = EC(r,Eval(s,T))
= case EC(r) of pat(Ty)|o : ¢(Case(T))
= case r of pat(Ty)|o : p(Case(Ty))

with ¢(7) = s. On the other hand,

EC(Eval(s[r]y, branch(r,0,T)))
= case ¢'(7|o) of pat(Ty)lo : ¢'(Case(Ty))

with ¢'(7) = s[r],. Hence the only difference between ¢ and ¢’ is the instantiation of
the variable 7|,: ¢'(7|,) = r and p(7|,) = $|o,. W.lLo.g. we can assume that the case
variable 7|, does not occur in any subtree 7, (we can always construct a definitional tree
in such a way). Thus, both terms ¢ and EC(Eval(s[r],, branch(rw,0,T;))) are identical
(i.e., it is not necessary to perform a leftmost-outermost narrowing step).

O

The equivalence of needed narrowing w.r.t. R and leftmost-outermost narrowing w.r.t. R' U
R. is based on the previous lemma:
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Bind
e—"2G =1 oG)
where 0 = {Z — e} and e is not a case term

Case Select
case c(t,) of pr: X —' Z2,G =8 o(X) =" Z, G

if p; = c(X,,) and 0 = {X,, — t,}

Case Guess
case X of pr: X —' Z,G =° o(X) =" Z, o(G)

where 0 = {X — p;}

Case Eval
case f(t,) of pp: X —' Z,G =1 o(X) =" X, case X of py - X =" Z,G

if f(X,) — X € R’ is arule with fresh variables,
o={X,— t,}, and X is a fresh variable

Figure 2: Calculus LNT for lazy narrowing with definitional trees in the first-order case

Theorem 3.4 Lett be a term with a Boolean function at the top. For each needed narrowing
deriation t ~) true w.r.t. R there exists a leftmost-outermost narrowing derivation t ~7
true w.r.t. R'UR,, and vice versa.

Proof By induction on the derivation steps and applying Lemma 3.3, we can construct
for each needed narrowing derivation starting from ¢ a unique leftmost-outermost narrowing
derivation starting from £C(t) = ¢t which computes the same solution for the variables in t.
On the other hand, it is straightforward to show (by a case distinction similar to the proof
of Lemma 3.3) that each leftmost-outermost narrowing derivation ¢t ~7 true w.r.t. R UR.
corresponds to a needed narrowing derivation ¢ ~7 true w.r.t. R. a

As mentioned above, in the higher-order case we need a narrowing calculus which always
applies narrowing steps to the outermost function symbol. This is often different from the
leftmost-outermost narrowing position. For this purpose, we transform a leftmost-outermost
narrowing derivation w.r.t. R’ U R, into a derivation on a goal system G (a sequence of
goals of the form ¢ —7 X') where narrowing rules are only applied to the outermost function
symbol of the leftmost goal. This is the purpose of the inference system LNT shown in
Figure 2. The Bind rule propagates a term to the subsequent case expression. The Case
rules correspond to the case distinction in the definition of needed narrowing, where the
narrowing of a function is integrated in the Case Eval rule. Note that the only possible
non-determinism during computation with these inference rules is in the Case Guess rule.
Since we are interested in solving goals by reduction to true, we assume that the initial goal
Z(t) for a term t has always the form case t of true : true —" T. We use this representation
in order to provide a calculus with fewer inference rules. Note that 7'+ true if such a goal
can be reduced to the empty goal system.

Example 3.5 The following LNT-derivation corresponds to the leftmost-outermost narrow-
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ing derivation shown in Example 3.2.
case s(X) <Y of true: true —' T
= Case Bval case $(X) of 0:true, s(X1): (case Y of 0: false, s(Y1): X, <Y)) =" Z,
case Z of true : true —° T

= Case Select Case Y of 0: false, s(Y1): X <Y, =" Z, case Z of true : true —" T

:>{C);;S(G);1£s X <Y, =" Z, case Z of true: true —' T

= Bind case X <Y, of true : true —* T
= Case Bval case X of 0:true, s(Xs): (case Yy of 0: false, s(Ys): Xy <Ys) =" 7',
case Z' of true : true —* T

{X—0} ? 71 / . ?
= Case Cuess  true =" Z' case Z' of true : true —° T

= Bind case true of true : true —° T
?

= Case Select true —' T

= Bind {}

The inference rules LNT of the calculus LNT keep the following important invariant on goal
systems:

(%) If G1,1 =" r,G5 is a goal system, then r is a variable which does not occur in G and

l.

There is a strong correspondence between terms with case expressions and goal systems,
since each single equation ¢ —* X can be “flattened” into a goal system by the following
function Flat:®

Flat(f(t,) =" X) = f(t.) = X
Flat(case t of p, : X, —7 X)
_ {]:lat(t —"Y),case Y of p,: X, =" X ift=case...and Y fresh variable

case t of p, : X, otherwise
For instance, if we apply the function Flat to the goal
case (case X <Y of true : true) of true: true —"' T
we obtain the “flattened” goal system
case X <Y of true: true —° Z, case Z of true : true —" T .

On the other hand, goal systems satisfying invariant (%) can be “folded” by the following
function Fold into a single equation representing a term with nested case expressions:
Fold(t —" X) = t—"X
Fold(t =" X,G) = Fold(o(G)) with o= {X st}
The following lemma shows that for each leftmost-outermost narrowing step in a derivation
w.r.t. R UR, there is a corresponding LNT-derivation w.r.t. R’'.

8Formally, Flat is not a function due to the arbitrarily chosen fresh variables. However, by fixing the set
of fresh variables and introducing an order on it, Flat can be interpreted as a function.
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Lemma 3.6 Lett~», t' be a leftmost-outermost narrowing step in a derivation of the initial
term case ty of true : true w.r.t. R' UR. and X a fresh variable. Then there exists a LNT-
step Flat(t =" X) =° G w.r.t. R' such that Fold(G) =t —" X.

Proof Since t ~, t' is a leftmost-outermost narrowing step in a derivation of the initial
term case ty of true : true, t has a case symbol at the top. Moreover, since it was derived
by leftmost-outermost narrowing steps w.r.t. R’ UR,, t has the structure

t = case; (...(case,_1 (case, s of px: Xg) of ...)...) of ...

where s has not a case symbol at the top (here we use indices to distinguish the different
case symbols). By definition of Flat,

Flat(t -7 X) = case, s of pr : X —'Y, 1, case1 Yiof ... =" X .
There are the following possibilities for s:

1. s is operation-rooted, i.e., s = f(f,). Then s is the subterm reduced by the leftmost-
outermost narrowing step, o = {}, and

t" = casey (... (case, 1 (case, p(X) of pr: Xx) of ...)...)of ...

if f(X,) — X is a rewrite rule and ¢ = {X,, — t,}. Since s is operation-rooted, we
can only apply the Case Eval rule to the goal system Flat(t —' X):

Flat(t =" X) =0
0(X) =" Yy, case, Yy, of pp: Xpe =" Yo1,...,case; Yiof ... =" X = G

By definition of Fold, Fold(G) =t —" X.

2. sis a variable: Then case,, s of pj : & is the subterm reduced by applying a case-rule
in the leftmost-outermost narrowing step, and

t'=o(casey (... (case,_1 X;of ...)...)of ...)

with 0 = {s + p;} for somei € {1,...,k}. To compute the same result by a LNT-step,
we apply the Case Guess rule to this goal system:

Flat(t =" X) =7 (X —"Y,_1,...,case; Y1 of ... =" X) =G
By definition of Fold, Fold(G) =t —" X.

3. s has a constructor at the top: Then case, s of p;: X} is the subterm reduced by
applying a case-rule in the leftmost-outermost narrowing step, ¢ = {} (since only
pattern variables are instantiated), and

t' = casey (...(case,_1 o(X;) of ...)...)of ...

where p; = ¢(X,,) for some i € {1,...,k} and ¢ = {X,, — ¢, }. Since s is constructor-
rooted, we can only apply the Case Select rule to the goal system Flat(t —* X):

Flat(t =* X) =8 o(X) =" Yu_1,...,case; Yy of ... ="' X = G
By definition of Fold, Fold(G) =t —" X.

17



We can extend this lemma to entire leftmost-outermost narrowing derivations.

Lemma 3.7 Let t = case ty of true : true, t ~% true be a leftmost-outermost narrowing
deriwation w.r.t. R' UR., and X a fresh variable. Then there exists a LNT-derivation
Flat(t =" X) =7 true —»* X w.r.t. R'.

Proof The proof is done by induction on the length n of the leftmost-outermost derivation
1 ~> true.

n = 1: Then t ~+, true. By Lemma 3.6, there exists a LNT-step Flat(t —’ X) =° G w.r.t.
R’ such that Fold(G) = true —* X. By definition of Fold, G = true —" X.

n > 1: Then t ~7 true has the form ¢ ~, t' ~""! true with ¢ = 7¢. By Lemma 3.6, there
exists a LNT-step Flat(t —" X) =¥ G w.r.t. R such that Fold(G) = ' =" X. By
induction hypothesis, there exists a LNT-derivation Flat(t' —" X) =7 true —" X.
If G = Flat(t' —" X), we can join the first LNT-step with this LNT-derivation to
the requested LNT-derivation. Hence, consider the case G # Flat(t' —" X). Since
Fold(G) =t —" X, G can be transformed into Flat(t’ —* X) by applying Bind rules.

O

The following lemma shows that each inference step in the calculus LNT w.r.t. R’ corresponds
to zero or one leftmost-outermost narrowing steps w.r.t. R’ U R..

Lemma 3.8 Lett be a term, X a variable which does not occur int, and Flat(t —* X) =°
G a LNT-step with G # {}. Then, either Fold(G) =t —" X or there exists a leftmost-
outermost narrowing step t ~», t' w.r.t. R' UR,. such that Fold(G) =t —" X.

Proof Let Flat(t — X) = s —" Y, F. We distinguish the different cases for the applied
inference rule of the calculus LNT:

1. The Bind rule is applied: Then ¢ = {} and G = ¢(F) with ¢ = {Y — s}. By
definition of Fold, Fold(G) =t —" X.

2. The Case Select rule is applied: Then o = {}, s = case c(t,) of px : Xk, pi = ¢(X,,) for
some i € {1,....k}, p = {X, — t,}, and G = p(X;) =" Y, F. By definition of Fold,
we can apply a leftmost-outermost narrowing step at the position of the subterm s of
t with an appropriate case-rule, i.e., t ~»g t' is a leftmost-outermost narrowing step

with Fold(G) =t —' X.

3. The Case Guess rule is applied: Analogously to the previous case.

4. The Case Eval rule is applied: Then o = {}, s = case f(t,) of pr : Xk, f(X,) — X is
a rewrite rule, ¢ = {X,, — t,}, and G = p(X) =" Z, case Z of py, : X}, for some fresh
variable Z. By definition of Fold, we can apply a leftmost-outermost narrowing step
at the position of the subterm f(#,) of ¢t with the same rewrite rule, i.e., t ~p t' is a
leftmost-outermost narrowing step with Fold(G) =t —7 X (by definition of Fold).
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O

The following theorem states the equivalence of leftmost-outermost narrowing and the lazy
narrowing calculus LNT.

Theorem 3.9 Let t be a term with a Boolean function at the top and X a fresh variable.
For each leftmost-outermost narrowing derivation t ~% true w.r.t. R' U R, there exists a
LNT-derivation case t of true:true —° X =° true —"X w.r.t. R', and vice versa.

Proof First, note that a leftmost-outermost narrowing derivation ¢ ~»7 true has a unique
correspondence to a leftmost-outermost narrowing derivation

case t of true: true ~. case true of true : true ~ true .

The existence of the corresponding LNT-derivation is a direct consequence of Lemma 3.7,
considering the fact that Flat(case t of true : true —' X) = case t of true : true —' X by
definition of Flat. The reverse direction follows from Lemma 3.8 with a simple induction on
the length of the derivations. O

Theorems 3.4 and 3.9 imply the equivalence of needed narrowing and the calculus LNT. Since
we will extend LNT to higher-order functions in the next section, the results in this section
show that our higher-order calculus is a conservative extension of an optimal first-order
narrowing strategy.

4 Higher-Order Definitional Trees

In the following we extend first-order definitional trees to the higher-order case. To gen-
eralize from the first-order case, it is useful to recall the main ideas: When evaluating the
arguments of a term f(%,) to constructor terms, the definitional tree can be incrementally
traversed to find the (single) matching rule. It is essential that each branching depends on
only one subterm (or argument to the function) and that for each rigid term (non-variable
headed), a single branch can be chosen. For this purpose, we need further restrictions in the
higher-order case, where we employ A-terms as data structure, e.g., higher-order terms with
bound variables in the left-hand sides. For instance, we permit higher-order rules like in Ex-
ample 1.2. In contrast to the original definition of needed narrowing in the first-order case,
we provide a definition of higher-order definitional trees in terms of case expressions. The
relationship of the original definitional trees and case expressions was extensively discussed
in the previous section.

A shallow pattern is a linear term of the form A\7,.v(H,,(Z,)). We will use shallow
patterns for branching in trees. In contrast to the first-order case, v can also be a bound
variable.

Definition 4.1 7 is a higher-order definitional tree (hdt) iff its depth is finite and one
of the following cases holds:

o 7T =p:case X of T,

e T =p:rhs,
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where p are shallow patterns with fresh variables, X is a free variable and 7, are hdts in
the first case, and rhs is a term (representing the right-hand side of a rule). Moreover, all
shallow patterns of the hdts 7,, must be pairwise non-unifiable.

We write hdts as p : X, where X stands for a case expression or a term. To simplify
technicalities, rewrite rules f(X,,) — X are identified with the hdt f(X,) : X. With this
latter form of a rule, we can relate rules to the usual notation as follows. The selector of
a tree 7 of the form 7 = p : X is defined as sel(7) = p. For a node 7’ in a tree 7, the
constraints in the case expressions on the path to it determine a term, which is recursively
defined by the pattern function pat7(7"):

atr(T') = {Sel(T’) if 7 =7 (i.e., 7' is the root)
patr — {X = sel(T")}patr(T") if T’ has parent 7" = p:case X of T,

Each branch variable must belong to the pattern of this node, i.e., for each node 7" = p :
case X of T, in atree 7, X is a free variable of pat7 (7). Furthermore, each leaf 7/ = p : rhs
of a hdt T is required to correspond to a rewrite rule [ — r, i.e., pat7(7") — rhs is a variant
of I — r. T is called hdt of a function f if for all rewrite rules of f there is exactly one
corresponding leaf in 7.

As in the first-order case, rewrite rules must be constructor based. This means that in
a hdt only the outermost pattern has a defined symbol. An HRS where each defined symbol
has a hdt is called inductively sequential.

For instance, the rules for diff in Example 1.2 have the hdt

diff(F, X)) — case F of A\y.y o1,
Ay.sin(F'(y)) : cos(F'(X)) * diff( \y.F'(y), X),
Myn(F'(y))  « diff(hy.F'(y), X)/F'(X)

For presenting definitional trees graphically, it is convenient to write pat7(7") for each node
7'. Thus we draw the tree for diff as:

diff(F, X)

diﬁ()\y.yl, X) — 1| |diff( \y.sin(F'(y)), X) — ...| |diff Ay.In(F'(y)), X) — ...

Note that free variables in left-hand sides must have all bound variables of the current scope
as arguments. Such terms are called fully extended. This important restriction, which is
also applied to study optimal reductions in [28], allows to find redices as in the first-order
case, and furthermore simplifies narrowing. For instance, flex-flex pairs (equations between
non-rigid terms) do not arise here, in contrast to the full higher-order case [31, 33]. Consider
an example for some non-overlapping rewrite rules which do not have a hdt:

fAz.c(z)) —

a
F\z.H) b

The problem is that for rewriting a term with these rules the full term must be scanned. For
example, if the argument to f is the rigid term Az.c(G(t)), it is not possible to commit to
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one of the rules (or branches of a tree) before checking if the bound variable x occurs inside
t. In general, this may lead to an unexpected complexity w.r.t. the term size for evaluation
via rewriting.

We define the Tg-lifting of hdts by schematically applying the Tg-lifter to all terms in the
tree, i.e., to all patterns, right-hand sides, and free variables in cases.

5 Narrowing with Higher-Order Definitional Trees

In the higher-order case, the rules of LNT of Section 3 must be extended to account for several
new cases. Compared to the first-order case, we need to maintain binding environments and
higher-order free variables, possibly with arguments, which are handled by higher-order
unification. For this purpose, the Imitation, Function Guess and Projection rules have been
added in Figure 3. These three new rules, to which we refer as the Guess Rules, are the only
ones to compute substitutions for the variables in the case constructs. The Case Guess rule
of the first-order case can be retained by applying Imitation plus Case Select. The Imitation
and Projection rules are taken from higher-order unification and compute a partial binding
for some variable. The Function Guess rule covers the case of non-constructor solutions,
which may occur for higher-order variables. It thus enables the synthesis of functions from
existing ones. Note that the selection of a binding in this rule is only restricted by the
types occurring. For all rules, we assume that newly introduced variables are fresh, as in the
first-order case.

Notice that for goals where only higher-order patterns occur, there is no choice between
Projection and Imitation and furthermore Function Guess does not apply. This special case
is refined later in Section 8.

For a sequence =% ... =0 of LNT steps, we write =7, where § = 6,,---6;. As in
Section 3 not all substitutions are recorded for =; only the ones produced by guessing
are needed for the technical treatment. Informally, all other substitutions only concern
intermediate (or auxiliary) variables similar to [31].

As in the first-order case, we consider only reductions to the dedicated constant true.
This is general enough to cover reductions to a term without defined symbols ¢, since a
reduction ¢ — ¢ can be modeled by f(t) — true with the additional rule f(c) — true and
a new symbol f. Hence we assume that solving a goal t —7 true is initiated with the initial
goal Z(t) = case t of true : true —" X.

Example 5.1 As an example, consider the goal
e diff \y.sin(F(x,y)), z) =" Ax.cos(x)
w.r.t. the rules for diff (see Example 1.2) and the hdt for the function x*:
X*Y —case Y of 1: X,s(Y"): X + X *Y’

Instead of the above, we add the rule f(Ax.cos(x)) — true and solve the following goal.
Since each computation step only affects the two leftmost goals, we often omit the others.
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Bind

e—"7,G

Case Select

AT..case Ay.u(
o X, =" Z,G

Imitation

ATf.case A\Tj. X( tm)
P Xy =" Z,G

Function Guess

tm) Of

of

ATg.case 7. X (t,,) o

Dn : Xn —-1Z.G

Projection

ATg.case Ny X
P Xy =" Z,

Case Eval

-0

-0

=0

MTg.case NJi.f(Tn) of =1
?

Pn Xy — Z,G

(@)

where 0 = {Z +— e} and e is not a case term

)\l‘_kO'(XZ) —7 Z, G
if p; = AJ1.v( X (Tk, 7)) and 0 = { X, = ATk, Uit }

o(\Tx.case 1. X (t) of pn: X, —' Z,Q)
if p; = Ag1.c(Xo (T, 7)) and 0 = {X +— \Tp,.c(Ho(Tm)) }

o(\Tg.case Ngi.X (T) of pn: X, =" Z,G)

if ATy, 71.X (t,,) is not a higher-order pattern,
o =A{Xw— A\T,,.f(H,(T))}, and f is a defined function

o(\Ty.case \gi. X (ty) of pn: X, —' Z,Q)
where 0 = {X — \T,,.2,(H,(Tm))}

o5, o (X) =" X,
\Ty..case Nyi. X (Tg, W) of pn: Xn —' Z,G

where 0 = {X,, — A\Tr, Uit }, and
[( X0 Tk, 1)) — X is a Ty, yi-lifted rule

Figure 3: System LNT for needed narrowing in the higher-order case
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case f(\x.diff( \y.sin(F(z,y)),x)) of true : true —’ X,
= Case Eval
case \x.diff( \y.sin(F(x,y)),x) of cos : true —" Xy, case X, of true : true —" X
= Case Eval
A\x.case \y.sin(F(x,y)) of ..., \y.sin(G(x,y)) : cos(G(x,z)) * diff \y.G(z,y),2),... =" X3,
case X3 of cos : true —° Xy, case Xy of true : true —° X,
=>Case Select
\x.cos(F(z,2)) * diff \y.F(z,y),z) —° X3, case X3 of cos : true —" X, ...
= Bind
case \x.cos(F(x,x)) * diff \y.F(x,y),z) of cos : true —" Xy, \x.case X5 of true : true —" X,
= Case Eval
A\x.case diff \y.F(z,y),x) of 1:cos(F(x,x)),... =" X3,case X3 of cos : true —" X, ...

= Case Eval
Av.case \y.F(z,y) of M.y :1,... =7 Xy, Av.case X4(x) of 1:cos(F(x,x)),... =" Xs,...
:>§)F*ﬁ/\9;,'y~y}
rojection

A\x.case \y.y of M\y.y:1,... —" Xy, \w.case Xy4(x) of 1:cos(x),... =" X5, ...
= Case Select

.1 —" Xy, A\v.case Xy(x) of 1:cos(x),... =7 Xs,...
= Bind

A\x.case 1 of 1: cos(z),... =" X3, case X3 of cos : true —" Xy, ...
= Case Select

Az.cos(x) —? X3, case X3 of cos :true —" Xy, case Xy of true : true —" X
= Bind

case cos of cos : true —° X, case Xy of true : true —° X
=>Case Select

true —7 X, case Xy of true : true —" X
= Bind

case true of true : true —"' X,  =case Setect  true —' X1 =pgina 1}

Thus, the computed solution is {F' — Az, y.y}.

6 Correctness and Completeness

As in the first-order case, we show completeness w.r.t. needed reductions. We first define
needed reductions and then lift needed reductions to narrowing. In the following, we as-
sume an inductively sequential HRS R and assume LNT is invoked with the corresponding
definitional trees.

6.1 Needed Reductions

For our purpose it is convenient to define needed reductions via LNT. Then we show that
they are in fact needed. For modeling rewriting, the Guess rules are not needed: S = EVT S’
if and only if no Guess rules are used in the reduction. Hence no narrowing is performed.
This can also be seen as an implementation of a particular rewriting strategy.
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In order to relate a system of LNT goals to a term, we associate a position p with each
case construct and a substitution 6 for all newly introduced variables on the right. For each
case expression 7 = case X of ...inarule 7' = f(X,) — X, we attach the position p of

X in the left-hand side of the corresponding rewrite rule. Formally, we define a function I
such that I7(f(X,) : X) yields the labeled tree for a rule 7 = f(X,) — X"

o Ir(ps:case X of T,,) = ps : case, X of I (7,,)
where p is the position of X in patr(ps : case X of 7,,)

o lr(ps:r)=ps:r

We assume in the sequel that definitional trees for some inductively sequential HRS R are
labeled.
The following invariant will allow us to relate a goal system with a term:

Theorem 6.1 For an initial goal with case. t of true : true —° X, :*>BVT S, S is of one
of the following two forms:

1. MT.case,, s of ... —" X,, \T.case,, , \g.X,(T,79) of ... =" Xp 1,...,

MT.casey, \J.X3(Z,7) of ... —" Xy, case,, Xy of true: true —" X,

2. 1 —" X1, \T.casey, NJ.Xni1(Z,7) of ... =" X,
NT.case,, | Ny X, (T,79) of ... =" X 1,...,
MT.casey, \y.X3(Z,7) of ... —" Xy, case,, Xy of true: true —" X,

Furthermore, all X, 11 are distinct and each variable X; occurs only as shown above, i.e. at
most twice in ...,e —" X;, case X; of .. ..
Proof Simple by induction on the LNT reduction. O

Notice that the second form in the above theorem is created by a Case Select rule application,
which may reduce a case term to a non-case term, or by Case Eval with a rule f(X,) — r.
As only the Bind rule applies on such systems, they are immediately reduced to the first
form. As we will see, the Bind rule corresponds to the replacement which is part of a rewrite
step. Since we now know the precise form of goal systems which may occur, bound variables
as arguments and binders are often omitted in goal systems for brevity.

Assumption. We assume in the following that all goal systems are generated by LNT
from some initial goal and are hence of one of the two forms of Theorem 6.1.

The next goal is to relate LNT and rewriting.

Definition 6.2 We define an associated substitution for each goal system inductively on
= N7

e For an initial goal system of the form S = case, t of true : true —* X, we define the
associated substitution g = {X — t}.

e For the Case Eval rule on S = A\T.case, \y.f(f) of ... =" X, G with
S = \7,7.0(X) =" X', \T.case, \g.X'(T,7) of ... =" X,G =5
we define fg = 05 U{X’ — A\T.(0sX)|,}.
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For all other rules, the associated substitution is unchanged.

For a goal system S, we write the associated substitution as fs. Notice that the associ-
ated substitution is not a “solution” as used in the completeness result and only serves to
reconstruct the original term.

We can translate a goal system produced by LNT into one term as follows. The idea
is that case, t of ... —" X should be interpreted as the replacement of the case term ¢
at position p in 0sX, ie., (0sX)[t],. Extending this to goal systems yields the following
definition:

Definition 6.3 For a goal system S of the form
[r—"X,] AT.casep, s of ... ENS ,casey, Xo of true : true -7 X,

(where [r —7 X, ] is optional) with associated substitution 6, we define the associated term
A(S) 2 (0X)[(0X0)]. .. (0X, ()83 - Jpalpn-

For instance, if we start with a goal system S} = case, t of true : true —’ X, then A(S;) = t.

For a goal system S, we write S| for the normal form obtained by applying Case Eval
and Case Select. We define an associated substitution for the intermediate variables X,, of
a system of goals produced by LNT.

Lemma 6.4 S| is well defined, i.e., computing S| terminates and yields a unique goal
system.

Proof Termination follows easily since the size of the term in the leftmost case construct
decreases. As Case Select and Case Eval do not apply simultaneously, uniqueness follows.
O

Lemma 6.5 For a goal system S, the rules Case Fval and Case Select do not change the
associated term.

Proof We first establish the following invariant: If
Z(t) = nr case,, sof ... —" X,,G =8,

then #0sX,|,, = s holds. This invariant is shown by induction on =, n7. It is trivial for
the Guess rules and follows from the definition of 85 for Case Eval and Bind. Only the Case
Select rule is more involved. Case Select reduces the term in the leftmost case construct:

S = case, v(t,) of ... =" X,... = casepy t;of ... = X, ... =5
Since 05X |, = v(t,) and v(t,)|y = ti, 05 X |,y = t; holds.

With the above invariant the theorem follows from the definition of A(.S), since only the
leftmost case construct is changed by each rule. O
From this result, we can infer A(S) = A(S]) and A(Z(t)) = A(Z(t)]).

Corollary 6.6 For a term t, we have t = A(Z(t)]).
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Stability of reduction under substitution can be shown since needed reductions are outermost.

Lemma 6.7 For atermt, if T(t) = U {3, then T(61) = Uor ().

Proof InZ(t) S {}, no variable in Dom(#) can affect the LNT reduction (e.g., reduction

cannot take place below a free variable). Hence Z(60t) S . {} follows easily by induction
on the length of the reduction. O

The next goal is to relate a rewrite step with LN'T computations.

Lemma 6.8 Assume patr(p; : X;) =1 for a definitional tree T. There exists a reduction

\T.case Nyl of T,, —' X,G

= Cuase Bval = Case Select  AT-case NJ.p; of pn: X, _>_X ’
\T.case )\y X'(z,9) of T, —' X,G
= Case Select )\EO'(XZ) — X/ \T.case )\y X’ (j y) f Tm 7 X, G

for some substitution o.

Proof First note that Case Eval applies if [ = f(¢) for some defined symbol f with defin-
itional tree 7. The claim follows easily by induction on the Case Select applications, by
composing the substitutions computed for the variables in the selectors of 7. O

Corollary 6.9 There exists a rule f(t) — r with | = o f(t) for some non-case term r iff

MT.case Nyl of T, —" X, G
= Case Fval =>Case Select AT, J.or —' X' M.case Xy.X'(z,7) of T, =" X,G

Proof The proof follows easily from Lemma 6.7 and Lemma 6.8. (Recall that the rules do
not overlap and hence for a position in a term, only one rule applies.) a

For a goal system S, we write Bind(S) to denote the result of applying the Case Bind rule.
Notice that the substitution of the Bind rule only affects the two leftmost goals.

Lemma 6.10 Let S = Z(t). If S| is of the form of Invariant 2 of Theorem 6.1, then
= A(S\) is reducible at position p = py---pn. Furthermore, if t — ', then Z(t')| =

Bind(S])].

Proof The only way S is transformed into S| of the form of Invariant 2 is when a leftmost

case construct, created by Case Eval (or the initial construct), is fully reduced to a term by

Case Select without any intervening Case Eval applications. Say S is first transformed into

? ?
case,, sof ...—" X,,...,case, X of true:true —" X; =: 5’
with p =p; ---p, and t|, = s such that
/ * ? ? .Qn
S = Case Eval= Case Select T — Xn+17 Casepn Xn+1 Of e T Xna cee T S

Since each path of a definitional tree corresponds to a left-hand side, t|, is reducible by
Corollary 6.9. To show Z(#')] = Bind(S|)|, consider the computation for Z(¢')|. Since ¢
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and t' differ only at position p, i.e., t’ = t[or’], for some rule I" — r’, Z(t') is transformed by
LNT to

! ? . ? .
case,, or of ... —"X,, ..., case, Xg of true :true —" X; =: 9.

Since A(S") = t, A(Bind(S")) = t' follows from Lemma 6.5 and from the definition of
the Bind rule. Hence r = o7’ and S” = pg;,q S1 follow. By uniqueness of normal forms,
Bind(S])] = Bind(S")| = S1] = Z(t')] follows. a

Theorem 6.11 For a term t, Z(t) S - {} iff t = true.

Proof If t — true, we can show Z(t) 20 {} easily by induction on the length of
t — true via the above result.

Assuming Z(t) = Y, {1, we can show as in Lemma 6.10 that the reduction starts with
computing Z(t)| and then the Bind rule must apply. Similar to Lemma 6.10, we can show
t — t'. By induction this yields a reduction t — true, since Z(t) = pn7 case true of true :
true —" X is the only way to transform Z(t) to {}. O

Now, we can define needed reductions:
Definition 6.12 A term ¢ has a needed redex p if Z(¢)] is of Invariant 2 with p = py - - - p,,.

It remains to show that needed reductions are indeed needed to compute a constructor
headed term. For a normalization result for the first-order case, we refer to [21].

Theorem 6.13 Ift reduces to true, then t has a needed redex at a position p and t must be
reduced at p eventually. Otherwise, t is not reducible to true.

Proof The first claim, that ¢ has a needed redex at p, follows from Lemma 6.10.
We show that ¢t must be reduced at p (or is not reducible to true) by induction on the
computation of Z(t)]. We argue that for a goal system of the form

? . ?
casep, sof ... —="X,, ..., case, Xy of true:true —" X

the leftmost case expression must either be reducible by Case Select or s must have a needed
redex (to be reducible to a constructor-headed term). In the latter case, s is rooted by
a defined symbol and s must be evaluated to a constructor-headed term. Otherwise, no
reduction of ¢ to true is possible. O

The next desirable result is to show that needed reductions are normalizing. This is suggested
from related works [27, 16], but is beyond the scope of this paper.

6.2 Lifting Rewriting to Narrowing

We first take a closer look at the variables involved for a LNT computation.

Lemma 6.14 IfZ(t) =9y S =9y S, then Dom(0') C FV(6t).

Proof The substitution # is composed of (partial) substitutions o computed via one of the

Guess rules. Since each such ¢ maps a variable occurring in the associated term A(S’), the
claim follows easily by induction on =9 . O
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For a goal system S, we call the variables that do not occur in A(S) dummies. In
particular, all variables on the right and all variables in selectors in patterns of some tree in
S are dummies.

Lemma 6.15 [fS =9 . {}, then 65 =, 1.
Proof by induction on the length of =/ np. Assume S =% & =9 {1 By induction

hypothesis 6”5’ = {L}NT {}. First, we show ¢S = S’ by the following case distinction: If one
of the Guess rules was used in S =% ', then 'S = S’. Otherwise, # = {}. Hence we have
0's =1 8 978" 24 [} and infer 07¢'S =1 979" = 1 {} from Lemma 6.7. O

Theorem 6.16 (Correctness of LNT) IfZ(t) =9, {} for a term t, then 0t —— true.

Proof First, Z(6t) = nr {} follows from Lemma 6.15 and #¢ — true from Theorem 6.11.
O

We first state completeness in terms of LNT reductions.

Lemma 6.17 If0S :*>E}NT {} where 0 is in R-normal form and contains no dummies of S,
i.e., JTV(Q) N va(S) = fV(A(S)), then S :*>%/NT {} with ¢ SfV(A(S)) 0.

Proof From the given derivation we construct a reduction S =9\ {}, which is possibly
longer, since Guess rules are interspersed. For this process to terminate, we need the following
termination ordering. The ordering consists of the lexicographic combination of (A) the
length of the LNT reduction 65 :*>{L}NT {} and (B) the sizes of the multiset of terms in the
solutions for the variables in Dom/(6).

We have the following cases depending on the form of S:

o If S=e —7 X,G and on #S the Bind rule applies, then Bind applies to S as well since
X & Dom(#). Since OBind(S) = Bind(6S), the induction hypothesis applies with a
shorter reduction, decreasing A.

o If S =case A\T.v(t) of ..., G, then either Case Select or Case Eval must apply on 65
and hence on S as well. The induction hypothesis applies as in the last case.

o If S=M\T.case \g.X(t) of ..., G, then X () must be of one of the following forms:

— A\Z.c(¥') such that Case Select applies on 6S. In this case, Imitation is applicable
with a binding o such that 30".60 = 6’c as in proof of higher-order unification
(see [36, 33]). Since ¢ is R-normalized and dummy free, the induction hypothesis
applies with a smaller solution, decreasing B.

— M\T.xz(t') such that Case Select applies on 6S. This case proceeds as the above
with Projection instead of Imitation.

— MT.f(¥) such that Case Eval applies on 0S. Here, Function Guess applies. The
case concludes as the two above; For the precondition of the rule it is to observe
that if AZ,7.X(¢) is a higher-order pattern, then AT, 7.X({) is not R-reducible
(as shown in [33]) and hence 0S :*>{L}NT {} is impossible.
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Theorem 6.18 (Completeness of LNT) If 0t —— true and 0 is in R-normal form, then
I(t) = Gr {} with ¢ <Fv) 0.

Proof Completeness follows from Theorem 6.11 and the previous lemma. a

7 Optimality regarding Solutions

We show here another important aspect, namely uniqueness of the computed solutions.
Compared to the more general case in [33], optimality of solutions is possible here, since we
only evaluate to constructor-headed terms. For this to hold for all subgoals in a narrowing
process, our requirement of constructor-based rules is also essential. For these reasons, we
never have to chose between Case Select and Case Eval in our setting and optimality follows
easily from the corresponding result of higher-order unification.

Theorem 7.1 (Optimality) If Z(t) =9y {} and Z(t) =9 yr {} are two different deriv-
ations, then 6 and 6 are incomparable.

Proof The claim follows from examining the substitutions computed. First, it is to observe
that, except for the case rules, no rule overlap, i.e., apply simultaneously. At each choice
point for a Guess rule, the rule compute distinct bindings:

o \T,.c(H,(T,)) (Case Guess)
o \T,.f(H,(T,))  (Function Guess)

o \T,.x;(H,(T,;)) (Projection)

These bindings occur in the solution for the original term, which is easy to see via
Lemma 6.14. Furthermore, the only other bindings computed are for the intermediate vari-
ables on the right, where no branching is needed. These bindings do not occur in the
computed solution. a

It is also conjectured that our notion of needed reductions is optimal (this is subject to
current research [3, 27, 28]). Note, however, that sharing is needed for optimality, as shown
for the first-order case in [2].

8 Avoiding Function Synthesis

Although the synthesis of functional objects by full higher-order unification in LNT is very
powerful, it can also be expensive and operationally complex. There is an interesting restric-
tion on rewrite rules which entails that full higher-order unification is not needed in LNT
for (quasi) first-order goals.

We show that the corresponding result in [4] is easy to see in our context, although
lifting over binders obscures the results somewhat unnecessarily.® Lifting may instantiate
a first-order variable by a higher-order one, but this is only needed to handle the context
correctly.

9Considering liftings is missing in [18]
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A term t is quasi first-order if ¢ is a higher-order pattern without free higher-order
variables. A rule f(X,) — X is called weakly higher-order, if every higher-order free
variable which occurs in X is in {X,,}. In other words, higher-order variables may only occur
directly below the root and these are immediately eliminated when hdts are introduced in
the Case Eval rule. For instance, the rule

map(F, [X|R]) — [F(X)|map(F, R)]
is weakly higher-order, if X and R are first-order.

Theorem 8.1 If Z(t) =nr S where t is quasi first-order w.r.t. weakly higher-order rules,
then A(S) is quasi first-order.

Proof We establish the claim by induction on =. Assume S = S’. First, we show that
only higher-order patterns occur in S’. The only rule where non-patterns are involved is the
Case Eval rule. In this rule, all X,, of a weakly higher-order rule f(X,) — X are bound to
quasi first-order terms by o, hence all terms in ¢ X’ are higher-order patterns.

Furthermore, it is to show that A(S’) is quasi first-order. Since the Guess rules are first-
order in this case, only the Bind rule must be considered: As all variables in the right-hand
side in the leaf must occur in the selectors on the path to the leaf, all its variables must
have been bound before Bind applies. Since the variables in selectors are only bound to
(sub-)terms of A(S’) (in the Case Select rule), the right-hand side is instantiated to a quasi
first-order term. O

As a consequence of the last result, Function Guess and Projection do not apply and Imita-
tion is only used as in the first-order case.

9 Conclusions

We have presented an effective model for the integration of functional and logic programming
with completeness and optimality results. Since we do not require terminating rewrite rules
and permit higher-order logical variables and A-abstractions, our strategy is a suitable basis
for truly higher-order functional logic languages. Moreover, our strategy reduces to an
optimal first-order strategy if the higher-order features are not used. Further work will
focus on adapting the explicit model for sharing using goal systems from [33] to this refined
context.
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