INSTITUT FÜR INFORMATIK

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der Christian-Albrechts-Universität zu Kiel Olshausenstr. 40 D – 24098 Kiel

Call Pattern Analysis for Functional Logic Programs

Michael Hanus

Bericht Nr. 0803 Juni 2008

e-mail: mh@informatik.uni-kiel.de

Call Pattern Analysis for Functional Logic Programs^{*}

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany. mh@informatik.uni-kiel.de

Abstract

This paper presents a new program analysis framework to approximate call patterns and their results in functional logic computations. We consider programs containing non-strict, nondeterministic operations in order to make the analysis applicable to modern functional logic languages like Curry or TOY. For this purpose, we present a new fixpoint characterization of functional logic computations w.r.t. a set of initial calls. We show how programs can be analyzed by approximating this fixpoint. The results of such an approximation have various applications, e.g., program optimization as well as verifying safety properties of programs.

1 Introduction

Functional logic languages integrate the most important features of functional and logic languages to provide a variety of programming concepts. For instance, the concepts of demand-driven evaluation, higher-order functions, and polymorphic typing from functional programming are combined with logic programming features like computing with partial information (logic variables), constraint solving, and nondeterministic search for solutions. This combination supports optimal evaluation strategies [3, 4] and leads to better abstractions in application programs (see [23] for a recent survey).

In this paper we propose a new method to analyze call patterns of functional logic programs, i.e., we want to approximate the arguments of all function calls occurring in a computation w.r.t. a program and a set of initial calls. Such approximations are useful in various ways. For instance, they can be used to optimize

^{*}This work was partially supported by the German Research Council (DFG) under grant Ha 2457/5-2.

programs (e.g., partial evaluation, eliminating unnecessary code [32]), to catch pattern-match errors due to partial function definitions at compile time [29], or to verify safety conditions of programs (e.g., which files or sockets are accessed during a computation [1]). The contributions of this work are:

- 1. We present a new fixpoint characterization of functional logic computations w.r.t. a set of initial calls (Section 3). We consider programs containing non-strict, nondeterministic operations with call-time choice semantics as in modern functional logic languages like Curry [22, 24] or TOY [27].
- 2. We show the soundness of this fixpoint characterization w.r.t. the rewriting logic CRWL [20], a standard semantics for such kind of languages [23].
- 3. We introduce a general framework to analyze call patterns based on this fixpoint characterization (Section 4). An example analysis with depth-bounded terms is presented in Section 5.
- 4. We discuss how this framework can be extended to features occurring in application programs, like higher-order functions and primitive operations to perform I/O, and present a practical evaluation of a prototypical implementation (Section 6).

2 Basic Concepts

In this section we review some concepts and notations from term rewriting [7, 17] and functional logic programming [21, 23] that are used in this paper.

Although modern functional logic languages are strongly typed, we ignore this aspect for the sake of simplicity. However, the distinction between defined functions and data constructors is important for the definition of the operational semantics of such languages [23]. Therefore, we consider a signature Σ partitioned into a set C of constructors and a set \mathcal{F} of (defined) functions or operations. We write $c/n \in C$ and $f/n \in \mathcal{F}$ for n-ary constructor and operation symbols, respectively. Given a set of variables \mathcal{X} , the set of terms and constructor terms are denoted by $\mathcal{T}(\Sigma, \mathcal{X})$ and $\mathcal{T}(C, \mathcal{X})$, respectively. We write $\mathcal{V}ar(t)$ for the set of all the variables occurring in a term t. A term is linear if it does not contain multiple occurrences of a variable. A term is operation-rooted (constructor-rooted) if its root symbol is an operation (constructor).

A pattern is a linear term of the form $f(t_1, \ldots, t_n)$ where $f/n \in \mathcal{F}$ is an operation symbol and t_1, \ldots, t_n are constructor terms. A functional logic program is a constructor-based rewrite system, i.e., a set of pairs of terms or rewrite rules of the form $l \to r$ where l is a pattern. Traditionally, term rewriting systems have the additional requirement $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$. However, in functional logic

programming variables occurring in $\mathcal{V}ar(r)$ but not in $\mathcal{V}ar(l)$, called *extra variables*, are often useful. Therefore, we allow rewrite rules with extra variables in functional logic programs.

Example 2.1 The following functional logic program is based on the set of constructors $C = \{0/0, S/1\}$ to represent natural numbers. It defines operations to add two natural numbers and to double the value of a number, and an operation coin that returns one of the two values 0 or S(0).

$$\begin{array}{rcl} add(0,x) &\to x & coin &\to 0\\ add(S(x),y) &\to S(add(x,y)) & coin &\to S(0)\\ double(x) &\to add(x,x) \end{array}$$

Note that an operation like coin is not admissible in purely functional programs since it has more than one normal form. However, in the context of functional logic programming such nondeterministic operations are permitted and useful for programming [20, 23]. Actually, it has been shown that logic variables and nondeterministic functions have the same expressive power [6] although we consider both concepts for the sake of simplicity.

To formally define computations w.r.t. a given program, additional notions are necessary. A position p in a term t is represented by a sequence of natural numbers. Positions are used to identify specific subterms. Thus, $t|_p$ denotes the subterm of t at position p, and $t[s]_p$ denotes the result of replacing the subterm $t|_p$ with the term s (see [17] for details). The set of all positions of a term t is denoted by $\mathcal{Pos}(t)$, and the set of all positions of operation-rooted subterms of a term t is denoted by $\mathcal{FPos}(t)$. A substitution is an idempotent mapping $\sigma : \mathcal{X} \to \mathcal{T}(\Sigma, \mathcal{X})$ such that its domain $\mathcal{Dom}(\sigma) = \{x \mid \sigma(x) \neq x\}$ is finite. We denote a substitution σ by the finite set $\{x \mapsto \sigma(x) \mid x \in \mathcal{Dom}(\sigma)\}$. In particular, \emptyset denotes the identity substitution. Substitutions are extended to morphisms on terms in the obvious way.

In classical term rewriting, a rewrite step $t \to_{p,l\to r,\sigma} t'$ w.r.t. a given rewrite system \mathcal{R} is defined if there are a position p in t, a rule $l \to r \in \mathcal{R}$, and a substitution σ with $t|_p = \sigma(l)$ such that $t' = t[\sigma(r)]_p$ (where we omit the subscripts if they are not relevant). However, this classical notion of term rewriting is not suitable for functional logic programs that contain nondeterministic, non-strict functions defined by non-confluent programs. For instance, classical rewriting allows the following sequence of rewrite steps w.r.t. Example 2.1:

$$double(coin) \rightarrow add(coin, coin) \rightarrow add(0, coin) \rightarrow add(0, S(0)) \rightarrow S(0)$$

This result is not intended since the operation double should return only even numbers. In order to cover this intended behavior, González-Moreno et al. [20]

have proposed the rewriting logic CRWL (Constructor-based conditional ReWriting Logic) as a logical (execution- and strategy-independent) foundation for declarative programming with non-strict and nondeterministic operations. This rewriting logic specifies the *call-time choice* semantics where the values of the arguments of an operation are determined before the operation is evaluated. To deal with non-strict operations, CRWL considers signatures Σ_{\perp} that are extended by a special symbol \perp to represent *undefined values*. We define $C_{\perp} = C \cup \{\perp\}$ so that $\mathcal{T}(C_{\perp}, \mathcal{X})$ denotes the set of partial constructor terms, e.g., $S(S(\perp))$ denotes a number greater than 1 where the exact value is undefined. Such *partial terms* are considered as finite approximations of possibly infinite values. CRWL defines the deduction of *approximation statements*¹ $e \rightarrow t$ with the intended meaning "the partial constructor term t approximates the value of e". To model call-time choice semantics, rewrite rules are only applied to partial *values*. Hence, the following notation for *partial constructor instances* of a set of rules \mathcal{R} is useful:

$$[\mathcal{R}]_{\perp} = \{ \sigma(l) \to \sigma(r) \mid l \to r \in \mathcal{R}, \sigma : \mathcal{X} \to \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X}) \}$$

Then CRWL is defined by the following set of inference rules (where the program is represented by a TRS \mathcal{R}):

$$e \twoheadrightarrow \bot \qquad \text{for any } e \in \mathcal{T}(\Sigma_{\perp}, \mathcal{X})$$

$$x \twoheadrightarrow x \qquad \text{for any variable } x \in \mathcal{X}$$

$$\frac{e_1 \twoheadrightarrow t_1 \cdots e_n \twoheadrightarrow t_n}{c(e_1, \dots, e_n) \twoheadrightarrow c(t_1, \dots, t_n)} \qquad \text{for any } c/n \in \mathcal{C}, \ t_i \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$$

$$\frac{e_1 \twoheadrightarrow t_1 \cdots e_n \twoheadrightarrow t_n \quad r \twoheadrightarrow t}{f(e_1, \dots, e_n) \twoheadrightarrow t} \qquad \text{for any } f(t_1, \dots, t_n) \to r \in [\mathcal{R}]_{\perp} \text{ and } t \neq \bot$$

The first rule specifies that \perp approximates any expression. The condition $t \neq \perp$ in the last rule avoids unnecessary applications of this rule since this case is already covered by the first rule. The restriction to partial constructor instances in this rule formalizes non-strict functions with a call-time choice semantics. Functions might have non-strict arguments that are not evaluated since the corresponding actual arguments can be derived to \perp by the first rule. If the value of an argument is required to evaluate the right-hand side of a function's rule, it must be evaluated to a partial constructor term before it is passed to the right-hand side (since $[\mathcal{R}]_{\perp}$ contains only partial constructor instances), which corresponds to a call-time choice semantics. Note that this does not prohibit the use of lazy implementations since this semantical behavior can be enforced by sharing unevaluated expressions. Actually, [20] defines a lazy narrowing calculus that reflects this behavior.²

 $^{^1\}mathrm{For}$ the sake of simplicity, we consider only unconditional rules in contrast to the original presentation of CRWL.

²There are also lazy narrowing calculi that model sharing by graph structures, e.g., [18]. Since

In order to apply our program analysis to functional logic programs as discussed above, we intend to use CRWL as its foundation. However, it has been noted [28] that this calculus has some drawbacks compared to classical definitions of rewriting where computation steps can be directly applied to any subterm rather than decomposing terms until the function call appears at the top level. Therefore, we use in the following an alternative definition of rewrite steps conform with CRWL computations. This rewrite relation, $s \rightarrow t$, is defined by the following rules:

(Bottom step)
$$e \rightarrow e[\bot]_p$$
 if $p \in \mathcal{FP}os(e)$
(Function reduction) $e[f(t_1, \ldots, t_n)]_p \rightarrow e[r]_p$ if $f(t_1, \ldots, t_n) \rightarrow r \in [\mathcal{R}]_{\bot}$

The first rule allows the approximation of any (in particular, non-demanded) function call by \perp . The second rule corresponds to classical rewrite steps except that arguments must be already evaluated to partial values, which corresponds to a call-time choice semantics. As usual, we denote by \rightarrow^* the reflexive-transitive closure of the relation \rightarrow .

Note that a similar rewrite relation has been proposed in [28] but with the difference that also constructor terms can be approximated by \perp . Hence, the rewrite relation of [28], which we denote by $\succ c$, is defined as follows:

(Bottom step)
$$e \rightarrowtail e[\bot]_p \text{ if } p \in \mathcal{P}os(e)$$

(Function reduction) $e[f(t_1,\ldots,t_n)]_p \xrightarrow{\sim} e[r]_p \text{ if } f(t_1,\ldots,t_n) \to r \in [\mathcal{R}]_{\perp}$

Note that only the first rule differs from our relation \rightarrow by allowing also the replacement of constructor-rooted terms and variables by \perp . The equivalence of the rewrite relation \succ and CRWL is shown in [28]. However, our rewrite relation \rightarrow restricts the nondeterministic choices due to the approximation of values since it does not allow the approximation of constructor terms.³ In order to justify the use of our rewrite relation, we establish a precise connection between the values computable by both rewrite relations. Basically, we show that the restriction of our relation \rightarrow does does not change the applicability of rewrite rules but computes better approximations of constructor terms. For this purpose, we define the usual approximation ordering on partial expressions.

Definition 2.2 The set of partial expressions $\mathcal{T}(\Sigma_{\perp}, \mathcal{X})$ is ordered by the *approximation ordering* \sqsubseteq which is defined as the least partial ordering satisfying $\bot \sqsubseteq t$ and $f(s_1, \ldots, s_n) \sqsubseteq f(t_1, \ldots, t_n)$ if $s_1 \sqsubseteq t_1, \ldots, s_n \sqsubseteq t_n$, for all $s_i, t_i, t \in \mathcal{T}(\Sigma_{\perp}, \mathcal{X})$ and $f/n \in \Sigma$.

In a first step, we show that the replacement of bottom elements by other expressions does not restrict potential derivations.

this requires the handling of complex graph structures and their approximations, we base our development on the conceptually simpler rewriting logic CRWL.

³The advantage of such a restriction has been also recognized in [14] in the context of CRWL.

Lemma 2.3 Let $e, e_0 \in \mathcal{T}(\Sigma_{\perp}, \mathcal{X})$, $p \in \mathcal{P}os(e)$ with $e|_p = \bot$, and $e \rightarrow^* e_1$. Then there is also a derivation $e[e_0]_p \rightarrow^* e_2$ such that $e_1 \sqsubseteq e_2$ and $e_2|_p \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ for all $p \in \mathcal{P}os(e_1)$ with $e_1|_p = \bot$.

Proof: First we note that it is sufficient to construct a proof for the case that e_0 is a partial constructor term: if e_0 contains operation-rooted subterms, these subterms can be replaced by \perp with initial bottom steps in a rewriting derivation of $e[e_0]_p$. Thus, we prove the lemma for $e_0 \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ by induction on the length k of the derivation $e \rightarrow^* e_1$.

Base case k = 0: Since there is no rewrite step, $e = e_1$. Hence, $e[e_0]_p \rightarrow e[e_0]_p$ and $e_1 = e \sqsubseteq e[e_0]_p$ by definition of \sqsubseteq . Since $e_0 \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$, the lemma holds.

Inductive case k > 0: Since there is at least one rewrite step in the derivation $e \rightarrow e_1^*$, it has the structure $e \rightarrow e' \rightarrow e_1^{k-1} e_1$ and the lemma holds for $e' \rightarrow e_1^{k-1} e_1$. We distinguish the possible cases of the initial step $e \rightarrow e'$.

If $e \to e'$ is a bottom step, then there is a position $q \in \mathcal{FP}os(e)$ with $e' = e[\bot]_q$. We distinguish the possible relations between the positions p and q.

- If p is below q, then $e[e_0]_p \rightarrow e'$ is also a valid bottom step so that we directly obtain a derivation $e[e_0]_p \rightarrow e' \rightarrow e' e_1$.
- If p is not below q, then p and q are independent (note that the case p = q is impossible since $e|_p = \bot$ and $q \in \mathcal{FP}os(e)$). Hence we can apply the same bottom step to $e[e_0]_p$, i.e., $e[e_0]_p \rightarrow e'[e_0]_p$ and $e'|_p = e|_p = \bot$. Thus, the claim follows by applying the induction hypothesis to e'.

If $e \to e'$ is not a bottom step, then there is a position $q \in \mathcal{FP}os(e)$, a rule $l \to r \in \mathcal{R}$, and a substitution $\sigma : \mathcal{X} \to \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ with $e|_q = \sigma(l)$ and $e' = e[\sigma(r)]_q$. If p and q are independent, then the same function reduction step is also applicable to $e[e_0]_p$ so that we can apply the induction hypothesis. If p is below q (note that p cannot be equal to or above q since $e|_p = \bot$), then p is equal to or below a position of a pattern variable x occurring in l (since $e|_p = \bot$ and the bottom symbol does not occur in l). If x does not occur in r, then there is also a step $e[e_0]_p \to e'$ (by choosing the same rule with a different substitution for the variable x) so that we directly obtain the desired derivation. If x occurs in r, there is a step $e[e_0]_p \to e''$ where e'' differs from e' by having e_0 instead of \bot at some positions. Thus, we can apply the induction hypothesis to each of these positions.

Now we can establish the relation between CRWL and \rightarrow by stating that our relation \rightarrow computes the same or better approximations of constructor terms than $\rightarrow_{\overrightarrow{c}}$ (which is equivalent to \rightarrow , see [28, Theorem 1]).

Theorem 2.4 Let $e \in \mathcal{T}(\Sigma_{\perp}, \mathcal{X})$ and $t \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$.

1. If $e \rightarrow t$, then $e \rightarrow t$.

2. If $e \succ^* t$, then $e \succ^* t'$ for some $t' \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ with $t \sqsubseteq t'$.

Proof: The first claim immediately holds since every \rightarrow -step is also a \succ -step. We prove the second claim by induction on the length k of the derivation $e \succeq t$.

The base case (k = 0, hence e = t) is trivial. For the inductive case (k > 0) we note that the derivation has the structure $e \succ_{c'} e' \succ_{c'}^{k-1} t$. By the induction hypothesis, there is a derivation $e' \rightarrowtail^* t'$ for some $t' \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ with $t \sqsubseteq t'$. If the first step $e \succ_{c'} e'$ is a function reduction step, $e \rightarrowtail e'$ is also a function reduction step. If $e \rightarrowtail_{c'}$ is a bottom step, $e' = e[\perp]_p$. Thus, by Lemma 2.3, there is also a derivation $e = e'[e|_p]_p \rightarrowtail^* t''$ with $t' \sqsubseteq t''$ and $t'' \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$. \Box Although our rewrite relation \rightarrowtail has less nondeterministic choices than $\succ_{c'}$ or CRWL, there is still an apparent nondeterminism due to the choice between function evaluation or approximation of functions by \perp in the rules defining \rightarrowtail . This might cause an approximation of many partial values in a program analysis framework based on this semantics. However, this potential disadvantage can be avoided in the analysis by computing only maximal elements w.r.t. an information ordering on abstract values, as we will see below.

For the purpose of our analysis of functional logic programs, it is sufficient to use the rewrite relation \rightarrow as a basis. Although concrete functional logic languages use sophisticated narrowing strategies to evaluate programs [23], narrowing derivations have a strong correspondence to rewriting derivations, i.e., each narrowing derivation usually corresponds to a rewriting derivation after applying the substitutions computed by narrowing. Thus, if we approximate the call patterns occurring in all rewriting derivations (as done in the following), we obtain also approximations of all possible call patterns occurring in narrowing derivations.

3 Fixpoint Semantics for Functional Logic Computations

In this section we develop a fixpoint characterization of functional logic computations that will be later used to approximate the call patterns occurring in concrete computations. From now on, we assume a fixed signature $\Sigma = \mathcal{F} \cup \mathcal{C}$ and a set of variables \mathcal{X} .

In contrast to related abstractions of term rewriting systems (e.g., [2, 8, 9]), we intend to approximate only those call patterns that might occur in concrete computations for specific applications, i.e., starting from some set of initial function calls. Therefore, we assume a given set

$$\mathcal{M} \subseteq \{ f(t_1, \dots, t_n) \mid f/n \in \mathcal{F}, t_1, \dots, t_n \in \mathcal{T}(\mathcal{C}, \mathcal{X}) \}$$

of *initial* or *main calls*, i.e., functions applied to constructor terms from which any concrete computation starts. Having only constructor terms as arguments is not

a restriction, since nested function calls can be easily removed by introducing new auxiliary functions.

Our fixpoint semantics is based on interpretations that consist of pairs or equations of expressions describing the computed input/output relation of all functions. Thus, the *base domain* is the set of equations

$$\mathcal{E} = \{ f(t_1, \dots, t_n) \doteq t \mid f/n \in \mathcal{F}, t_1, \dots, t_n, t \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X}) \}$$

Note that we allow partial constructor terms in order to deal with the partial construction of the input/output relation during the fixpoint computation. A particular *interpretation* is a subset of \mathcal{E} .

An important aspect of our semantics is the stepwise extension of the set of initial calls with more function calls occurring during the computation. For this purpose, we have to evaluate concrete terms occurring in a program w.r.t. a current interpretation as defined next.

Definition 3.1 (Evaluation of terms) Let $I \subseteq \mathcal{E}$ be an interpretation. The evaluation of a term t w.r.t. I is a mapping $eval_I : \mathcal{T}(\Sigma, \mathcal{X}) \to 2^{\mathcal{T}(\mathcal{C}_\perp, \mathcal{X})}$ defined by

For instance, consider the interpretation

$$I = \{ coin \doteq 0, \ coin \doteq S(0), \ double(0) \doteq 0, \ double(S(0)) \doteq S(S(0)) \}$$

Then

$$eval_I(coin) = \{\perp, 0, S(0)\}$$

and

$$eval_I(double(coin)) = \{\perp, 0, S(S(0))\}$$
.

Note that $eval_I(double(coin))$ does not contain S(0) since this value does not occur in any right-hand side of a *double* equation in interpretation I.

Obviously, partial constructor terms are always evaluated to their own values, as formally stated in the following proposition.

Proposition 3.2 $eval_I(t) = \{t\}$ for all $t \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ and interpretations $I \subseteq \mathcal{E}$.

A specific term evaluation that is sometimes used is the interpretation where all function calls are replaced by \perp .

Definition 3.3 (Bottom evaluation) Let $e \in \mathcal{T}(\Sigma, \mathcal{X})$. Then the bottom evaluation e^{\perp} of e is defined by $e^{\perp} = t$ for $\{t\} = eval_{\emptyset}(e)$.

Proposition 3.4 $e^{\perp} \in eval_{I}(e)$ for all $e \in \mathcal{T}(\Sigma, \mathcal{X})$ and interpretations $I \subseteq \mathcal{E}$.

Now we are able to define a transformation on interpretations (similarly to the immediate consequence operator in logic programming) that covers information about potential function calls and their computed results.

Definition 3.5 (Transformation on interpretations) Let \mathcal{R} be a functional logic program and \mathcal{M} a set of main calls. The set of *initial equations* \mathcal{M}_{\perp} is defined by

 $\mathcal{M}_{\perp} = \{ s \doteq \perp \mid s \in \mathcal{M} \}$

The transformation $T_{\mathcal{R},\mathcal{M}}$ on interpretations $I \subseteq \mathcal{E}$ is defined as follows:

$$T_{\mathcal{R},\mathcal{M}}(I) = \mathcal{M}_{\perp} \quad \cup \quad \{s \doteq r' \mid s \doteq t \in I, \ s \to r \in [\mathcal{R}]_{\perp}, \ r' \in eval_{I}(r)\} \\ \cup \quad \{f(t_{1},\ldots,t_{n}) \doteq \perp \mid s \doteq t \in I, \ s \to r \in [\mathcal{R}]_{\perp}, \\ p \in \mathcal{FP}os(r) \text{ with } r|_{p} = f(e_{1},\ldots,e_{n}), \\ t_{i} \in eval_{I}(e_{i}), \ i = 1,\ldots,n\}$$

As usual, we define

$$T_{\mathcal{R},\mathcal{M}} \uparrow 0 = \varnothing$$

$$T_{\mathcal{R},\mathcal{M}} \uparrow k = T_{\mathcal{R},\mathcal{M}}(T_{\mathcal{R},\mathcal{M}} \uparrow (k-1)) \quad (\text{for } k > 0)$$

Informally speaking, the transformation $T_{\mathcal{R},\mathcal{M}}$ adds to the set of initial equations in each iteration

- 1. better approximations of the rules' right-hand sides $(s \doteq r')$ and
- 2. new function calls occurring in right-hand sides $(f(t_1, \ldots, t_n) \doteq \bot)$.

As we will see later, the least fixpoint of the transformation $T_{\mathcal{R},\mathcal{M}}$ contains the information about all function calls and all results computed during derivations starting from the main calls. Thus, the construction described by $T_{\mathcal{R},\mathcal{M}}$ is similar to the notion of *minimal function graphs* introduced in [26] to analyze (strict) functional programs and relating program analysis frameworks based on operational [15] and denotational semantics. Minimal function graphs have been also used to optimize logic programs (e.g., [19, 36]). Although all these frameworks are based on a common principle (incremental computation of all reachable calls and their results), the concrete computational methods are different. In our case, we have to model CRWL computations that might be non-strict, i.e., functions might reduce on arguments that have no value. For this purpose, our transformation $T_{\mathcal{R},\mathcal{M}}$ evaluates (by $eval_I$) arbitrary argument expressions to partial constructor terms before adding the new function calls so that it will be checked (in the next iteration step) whether these calls can be evaluated by applying a rewrite rule or stay unevaluated in the interpretation. The modelling of interpretations as sets of equations provides an intuitive understanding of the elements of an interpretation: If an interpretation computed from a set of initial calls contains an equation $f(t_1, \ldots, t_n) \doteq t$, then the call $f(t_1, \ldots, t_n)$ might occur in a computation of some initial call and t is an approximated result value of this call. Before stating this intuition more formally, we provide an example computation w.r.t. $T_{\mathcal{R},\mathcal{M}}$.

Example 3.6 Consider the program of Example 2.1 extended by the rule

 $main \rightarrow double(coin)$

If the set of main calls is $\mathcal{M} = \{main\}$, the transformation $T_{\mathcal{R},\mathcal{M}}$ computes the following sequence of interpretations, where we write T_i for $T_{\mathcal{R},\mathcal{M}} \uparrow i$.

 $\begin{array}{rcl} T_{0} &=& \varnothing \\ T_{1} &=& \{main \doteq \bot \} \\ T_{2} &=& T_{1} \cup \{coin \doteq \bot, double(\bot) \doteq \bot \} \\ T_{3} &=& T_{2} \cup \{add(\bot, \bot) \doteq \bot, coin \doteq 0, coin \doteq S(0)\} \\ T_{4} &=& T_{3} \cup \{double(0) \doteq \bot, double(S(0)) \doteq \bot \} \\ T_{5} &=& T_{4} \cup \{add(0, 0) \doteq \bot, add(S(0), S(0)) \doteq \bot \} \\ T_{6} &=& T_{5} \cup \{add(0, 0) \doteq 0, add(0, S(0)) \doteq \bot, add(S(0), S(0)) \doteq S(\bot)\} \\ T_{7} &=& T_{6} \cup \{add(0, S(0)) \doteq S(0), double(0) \doteq 0, double(S(0)) \doteq S(\bot)\} \\ T_{8} &=& T_{7} \cup \{add(S(0), S(0)) \doteq S(S(0)), main \doteq 0, main \doteq S(\bot)\} \\ T_{9} &=& T_{8} \cup \{double(S(0)) \doteq S(S(0))\} \\ T_{10} &=& T_{9} \cup \{main \doteq S(S(0))\} \\ T_{11} &=& T_{10} \end{array}$

Thus, a fixpoint is reached after 11 iterations. Note that the fixpoint contains 0 and S(S(0)) as values of main but not S(0), as expected for functional logic programs with call-time choice semantics.

Next we state the formal properties of the transformation $T_{\mathcal{R},\mathcal{M}}$. In the following we assume a fixed functional logic program \mathcal{R} and a set of main calls \mathcal{M} . The first important property of $T_{\mathcal{R},\mathcal{M}}$ ensures the existence of a fixpoint.

Proposition 3.7 The mapping $T_{\mathcal{R},\mathcal{M}}$ is continuous on $2^{\mathcal{E}}$.

Proof: Let X be a directed subset of $2^{\mathcal{E}}$. We have to show that $T_{\mathcal{R},\mathcal{M}}(lub(X)) = lub(T_{\mathcal{R},\mathcal{M}}(X))$.

 $\subseteq: \text{Let } s \doteq t \in T_{\mathcal{R},\mathcal{M}}(lub(X)). \text{ If } s \doteq t \in \mathcal{M}_{\perp}, \text{ obviously } s \doteq t \in lub(T_{\mathcal{R},\mathcal{M}}(X)).$ Otherwise, there are $s' = t' \in lub(X), s' \to r \in [\mathcal{R}]_{\perp}$ and

- either $p \in \mathcal{P}os(r)$, $r|_p = f(e_1, \ldots, e_n)$, $t_i \in eval_{lub(X)}(e_i)$ $(i = 1, \ldots, n)$ so that $s = f(t_1, \ldots, t_n)$ and $t = \bot$: Since only finitely many elements of the sets in X are involved in $eval_{lub(X)}$ and X is directed, there exists an upper bound $I \in X$ with $s' \doteq t' \in I$ and $t_i \in eval_I(e_i)$ $(i = 1, \ldots, n)$. Hence, $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(I) \subseteq lub(T_{\mathcal{R},\mathcal{M}}(X))$.
- or s = s' and $t \in eval_{lub(X)}(r)$: As above, there exists an upper bound $I \in X$ with $t \in eval_I(r)$. Hence $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(I) \subseteq lub(T_{\mathcal{R},\mathcal{M}}(X))$.
- ⊇: Let $s \doteq t \in lub(T_{\mathcal{R},\mathcal{M}}(X))$. Hence there is an $I \in X$ with $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(I)$. If $s \doteq t \in \mathcal{M}_{\perp}$, then $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(lub(X))$. Otherwise, there are $s' = t' \in I$, $s' \to r \in [\mathcal{R}]_{\perp}$ and
 - either $p \in \mathcal{P}os(r)$, $r|_p = f(e_1, \ldots, e_n)$, $t_i \in eval_I(e_i)$ $(i = 1, \ldots, n)$ so that $s = f(t_1, \ldots, t_n)$ and $t = \bot$: Hence, $s' \doteq t' \in lub(X)$ and $t_i \in eval_{lub(X)}(e_i)$ $(i = 1, \ldots, n)$, and, thus, $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(lub(X))$.
 - or s = s' and $t \in eval_I(r)$: Hence, $t \in eval_{lub(X)}(r)$ which implies $s \doteq t \in T_{\mathcal{R},\mathcal{M}}(lub(X))$.

Thus, the mapping $T_{\mathcal{R},\mathcal{M}}$ has a least fixpoint $T_{\mathcal{R},\mathcal{M}} \uparrow \omega$ which is the least upper bound of $\{T_{\mathcal{R},\mathcal{M}} \uparrow k \mid k \geq 0\}$.

Definition 3.8 The *least fixpoint semantics* of a program \mathcal{R} w.r.t. a set of main calls \mathcal{M} is defined as $C_{\mathcal{R},\mathcal{M}} = T_{\mathcal{R},\mathcal{M}} \uparrow \omega$.

The following theorems justify the use of this fixpoint semantics to analyze programs, i.e., they show that interesting properties of concrete computations are correctly represented by $C_{\mathcal{R},\mathcal{M}}$. The first theorem shows that the least fixpoint contains all function calls (where unevaluated arguments are approximated by \perp) occurring in computations starting from main calls. For this purpose, we denote by

 $calls(s) = \{t|_p \mid s \rightarrow^* t, \ p \in \mathcal{FP}os(t)\}$

the set of all function calls occurring in derivations starting with the term s.

Theorem 3.9 (Call covering) Let $s \in \mathcal{M}$ and $f(e_1, \ldots, e_n) \in calls(s)$. Then $f(e_1^{\perp}, \ldots, e_n^{\perp}) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$.

Proof: Let $s \in \mathcal{M}$ and $f(e_1, \ldots, e_n) \in calls(s)$. Thus, there is a term t with $s \rightarrow^* t$ and a position $p \in \mathcal{FP}os(t)$ with $t|_p = f(e_1, \ldots, e_n)$. The proof is done by induction on the length k of the derivation $s \rightarrow^* t$.

Base case k = 0: Then s = t. Since $s \in \mathcal{M}$, the only operation-rooted term is at the root, i.e., $f(e_1, \ldots, e_n) = s$. Moreover, $s \doteq \bot \in C_{\mathcal{R},\mathcal{M}}$ by Definition 3.5. Hence, the theorem holds since $u^{\bot} = u$ for all $u \in \mathcal{T}(\mathcal{C}_{\bot}, \mathcal{X})$.

Inductive case k > 0: Let $s \rightarrow^{k-1} t \rightarrow u$, where the theorem holds for $s \rightarrow^{k-1} t$, and $u|_p = f(e_1, \ldots, e_n)$. In order to show $f(e_1^{\perp}, \ldots, e_n^{\perp}) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$, we distinguish two cases for the step $t \rightarrow u$:

- $t \rightarrow u$ is a bottom step: Then there is a position q such that $u = t[\perp]_q$. If q and p are independent positions, then $t|_p = u|_p$ so that we can apply the induction hypothesis. If q is below p, i.e., $t|_q$ is a subterm of $t|_p$ (note that q cannot be above p), $t|_q$ is some function call that is replaced by \perp in $f(e_1^{\perp}, \ldots, e_n^{\perp})$. Thus, we can apply the induction hypothesis.
- $t \mapsto u$ is not a bottom step: Then there is a position $q, l \to r \in [\mathcal{R}]_{\perp}$ such that $t|_q = l$ and $u = t[r]_q$. Let $l = g(s_1, \ldots, s_m)$ (note that $s_i^{\perp} = s_i$ for $i = 1, \ldots, m$). By induction hypothesis, $g(s_1, \ldots, s_m) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$. By Definition of $T_{\mathcal{R},\mathcal{M}}, g(s_1, \ldots, s_m) \doteq r' \in C_{\mathcal{R},\mathcal{M}}$ for some $r' \in eval_{C_{\mathcal{R},\mathcal{M}}}(r)$. If q and p are independent positions, then $t|_p = u|_p$ and we can apply the induction hypothesis. If p is below $q, f(e_1, \ldots, e_n)$ is a subterm of r. Since $g(s_1, \ldots, s_m) \doteq r' \in C_{\mathcal{R},\mathcal{M}}(r)$.

If p is below $q, f(e_1, \ldots, e_n)$ is a subterm of r. Since $g(s_1, \ldots, s_m) = r' \in C_{\mathcal{R},\mathcal{M}}$ and $g(s_1, \ldots, s_m) \to r \in [\mathcal{R}]_{\perp}$, by definition of $T_{\mathcal{R},\mathcal{M}}, f(t_1, \ldots, t_n) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$ for all $t_i \in eval_{\mathcal{C}_{\mathcal{R},\mathcal{M}}}(e_i)$. Hence, $f(e_1^{\perp}, \ldots, e_n^{\perp}) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$.

If p is above q, then u and t differ only in some argument of $f(e_1, \ldots, e_n)$ which is replaced by \perp in $f(e_1^{\perp}, \ldots, e_n^{\perp})$. Hence, we can apply the induction hypothesis.

The next theorem states the soundness of the least fixpoint w.r.t. the rewrite relation \rightarrow , i.e., each equation contained in the least fixpoint corresponds to a rewrite derivation.

Theorem 3.10 (Soundness) If $s \doteq t \in C_{\mathcal{R},\mathcal{M}}$, then $s \rightarrow^* t$.

Proof: If $s \doteq t \in C_{\mathcal{R},\mathcal{M}}$, then there is a number k with $s \doteq t \in T_{\mathcal{R},\mathcal{M}} \uparrow k$. The proof is done by induction on k, i.e., we show $s \doteq t \in T_{\mathcal{R},\mathcal{M}} \uparrow k$ implies $s \rightarrow^* t$ for all $k \ge 0$.

Base case k = 0: The theorem vacuously holds.

Inductive case k > 0: We distinguish the different elements of $T_{\mathcal{R},\mathcal{M}} \uparrow k$:

1. $s \doteq t \in \mathcal{M}_{\perp}$: Then $t = \perp$ and $s \rightarrow \perp$.

- 2. $s \doteq t \notin \mathcal{M}_{\perp}$: Let $I = T_{\mathcal{R},\mathcal{M}} \uparrow (k-1)$. By definition of $T_{\mathcal{R},\mathcal{M}}$, there exist $s' \doteq t' \in I$ and $s' \to r \in [\mathcal{R}]_{\perp}$ so that
 - either $p \in \mathcal{P}os(r), r|_p = f(e_1, \ldots, e_n), t_i \in eval_I(e_i) \ (i = 1, \ldots, n)$ with $s = f(t_1, \ldots, t_n)$ and $t = \bot$: Then $s \rightarrowtail t$ by definition of \rightarrowtail .
 - or s = s' and $t \in eval_I(r)$: By induction on the structure of r, we show $r \rightarrow^* u$ for all $u \in eval_I(r)$. The base cases (r is a variable or a 0-ary constructor) are trivial. If $r = c(u_1, \ldots, u_m)$, we apply the induction hypothesis to all arguments and concatenate their rewrite sequences. If $r = f(u_1, \ldots, u_m)$, then either $u = \bot$, which is trivial by $f(u_1, \ldots, u_m) \rightarrow \bot$, or $f(u'_1, \ldots, u'_m) \doteq u \in I$ with $u'_i \in eval_I(u_i)$ $(i = 1, \ldots, m)$. By induction hypothesis, $u_i \rightarrow^* u'_i$ for $i = 1, \ldots, m$. Furthermore, $f(u'_1, \ldots, u'_m) \rightarrow^* u$ by the hypothesis of the main induction. Combining these rewriting derivations, we obtain $f(u_1, \ldots, u_m) \rightarrow^* u$.

Since we have constructed the least fixpoint w.r.t. a set of main calls, it represents all those rewrite derivations that start from these main calls. This is formally stated in the next theorem. Since operation-rooted subterms occurring during derivations might contain unevaluated arguments, we interpret these arguments w.r.t. $eval_{C_{\mathcal{R},\mathcal{M}}}$.

Theorem 3.11 (Completeness) Let $s \in \mathcal{M}$ and $f(e_1, \ldots, e_n) \in calls(s)$. If $f(e_1, \ldots, e_n) \rightarrow^* u$, then there exist $t_i \in eval_{C_{\mathcal{R},\mathcal{M}}}(e_i)$, $i = 1, \ldots, n$, such that $f(t_1, \ldots, t_n) \doteq u^{\perp} \in C_{\mathcal{R},\mathcal{M}}$.

Proof: Let $t = f(e_1, \ldots, e_n)$. We prove the theorem by induction on the length k of the derivation $t \rightarrow^* u$.

Base case k = 0: Then t = u and $u^{\perp} = \perp$. Theorem 3.9 implies that $f(e_1^{\perp}, \ldots, e_n^{\perp}) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$. Since $e_i^{\perp} \in eval_{C_{\mathcal{R},\mathcal{M}}}(e_i)$ (by Proposition 3.4), the theorem holds.

Inductive case k > 0: We distinguish two possible cases for the first step of the derivation $t \rightarrow^k u$:

• The first step is applied at the root: Then $f(e_1, \ldots, e_n) \rightarrow r \rightarrow k^{k-1} u$ and $f(e_1, \ldots, e_n) \rightarrow r \in [\mathcal{R}]_{\perp}$. Theorem 3.9 implies that $f(e_1^{\perp}, \ldots, e_n^{\perp}) \doteq \perp \in C_{\mathcal{R},\mathcal{M}}$. By definition of $T_{\mathcal{R},\mathcal{M}}$, $f(e_1, \ldots, e_n) \doteq r' \in C_{\mathcal{R},\mathcal{M}}$ for all $r' \in eval_{C_{\mathcal{R},\mathcal{M}}}(r)$. Consider the outermost operation-rooted positions q in r, i.e., $r|_q = g(s_1, \ldots, s_m)$. Since $r \rightarrow k^{k-1} u$, $r|_q \rightarrow u|_q$ in less than k steps. By induction hypothesis, $g(s'_1, \ldots, s'_m) \doteq u^{\perp}|_q \in C_{\mathcal{R},\mathcal{M}}$ for some $s'_i \in eval_{C_{\mathcal{R},\mathcal{M}}}(s_i)$, $i = 1, \ldots, m$. By Definition 3.1, $f(e_1, \ldots, e_n) \doteq u^{\perp} \in C_{\mathcal{R},\mathcal{M}}$. The first step is not applied at the root, i.e., there is a derivation f(e₁,...,e_n) →* f(t₁,...,t_n) without root steps and a derivation f(t₁,...,t_n) →* u where the first step is at the root, i.e., t₁,...,t_n ∈ T(C_⊥, X), and both derivations consists of less than k steps. As in the previous case, we infer for the second derivation that f(t₁,...,t_n) ≐ u[⊥] ∈ C_{R,M}. Now consider a non-empty subderivation e_i →* t_i with e_i = g(s₁,...,s_m) (if the root symbol of e_i is not operation-rooted, consider an outermost operation-rooted subterm). By induction hypothesis, g(s'₁,...,s'_m) ≐ t_i ∈ C_{R,M} for some s'_j ∈ eval<sub>C_{R,M}(s_j), j = 1,...,m. Thus, t_i ∈ eval<sub>C_{R,M}(e_i) by Definition 3.1.
</sub></sub>

This theorem implies that the least fixpoint contains all values of the main calls.

Corollary 3.12 If $s \in \mathcal{M}$, $t \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$ with $s \rightarrow^* t$, then $s \doteq t \in C_{\mathcal{R},\mathcal{M}}$.

Proof: By Theorem 3.11 and Proposition 3.2.

The bottom elements of the least fixpoint could indicate unsuccessful computations, i.e., computations that do not deliver a result since no rule is applicable at some point or since they loop. Since the least fixpoint contains *all* approximations of result values, one can infer unsuccessful computations only if the bottom element is maximal. Therefore, we define the notion of maximal elements of an interpretation.

Definition 3.13 $s \doteq t \in I$ is called *maximal* in an interpretation $I \subseteq \mathcal{E}$ if there is no $s \doteq t' \in I$ with $t' \neq t$ and $t \sqsubseteq t'$. The set of all maximal elements of an interpretation $I \subseteq \mathcal{E}$ is denoted by max(I).

Corollary 3.14 If $s \in \mathcal{M}$ and $s \doteq \bot \in max(C_{\mathcal{R},\mathcal{M}})$, then s is not evaluable to a value, *i.e.*, there is no $t \in \mathcal{T}(\mathcal{C}, \mathcal{X})$ with $s \rightarrow^* t$.

Proof: By contradiction with an application of Corollary 3.12. \Box The latter corollary is useful to detect unsuccessful computations at compilation time if we can provide an appropriate and computable approximation of $C_{\mathcal{R},\mathcal{M}}$. This is the purpose of the next section.

4 Abstraction of Functional Logic Computations

Abstract interpretation [15, 31] is a framework to construct program analyses by approximating the concrete transformation function of the operational semantics in order to obtain an approximation of the program's behavior. Since we already developed a fixpoint characterization of functional logic computations, we can easily apply the abstract interpretation framework in order to analyze functional logic programs. We are mainly interested in the call patterns and input/output relation of functions occurring in the program. We already described this information by interpretations where the basic elements are equations of the form $f(t_1, \ldots, t_n) \doteq t$ with $f \in \mathcal{F}$ and $t_1, \ldots, t_n, t \in \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$, i.e., the concrete semantics is based on partial constructor terms. Therefore, an approximation of the concrete semantics can be based on *abstract partial constructor terms*. In order to provide a general framework that can be used with different abstract domains, we assume an abstract domain AC representing abstract partial constructor terms and a concretization function $\tau : AC \to 2^{\mathcal{T}(\mathcal{C}_{\perp},\mathcal{X})}$ that maps abstract partial constructor terms into sets of concrete terms. To ensure finite computations on the abstract domain, one could require that AC is finite. However, this is not strictly necessary since there exist other methods to ensure terminating abstract computations even in the presence of infinite abstract domains [15].

The concrete domain \mathbb{E} is the powerset $2^{\mathcal{E}}$ ordered by set inclusion as already introduced in Section 3. Similarly, the *abstract domain* \mathbb{A} is the powerset of the base set

$$\{f(a_1,\ldots,a_n) \doteq a \mid f \in \mathcal{F}, a_1,\ldots,a_n, a \in AC\}$$

ordered by some set ordering. Based on the concretization function τ , we define a Galois insertion of A into E by

$$\alpha(I) = \{f(a_1, \dots, a_n) \doteq a \mid f(t_1, \dots, t_n) \doteq t \in I \text{ for all} \\ t_1 \in \tau(a_1), \dots, t_n \in \tau(a_n), t \in \tau(a)\} \\ \gamma(A) = \{f(t_1, \dots, t_n) \doteq t \mid f(a_1, \dots, a_n) \doteq a \in A, \\ t_1 \in \tau(a_1), \dots, t_n \in \tau(a_n), t \in \tau(a)\}$$

The theory of abstract interpretation shows that an optimal abstract version $T^{\alpha}_{\mathcal{R},\mathcal{M}}: \mathbb{A} \to \mathbb{A}$ of $T_{\mathcal{R},\mathcal{M}}$ can be defined by $T^{\alpha}_{\mathcal{R},\mathcal{M}} = \alpha \circ T_{\mathcal{R},\mathcal{M}} \circ \gamma$. In general, weaker abstract transformations are sufficient to ensure the correctness of abstract interpretation, i.e., if there is a continuous mapping $T^{\alpha}: \mathbb{A} \to \mathbb{A}$ with $\alpha \circ T_{\mathcal{R},\mathcal{M}} \circ \gamma \sqsubseteq T^{\alpha}$, then the least fixpoint (lfp) of $T_{\mathcal{R},\mathcal{M}}$ is correctly approximated by the least fixpoint of T^{α} , i.e., $C_{\mathcal{R},\mathcal{M}} \sqsubseteq \gamma(lfp(T^{\alpha}))$.

In order to define a mapping T^{α} for a specific abstract domain AC, one could try to follow the definition of $T_{\mathcal{R},\mathcal{M}}$ and replace the operations on concrete terms, like pattern matching for rule application or *eval* by corresponding abstract versions. In particular, the following abstract values and operations are sufficient to define a mapping T^{α} :

- 1. Abstract bottom element \perp^{α} with $\perp \in \tau(\perp^{\alpha})$
- 2. Abstract variable \top^{α} with $\tau(\top^{\alpha}) = \mathcal{T}(\mathcal{C}_{\perp}, \mathcal{X})$
- 3. Abstract constructor application $c^{\alpha} : AC^n \to AC$ for each *n*-ary constructor c such that $\tau(c^{\alpha}(a_1, \ldots, a_n)) \supseteq \{c(t_1, \ldots, t_n) \mid t_i \in \tau(a_i), i = 1 \ldots, n\}$

4. Abstract matching $match^{\alpha} : \mathcal{T}(\mathcal{C}, \mathcal{X}), AC \to Sub(AC) \cup \{fail\}$ that approximates the concrete matching of linear constructor terms, where Sub(AC) denotes the set of all *abstract substitutions* that are mappings from \mathcal{X} into abstract values from AC with a finite domain.

The abstract bottom element is necessary when introducing unknown values during a fixpoint computation. The abstract variable is necessary for free variables occurring in a rewrite rule. In a concrete computation, such free variables are instantiated to all possible partial constructor terms (compare the definition of $[\mathcal{R}]_{\perp}$) so that we need an element in the abstract domain to capture the set of these values.

Based on these abstract entities, the definition of an abstract version $T^{\alpha}_{\mathcal{R},\mathcal{M}}$: $\mathbb{A} \to \mathbb{A}$ of $T_{\mathcal{R},\mathcal{M}}$ is straightforward by abstracting each base operation. First, we define the abstract initial equations $\mathcal{M}^{\alpha}_{\perp}$ for the set \mathcal{M} of main calls by (the abstract evaluation of terms $eval^{\alpha}_{\varnothing}$ will be defined below)

$$\mathcal{M}^{\alpha}_{\perp} = \{ f(eval^{\alpha}_{\varnothing}(\varnothing, t_1), \dots, eval^{\alpha}_{\varnothing}(\varnothing, t_n)) \doteq \bot^{\alpha} \mid f(t_1, \dots, t_n) \in \mathcal{M} \}$$

We define $T^{\alpha}_{\mathcal{R},\mathcal{M}}$ for all $I \in \mathbb{A}$ as follows (here we use a straightforward extension of $match^{\alpha}$ where we apply it to (abstract) constructor terms wrapped with a top-level operation symbol):

$$\begin{split} T^{\alpha}_{\mathcal{R},\mathcal{M}}(I) &= \mathcal{M}^{\alpha}_{\perp} \quad \cup \quad \{s \doteq a \mid s \doteq t \in I, \ l \rightarrow r \in \mathcal{R}, \\ match^{\alpha}(l,s) &= \sigma \neq fail, \ a \in eval^{\alpha}_{I}(\sigma,r) \} \\ & \cup \quad \{f(a_{1},\ldots,a_{n}) \doteq \perp^{\alpha} \mid s \doteq t \in I, \ l \rightarrow r \in \mathcal{R}, \\ match^{\alpha}(l,s) &= \sigma \neq fail, \\ p \in \mathcal{FP}os(r) \text{ with } r|_{p} = f(t_{1},\ldots,t_{n}), \\ a_{i} \in eval^{\alpha}_{I}(\sigma,t_{i}), \ i = 1,\ldots,n \} \end{split}$$

To distinguish between variables occurring in a rule's left-hand side and extra variables, we pass the abstract substitution of the rule matching to the *abstract* evaluation of a (concrete) term which is defined by

$$\begin{array}{rcl} eval_{I}^{\alpha}(\sigma, x) &= \{\sigma(x)\} & \text{if } x \in \mathcal{D}om(\sigma) \\ eval_{I}^{\alpha}(\sigma, x) &= \{\top^{\alpha}\} & \text{if } x \notin \mathcal{D}om(\sigma) \\ eval_{I}^{\alpha}(\sigma, c(t_{1}, \ldots, t_{n})) &= \{c^{\alpha}(a_{1}, \ldots, a_{n}) \mid a_{i} \in eval_{I}^{\alpha}(\sigma, t_{i}), i = 1, \ldots, n\} \\ eval_{I}^{\alpha}(\sigma, f(t_{1}, \ldots, t_{n})) &= \{\bot^{\alpha}\} \cup \{a \mid a_{i} \in eval_{I}^{\alpha}(\sigma, t_{i}), i = 1, \ldots, n, \\ f(a_{1}, \ldots, a_{n}) \doteq a \in I\} \end{array}$$

Note that we abstract extra variables by \top^{α} , i.e., the set of all constructor terms. One can have the impression that this is a weak approximation, since many implementations of functional logic languages (e.g., based on needed narrowing [4]) instantiate such variables only to those constructor terms that can be unified with the left-hand side of some rule. However, it has been shown [6] that this is equivalent to a demand-driven instantiation to all constructor terms and, actually, there are implementations where extra variables are replaced by operations that nondeterministically evaluate to all constructor terms [12]. Therefore, our abstraction is reasonable and makes the analysis less dependent on particular implementation strategies.

In the next section, we show the application of this abstract interpretation framework with a specific abstract domain.

5 Abstract Interpretation with Depth-bounded Terms

An interesting finite abstraction of an infinite set of constructor terms are sets of terms up to a particular depth k, e.g., as already used in the abstract diagnosis of functional programs [2] or in the abstraction of term rewriting systems [8, 9]. Although this domain is useful in practice only for depth k = 1 (due to its quickly growing size for k > 1), we present the general case since we use it also with k > 1 in our initial experiments (see below). This domain is discussed here to provide a concrete application of our analysis framework. The application of our framework with other more sophisticated domains is left for future work.

In the domain of depth-bounded terms, subterms that exceed the given depth k are replaced by the specific constant \top that represents any term, i.e., the abstract domain of *depth-k terms* is the set $AC = \mathcal{T}(\mathcal{C}_{\perp} \cup \{\top\}, \emptyset)$ together with the concretization function

$$\begin{aligned} \tau(\bot) &= \{\bot\} \\ \tau(\top) &= \mathcal{T}(\mathcal{C}_{\bot}, \mathcal{X}) \\ \tau(c(t_1, \dots, t_n)) &= \{c(t'_1, \dots, t'_n) \mid t'_i \in \tau(t_i), i = 1, \dots, n\} \end{aligned}$$

Furthermore, the abstract entities according to the previous section are defined as follows:

- 1. Abstract bottom element: $\perp^{\alpha} = \perp$
- 2. Abstract variable: $\top^{\alpha} = \top$
- 3. Abstract constructor application:

$$c^{\alpha}(t_1,\ldots,t_n) = cut_k(c(t_1,\ldots,t_n))$$

where the cut operation cut_k is defined by

$$\begin{array}{rcl} cut_k(\bot) &=& \bot\\ cut_0(t) &=& \top & \text{if } t \neq \bot\\ cut_k(c(t_1,\ldots,t_n)) &=& c(cut_{k-1}(t_1),\ldots,cut_{k-1}(t_n)) & \text{if } k > 0 \end{array}$$

4. Abstract matching of linear constructor terms against depth-k terms:

$$match^{\alpha}(x,t) = \{x \mapsto t\}$$

$$match^{\alpha}(c(t_{1},\ldots,t_{n}),\perp) = fail$$

$$match^{\alpha}(c(t_{1},\ldots,t_{n}),\top) = \{x \mapsto \top \mid x \in \mathcal{V}ar(c(t_{1},\ldots,t_{n}))\}$$

$$match^{\alpha}(c(\cdots),d(\cdots)) = fail \quad \text{if } c \neq d$$

$$match^{\alpha}(c(t_{1},\ldots,t_{n}),c(s_{1},\ldots,s_{n})) = \begin{cases} \sigma_{1} \circ \cdots \circ \sigma_{n} & \text{if } match^{\alpha}(t_{i},s_{i}) = \sigma_{i} \\ \sigma_{i} \neq fail, i = 1,\ldots,n \end{cases}$$

$$fail \quad \text{otherwise}$$

As shown in Section 4, these definitions are sufficient to define a transformation on \mathbb{A} whose least fixpoint approximates all concrete computations. Since the abstract domain is finite, the abstract least fixpoint can be computed in a finite number of steps.

Example 5.1 Consider the program and main call of Example 3.6. With a depth bound of 3, our abstract semantics computes exactly the same fixpoint as shown in Example 3.6. With a depth bound of 1 (i.e., each term is abstracted to its top-level constructor), the following fixpoint is computed:

$$\begin{aligned} &\{add(\bot,\bot) \doteq \bot, \ add(0,0) \doteq \bot, \ add(0,0) \doteq 0, \\ &add(S(\top),S(\top)) \doteq \bot, \ add(S(\top),S(\top)) \doteq S(\bot), \ add(S(\top),S(\top)) \doteq S(\top), \\ &add(\top,S(\top)) \doteq \bot, \ add(\top,S(\top)) \doteq S(\bot), \ add(\top,S(\top)) \doteq S(\top), \\ &coin \doteq \bot, \ coin \doteq 0, \ coin \doteq S(\top), \\ &double(\bot) \doteq \bot, \ double(0) \doteq \bot, \ double(0) \doteq 0, \\ &double(S(\top)) \doteq \bot, \ double(S(\top)) \doteq S(\bot), \ double(S(\top)) \doteq S(\top), \\ &main \doteq \bot, \ main \doteq 0, \ main \doteq S(\bot), \ main \doteq S(\top) \end{aligned}$$

In this example, the computed abstract information is not very useful. More interesting examples are situations where one has not the complete concrete information available at analysis time. This is the case when unknown values, e.g., logic variables are present. For instance, consider the rule

 $main \rightarrow add(x, add(y, S(z)))$

where x, y, z are extra variables. With a depth bound of 1, our abstract semantics computes the fixpoint as follows for the set of main calls $\{main\}$:

$$\begin{array}{rcl} T_0 &=& \varnothing \\ T_1 &=& \{main \doteq \bot\} \\ T_2 &=& T_1 \cup \{add(\top, \bot) \doteq \bot, add(\top, S(\top)) \doteq \bot\} \\ T_3 &=& T_2 \cup \{add(\top, \bot) \doteq S(\bot), add(\top, S(\top)) \doteq S(\bot), add(\top, S(\top)) \doteq S(\top)\} \\ T_4 &=& T_3 \cup \{add(\top, \bot) \doteq S(\top), add(\top, S(\bot)) \doteq \bot, main \doteq S(\bot), main \doteq S(\top)\} \\ T_5 &=& T_4 \cup \{add(\top, S(\bot)) \doteq S(\bot)\} \\ T_6 &=& T_5 \cup \{add(\top, S(\bot)) \doteq S(\top)\} \\ T_7 &=& T_6 \end{array}$$

Thus, the fixpoint contains the equation main $\doteq S(\top)$ which shows that the result of evaluating the main call is always headed by the constructor S, i.e., it is a positive number.

As one can see in these examples, the abstract semantics contains many elements where one is less evaluated than the other. For instance, the previous example contains the elements

$$add(\top, \bot) \doteq \bot \qquad add(\top, S(\top)) \doteq \bot \qquad add(\top, S(\top)) \doteq S(\top)$$

where the first two contain less information than the last element. This is due to the fact that we do not know at analysis time how far a function call will be evaluated during run time. Since more elements in the abstract semantics require more computation and one is usually interested in more precise values for call patterns, it is reasonable to transfer the approximation ordering of Definition 2.2 also to abstract values, i.e., compute only the maximal elements of the abstract semantics and remove smaller elements (e.g., the first two elements above) during the fixpoint computation. The positive effect of this improvement will be shown in the practical evaluation below.

As a further example, consider the function

$$\begin{array}{rccc} f(0) & \to & 0\\ f(S(x)) & \to & f(f(x)) \end{array}$$

from [9]. With a depth bound of 1 and the set of main calls $\{f(x)\}$, the least fixpoint of our abstract semantics contains the equation $f(\top) \doteq 0$ indicating that f is a constant function.

The final example in this section includes nondeterministic operations as well as extra variables. The operation half (taken from [3]) is nondeterministic due to two possible roundings of odd numbers, and the *main* operation checks whether doubling a half of some natural number is one (where *double* is defined as above):

$$\begin{array}{ccccccc} half(0) & \to & 0 & isOne(0) & \to & False \\ half(S(0)) & \to & 0 & isOne(S(0)) & \to & True \\ half(S(0)) & \to & S(0) & isOne(S(S(x))) & \to & False \\ half(S(S(x))) & \to & S(half(x)) & main & \to & isOne(double(half(x))) \end{array}$$

With a depth bound of 2, our analysis computes a fixpoint with $main \doteq False$ as the only maximal equation for main. Thus, the soundness of our analysis implies that doubling a half of a natural is always different from one. Note that the consideration of a call-time choice semantics is relevant here since main might reduce to True w.r.t. a traditional term rewriting semantics.

Although our semantics is designed to compute call patterns w.r.t. some main calls, the examples show that we can also use our semantics to approximate the complete input/output relation for all functions in the sense of [2]: we just have to put an initial call of the form $f(x_1, \ldots, x_n)$ (where the arguments x_i are pairwise distinct variables) for each *n*-ary function f into the set of main calls.

6 Extensions for Application Programs

Our analysis presented so far is based on programs described by first-order constructor-based term rewriting systems. In order to apply our analysis to realistic functional logic programs, we have to support two additional concepts apparent in modern functional logic languages like Curry [22, 24]: higher-order functions and primitive operations. This will be discussed in this section.

6.1 Higher-order Features

Higher-order features of functional (logic) languages can be supported through a transformation into first-order programs by defining a predicate *apply* that implements the application of an arbitrary function occurring in the program to an expression. This technique is also known as "defunctionalization" [33] (and conceptually also used in logic languages [35]) and enough to support the higher-order features of current functional (logic) languages (e.g., lambda abstractions can be replaced by new function definitions). For instance, consider a program with the operations *add* and *double* of Example 2.1 and the following rules (here we use the Curry/Haskell notation for lists):

$$\begin{array}{rcl} map(f, []) & \to & [] \\ map(f, x : xs) & \to & apply(f, x) : map(f, xs) \\ main(xs) & \to & map(apply(add, S(0)), map(double, xs)) \end{array}$$

map is the standard higher-order function that applies a function to each element of a list. The application operation is defined by the following rules that can be automatically derived from the program:

$apply(add, x1) \rightarrow$	add(x1)	apply(map, x1)	\rightarrow	map(x1)
$apply(add(x1), x2) \rightarrow$	add(x1, x2)	apply(map(x1), x2)	\rightarrow	map(x1, x2)
$apply(double, x1) \rightarrow$	double(x1)	apply(main, x1)	\rightarrow	main(x1)

Thus, for each *n*-ary function, *n* corresponding *apply* rules are defined. After adding the *apply* rules to the program, we obtain a standard program, i.e., a firstorder term rewriting system⁴ so that we can apply our analysis to it. For instance, a depth-*k* analysis with a depth bound of 2 computes the following least fixpoint:

$$A = \{ main \doteq S(\top) : (\top : \top), main \doteq S(\top) : [], \ldots \}$$

⁴Note that n-ary functions applied to less than n arguments are considered as constructors so that the resulting program is constructor-based.

Thus, one can infer that the first element of the computed list is always a positive integer. Furthermore, the equations for *apply* contained in A reflect the functions that are used in a higher-order manner, e.g., all *apply* equations contained in A have left-hand sides of the form $apply(add(S(\top)), \ldots)$ or $apply(double, \ldots)$ so that we know that only the second and third rule defining *apply* are used during run time. This information could be used to optimize the code of programs based on the defunctionalization technique, e.g., as in Prolog-based implementations [5].

6.2 **Primitive Operations**

Real world programs contain various calls to primitive operations that are not explicitly defined by rewrite rules, e.g., arithmetic operations on integers or floats, I/O operations etc. Although some of these operations can be conceptually explained with infinite sets of rewrite rules [10], we need a constructive method to deal with such operations at analysis time. Since we only need to approximate the meaning of such operations, we can approximate an *n*-ary primitive operation fby the following rewrite rule:

$$f(x_1,\ldots,x_n) \to x$$

(where x_1, \ldots, x_n, x are pairwise different variables). This rule specifies that the result of a call to the primitive function is arbitrary. Of course, one could add more precise descriptions for specific functions and abstract domains, but this "least specific" description is always sufficient, in particular, for input operations where one does not know the user input at analysis time.

I/O operations can be treated in declarative languages by the well-known monadic approach where I/O actions are considered as transformations on the outside world [34]. Thus, each I/O action takes a state of the world and returns a pair consisting of the desired result value and a new state of the world. For instance, the operation getChar that reads and returns the next character from the keyboard takes a state of the world and returns a character from the input and a state of the world. Thus, we can approximate this operation by the following rule (where we ignore the fact that the state of the world is usually changed):

$$getChar(w) \to (c, w)$$

The basic sequence combinator on I/O actions is usually called *bind*: bind(a, f, w) executes action a on the given world w and applies the action function f to the result of the first action. Since each action returns a value together with a new state of the world, we use an auxiliary operation bind' to decompose these items and apply the action function f, i.e., we define these operations by the following rules:

$$bind(a, f, w) \rightarrow bind'(apply(a, w), f)$$

 $bind'((r, w), f) \rightarrow apply(apply(f, r), w)$

With this representation of primitive operations, we can apply our analysis also to programs with I/O operations. For instance, consider the following program where the *main* call reads a character from standard input and returns the contents of a file with this name stored in the directory "/tmp" (note that strings are represented as lists of characters):

$$conc([], ys) \rightarrow ys$$

$$conc(x : xs, ys) \rightarrow x : conc(xs, ys)$$

$$tmpDir \rightarrow '/': 't': 'm': 'p': '/': []$$

$$readTmpFile(c) \rightarrow readFile(conc(tmpDir, c: []))$$

$$main(w) \rightarrow bind(getChar, readTmpFile, w)$$

where readFile is a primitive to read the contents of a file. Applying a depth-k analysis with bound 8 to this program returns the following abstract equation for the primitive readFile (all other equations for readFile contain less information):

$$readFile('/': 't': 'm': 'p': '/': \top: [], \top) \doteq \cdots$$

Thus, we can infer that this program only accesses files in the directory /tmp, as expected. Of course, verifying more interesting safety properties requires other sophisticated domains (e.g., regular types [16]).

6.3 Practical Evaluation

In order to provide some data about the practical application of our framework, we have implemented the proposed fixpoint analysis as a prototype system.⁵ The analyzer is generic w.r.t. the abstract domain, i.e., the operations implementing the abstract domain as described in Section 4 are passed to the generic fixpoint computation. The analyzer is implemented in Curry in a straightforward way where the depth-bounded term analysis, as described in Section 5, is used as an abstract domain. It is not very efficient but a high-level implementation to compare the analysis of simple programs. The analyzer is executed with the Curry implementation KiCS [11] that compiles Curry programs into Haskell programs executed by the Glasgow Haskell Compiler.

Table 1 contains, for various example programs, the number of rewrite rules (including rules for primitive operations), the depth bound used for the analysis, the number of equations of the least fixpoint (FP Size) and the least fixpoint containing only maximal elements (MFP Size) as well as the speedup obtained by computing only maximal elements instead of all elements of the abstract semantics (see discussion in Section 5 above), and the time in milliseconds to compute

⁵Available at http://www.informatik.uni-kiel.de/\char126mh/reports/ PatternAnalysis/.

Program	Rules	Depth	FP Size	MFP Size	Speedup	MFP Time
		k	(# eqs.)	(# eqs.)	(FP/MFP)	(ms)
addadd	3	1	12	2	5.0	4
addlast	7	2	20	7	4.5	4
bertconc	3	1	12	2	15.0	1
bertf0	3	1	7	3	8.0	1
doublecoin	6	1	22	9	2.7	4
family	29	1	43	29	2.2	40
halfdouble	11	2	60	15	6.9	12
head	12	1	90	19	14.3	28
mapadddouble	12	2	424	35	102.4	72
readfile	34	8	160	17	28.5	16
risers	9	1	13	9	2.3	4
tails	15	1	31	7	13.3	4

Table 1: Analysis of example programs

the fixpoint of maximal elements (note that values lower than 10 ms are not quite accurate). Timings were done on a 3.0 Ghz Linux PC (AMD Athlon). addadd is the double call to *add* of Example 5.1, addlast concatenates a two-element list at the end of an arbitrary list and checks whether the resulting list is a one-element list, bertf0 and bertconc are the two examples of [9], doublecoin was presented in Example 3.6, family is a family database represented by nondeterministic operations where a recursive ancestor function is evaluated, halfdouble is the final example of Section 5, head is an example to verify the correct use of the partially defined function head in various situations, mapaddouble and readfile are the examples of Sections 6.1 and 6.2, respectively, and risers and tails are the examples of [29] to verify safe pattern matching in Haskell by static analysis. All programs are available with the implementation of the prototype.

7 Conclusions and Related Work

We have presented an approach to analyze call patterns and their computed results occurring in functional logic computations. For this purpose, we have introduced a new fixpoint characterization of functional logic computations w.r.t. a set of main calls. An approximation of the concrete behavior can be obtained by approximating the operations used to compute this fixpoint. If the abstract domain of this approximation is finite, the complete approximation can be computed in a finite amount of time. We have demonstrated the application of this idea by a depthbounded term analysis. Furthermore, it has been shown how to cover higher-order features and primitive operations in order to approximate realistic programs. The analysis results can be used to optimize programs (e.g., for partial evaluation), to catch pattern-match errors at compile time, or to verify safety conditions of programs. We have implemented this fixpoint analysis as a prototype system which is able to compute all examples in this paper.

Although our approach is the first one to approximate call patterns in functional logic computations, there are various related works. We have already mentioned the works on minimal function graphs (e.g., [19, 26, 36]) that have similar aims as this paper, i.e., the computation of function or predicate calls and their corresponding results. Jones and Mycroft [26] introduced this notion for strict functional languages which has been also applied to logic programs (e.g., [19, 36]) or extended to lazy functional programs [25]. Some works proposed rather general frameworks to compute minimal function graphs [19], but the application of this idea to a concrete programming language must take into account the details of its operational semantics. In the case of modern functional logic languages, the combination of nondeterministic and non-strict computations is essential. Although nondeterministic computations are handled by logic programs and non-strict computations by functional programs, the combination of both requires a carefully designed calculus (CRWL [20]). Therefore, one can not simply combine the works in both areas [19, 25, 36] so that we defined an appropriate fixpoint characterization of the intermediate states of CRWL computations starting from a set of initial calls.

Bert et al. [9] proposed abstract rewriting (which was extended in [8] to conditional term rewriting systems). The objective of abstract rewriting is the approximation of the top-level constructors of term evaluations in order to improve E-unification. For this purpose, they associate to a set of rewrite rules an abstract rewrite system that is able to compute finite approximations of top-level constructors. However, their framework is restricted to constructor-based, confluent and terminating rewrite systems without partial functions and, therefore, too limited for functional logic programming.

Alpuente et al. [2] presented a fixpoint characterization of the input/output relation of functions defined by term rewriting systems in order to detect program errors. Their approach is not goal-oriented, i.e., does not approximate call patterns, and uses the classical notion of rewriting instead of a rewrite relation suitable for modern functional logic languages with non-strict, nondeterministic operations. A fixpoint characterization of functional logic programs based on CRWL was presented in [30]. Although it covers the input/output relation of functions similarly to our semantics, it is not goal-oriented and, thus, not suitable to approximate call patterns.

Albert et al. [1] proposed a method to verify safety properties of logic programs in the spirit of proof-carrying code. Their method derives call and success patterns w.r.t. sophisticated abstract domains. Since they analyze logic programs, their analysis is based on and/or graphs (as well as similar methods for logic programs, e.g., [13]). Such a method is not applicable to functional logic programs due their demand-driven evaluation strategy.

A different method with similar goals has been presented by Mitchell and Runciman [29]. In order to check a Haskell program for the absence of patternmatch errors due to functions with incomplete patterns in their definitions, they propose a static checker that extracts constraints from pattern-based definitions and tries to solve them by simplification and fixpoint iteration. Since they do not use the framework of abstract interpretation, the correctness of their approach is not proved. Furthermore, they consider only the restricted class of purely functional programs rather than general functional logic programs as in this paper. However, it is interesting to note that such kinds of pattern-match errors can be also easily detected by our framework. For instance, one can complete all partial function definitions by rules for the missing patterns that rewrite to some error function. For instance, if the function *head* that extracts the first element of a list is defined by

 $head(x:xs) \rightarrow x$

one can complete its definition by adding the rule

 $head([]) \rightarrow matchError$

If our analysis shows that the function matchError will not be called, i.e., there is no equation of the form $matchError \doteq \cdots$ in the least fixpoint, the correctness of our framework ensures the absence pattern-match errors. Actually, we have successfully applied our analysis with depth-bounded terms to the examples given in [29], where it was sufficient to use a depth of k = 1 (see Table 1).

For future work, we intend to implement the fixpoint analysis more efficiently in order to apply it to larger programs. Furthermore, we want to apply this analysis with other domains that could be more suitable to verify safety properties of programs.

References

- E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretationbased Approach to Mobile Code Safety. *Electronic Notes in Theoretical Computer Science*, Vol. 132, pp. 113–129, 2005.
- [2] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis of Functional Programs. In Proc. of the 12th Int'l Workshop on Logic-Based Program Synthesis and Transformation (LOPSTR 2002), pp. 1– 16. Springer LNCS 2664, 2002.

- [3] S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc. International Conference on Algebraic and Logic Programming (ALP'97), pp. 16–30. Springer LNCS 1298, 1997.
- [4] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the ACM, Vol. 47, No. 4, pp. 776–822, 2000.
- [5] S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into Prolog. In Proc. International Workshop on Frontiers of Combining Systems (FroCoS'2000), pp. 171–185. Springer LNCS 1794, 2000.
- [6] S. Antoy and M. Hanus. Overlapping Rules and Logic Variables in Functional Logic Programs. In Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006), pp. 87–101. Springer LNCS 4079, 2006.
- [7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
- [8] D. Bert and R. Echahed. Abstraction of Conditional Term Rewriting Systems. In Proc. of the 1995 International Logic Programming Symposium, pp. 147– 161. MIT Press, 1995.
- [9] D. Bert, R. Echahed, and M. Østvold. Abstract Rewriting. In Proc. Third International Workshop on Static Analysis, pp. 178–192. Springer LNCS 724, 1993.
- [10] S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic Programs with External Procedures. In Proc. 5th Conference on Logic Programming & 5th Symposium on Logic Programming (Seattle), pp. 311–326. MIT Press, 1988.
- [11] B. Braßel and F. Huch. The Kiel Curry System KiCS. In Proc. 17th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2007) and 21st Workshop on (Constraint) Logic Programming (WLP 2007), pp. 215–223. Technical Report 434, University of Würzburg, 2007.
- [12] B. Braßel and F. Huch. On a Tighter Integration of Functional and Logic Programming. In Proc. APLAS 2007, pp. 122–138. Springer LNCS 4807, 2007.
- [13] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs. Journal of Logic Programming (10), pp. 91–124, 1991.

- [14] J.M. Cleva, J. Leach, and F.J. López-Fraguas. A logic programming approach to the verification of functional-logic programs. In *Proceedings of the 6th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming*, pp. 9–19. ACM Press, 2004.
- [15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction of approximation of fixpoints. In *Proc. of the 4th ACM Symposium on Principles of Programming Languages*, pp. 238–252, 1977.
- [16] P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In F. Pfenning, editor, *Types in Logic Programming*, pp. 157–187. MIT Press, 1992.
- [17] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, *Handbook of Theoretical Computer Science*, Vol. B, pp. 243–320. Elsevier, 1990.
- [18] R. Echahed and J.-C. Janodet. Admissible Graph Rewriting and Narrowing. In Proc. Joint International Conference and Symposium on Logic Programming (JICSLP'98), pp. 325–340, 1998.
- [19] J.P. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Program Specialisation. New Generation Computing, Vol. 9, No. 3/4, pp. 305– 334, 1991.
- [20] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-Artalejo. An approach to declarative programming based on a rewriting logic. *Journal of Logic Programming*, Vol. 40, pp. 47–87, 1999.
- [21] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice. *Journal of Logic Programming*, Vol. 19&20, pp. 583–628, 1994.
- [22] M. Hanus. A Unified Computation Model for Functional and Logic Programming. In Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris), pp. 80–93, 1997.
- [23] M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the International Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS 4670, 2007.
- [24] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2). Available at http://www.informatik.uni-kiel.de/~curry, 2006.

- [25] N. Jones and N. Andersen. Flow Analysis of Lazy Higher Order Functional Programs. *Theoretical Computer Science*, Vol. 375, No. 1-3, pp. 120–136, 2007.
- [26] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal function graphs. In Proc. 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 296–306, 1986.
- [27] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System. In Proc. of RTA'99, pp. 244–247. Springer LNCS 1631, 1999.
- [28] F.J. López-Fraguas, J. Rodríguez-Hortalá, and J. Sánchez-Hernández. A Simple Rewrite Notion for Call-time Choice Semantics. In Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP'07), pp. 197–208. ACM Press, 2007.
- [29] N. Mitchell and C. Runciman. A Static Checker for Safe Pattern Matching in Haskell. In *Trends in Functional Programming*, volume 6, pp. 15–30. Intellect, 2007.
- [30] J.M. Molina-Bravo and E. Pimentel. Modularity in Functional-Logic Programming. In Proc. of the Fourteenth International Conference on Logic Programming (ICLP'97), pp. 183–197. MIT Press, 1997.
- [31] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
- [32] S. Peyton Jones. Call-pattern Specialization for Haskell Programs. In Proc. of the 12th ACM SIGPLAN International Conference on Functional Programming (ICFP 2007), pp. 327–337, 2007.
- [33] J.C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages. In *Proceedings of the ACM Annual Conference*, pp. 717–740. ACM Press, 1972.
- [34] P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29, No. 3, pp. 240–263, 1997.
- [35] D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In Machine Intelligence 10, pp. 441–454, 1982.
- [36] W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics. Journal of Logic Programming, Vol. 13, No. 2&3, pp. 259–290, 1992.