
INSTITUT FÜR INFORMATIK

Call Pattern Analysis for

Functional Logic Programs

Michael Hanus

Bericht Nr. 0803

Juni 2008

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der

Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40

D – 24098 Kiel

Call Pattern Analysis for

Functional Logic Programs

Michael Hanus

Bericht Nr. 0803

Juni 2008

e-mail: mh@informatik.uni-kiel.de

Call Pattern Analysis for
Functional Logic Programs∗

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.

mh@informatik.uni-kiel.de

Abstract

This paper presents a new program analysis framework to approximate
call patterns and their results in functional logic computations. We con-
sider programs containing non-strict, nondeterministic operations in order
to make the analysis applicable to modern functional logic languages like
Curry or TOY. For this purpose, we present a new fixpoint characterization
of functional logic computations w.r.t. a set of initial calls. We show how
programs can be analyzed by approximating this fixpoint. The results of
such an approximation have various applications, e.g., program optimization
as well as verifying safety properties of programs.

1 Introduction

Functional logic languages integrate the most important features of functional and
logic languages to provide a variety of programming concepts. For instance, the
concepts of demand-driven evaluation, higher-order functions, and polymorphic
typing from functional programming are combined with logic programming fea-
tures like computing with partial information (logic variables), constraint solving,
and nondeterministic search for solutions. This combination supports optimal eval-
uation strategies [3, 4] and leads to better abstractions in application programs
(see [23] for a recent survey).

In this paper we propose a new method to analyze call patterns of functional
logic programs, i.e., we want to approximate the arguments of all function calls
occurring in a computation w.r.t. a program and a set of initial calls. Such approx-
imations are useful in various ways. For instance, they can be used to optimize

∗This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-2.

3

programs (e.g., partial evaluation, eliminating unnecessary code [32]), to catch
pattern-match errors due to partial function definitions at compile time [29], or to
verify safety conditions of programs (e.g., which files or sockets are accessed during
a computation [1]). The contributions of this work are:

1. We present a new fixpoint characterization of functional logic computations
w.r.t. a set of initial calls (Section 3). We consider programs containing
non-strict, nondeterministic operations with call-time choice semantics as in
modern functional logic languages like Curry [22, 24] or TOY [27].

2. We show the soundness of this fixpoint characterization w.r.t. the rewriting
logic CRWL [20], a standard semantics for such kind of languages [23].

3. We introduce a general framework to analyze call patterns based on this fix-
point characterization (Section 4). An example analysis with depth-bounded
terms is presented in Section 5.

4. We discuss how this framework can be extended to features occurring in ap-
plication programs, like higher-order functions and primitive operations to
perform I/O, and present a practical evaluation of a prototypical implemen-
tation (Section 6).

2 Basic Concepts

In this section we review some concepts and notations from term rewriting [7, 17]
and functional logic programming [21, 23] that are used in this paper.

Although modern functional logic languages are strongly typed, we ignore this
aspect for the sake of simplicity. However, the distinction between defined func-
tions and data constructors is important for the definition of the operational se-
mantics of such languages [23]. Therefore, we consider a signature Σ partitioned
into a set C of constructors and a set F of (defined) functions or operations. We
write c/n ∈ C and f/n ∈ F for n-ary constructor and operation symbols, respec-
tively. Given a set of variables X , the set of terms and constructor terms are
denoted by T (Σ,X) and T (C,X), respectively. We write Var(t) for the set of all
the variables occurring in a term t. A term is linear if it does not contain multiple
occurrences of a variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor).

A pattern is a linear term of the form f(t1, . . . , tn) where f/n ∈ F is an
operation symbol and t1, . . . , tn are constructor terms. A functional logic program
is a constructor-based rewrite system, i.e., a set of pairs of terms or rewrite rules
of the form l → r where l is a pattern. Traditionally, term rewriting systems
have the additional requirement Var(r) ⊆ Var(l). However, in functional logic

4

programming variables occurring in Var(r) but not in Var(l), called extra variables,
are often useful. Therefore, we allow rewrite rules with extra variables in functional
logic programs.

Example 2.1 The following functional logic program is based on the set of con-
structors C = {0/0, S/1} to represent natural numbers. It defines operations to
add two natural numbers and to double the value of a number, and an operation
coin that returns one of the two values 0 or S(0).

add(0, x) → x coin → 0
add(S(x), y) → S(add(x, y)) coin → S(0)

double(x) → add(x, x)

Note that an operation like coin is not admissible in purely functional programs
since it has more than one normal form. However, in the context of functional
logic programming such nondeterministic operations are permitted and useful for
programming [20, 23]. Actually, it has been shown that logic variables and nonde-
terministic functions have the same expressive power [6] although we consider both
concepts for the sake of simplicity.

To formally define computations w.r.t. a given program, additional notions are
necessary. A position p in a term t is represented by a sequence of natural numbers.
Positions are used to identify specific subterms. Thus, t|p denotes the subterm of
t at position p, and t[s]p denotes the result of replacing the subterm t|p with the
term s (see [17] for details). The set of all positions of a term t is denoted by
Pos(t), and the set of all positions of operation-rooted subterms of a term t is
denoted by FPos(t). A substitution is an idempotent mapping σ : X → T (Σ,X)
such that its domain Dom(σ) = {x | σ(x) 6= x} is finite. We denote a substitution
σ by the finite set {x 7→ σ(x) | x ∈ Dom(σ)}. In particular, ∅ denotes the identity
substitution. Substitutions are extended to morphisms on terms in the obvious
way.

In classical term rewriting, a rewrite step t →p,l→r,σ t
′ w.r.t. a given rewrite

system R is defined if there are a position p in t, a rule l → r ∈ R, and a
substitution σ with t|p = σ(l) such that t′ = t[σ(r)]p (where we omit the subscripts
if they are not relevant). However, this classical notion of term rewriting is not
suitable for functional logic programs that contain nondeterministic, non-strict
functions defined by non-confluent programs. For instance, classical rewriting
allows the following sequence of rewrite steps w.r.t. Example 2.1:

double(coin) → add(coin, coin) → add(0, coin) → add(0, S(0)) → S(0)

This result is not intended since the operation double should return only even
numbers. In order to cover this intended behavior, González-Moreno et al. [20]

5

have proposed the rewriting logic CRWL (Constructor-based conditional ReWrit-
ing Logic) as a logical (execution- and strategy-independent) foundation for declar-
ative programming with non-strict and nondeterministic operations. This rewrit-
ing logic specifies the call-time choice semantics where the values of the arguments
of an operation are determined before the operation is evaluated. To deal with
non-strict operations, CRWL considers signatures Σ⊥ that are extended by a spe-
cial symbol ⊥ to represent undefined values. We define C⊥ = C ∪ {⊥} so that
T (C⊥,X) denotes the set of partial constructor terms, e.g., S(S(⊥)) denotes a
number greater than 1 where the exact value is undefined. Such partial terms are
considered as finite approximations of possibly infinite values. CRWL defines the
deduction of approximation statements1 e � t with the intended meaning “the
partial constructor term t approximates the value of e”. To model call-time choice
semantics, rewrite rules are only applied to partial values. Hence, the following
notation for partial constructor instances of a set of rules R is useful:

[R]⊥ = {σ(l)→ σ(r) | l→ r ∈ R, σ : X → T (C⊥,X)}

Then CRWL is defined by the following set of inference rules (where the program
is represented by a TRS R):

e � ⊥ for any e ∈ T (Σ⊥,X)

x � x for any variable x ∈ X
e1 � t1 · · · en � tn

c(e1, . . . , en) � c(t1, . . . , tn)
for any c/n ∈ C, ti ∈ T (C⊥,X)

e1 � t1 · · · en � tn r � t
f(e1, . . . , en) � t

for any f(t1, . . . , tn)→ r ∈ [R]⊥ and t 6= ⊥

The first rule specifies that ⊥ approximates any expression. The condition t 6= ⊥
in the last rule avoids unnecessary applications of this rule since this case is
already covered by the first rule. The restriction to partial constructor instances
in this rule formalizes non-strict functions with a call-time choice semantics.
Functions might have non-strict arguments that are not evaluated since the
corresponding actual arguments can be derived to ⊥ by the first rule. If the
value of an argument is required to evaluate the right-hand side of a function’s
rule, it must be evaluated to a partial constructor term before it is passed to the
right-hand side (since [R]⊥ contains only partial constructor instances), which
corresponds to a call-time choice semantics. Note that this does not prohibit the
use of lazy implementations since this semantical behavior can be enforced by
sharing unevaluated expressions. Actually, [20] defines a lazy narrowing calculus
that reflects this behavior.2

1For the sake of simplicity, we consider only unconditional rules in contrast to the original
presentation of CRWL.

2There are also lazy narrowing calculi that model sharing by graph structures, e.g., [18]. Since

6

In order to apply our program analysis to functional logic programs as discussed
above, we intend to use CRWL as its foundation. However, it has been noted [28]
that this calculus has some drawbacks compared to classical definitions of rewrit-
ing where computation steps can be directly applied to any subterm rather than
decomposing terms until the function call appears at the top level. Therefore, we
use in the following an alternative definition of rewrite steps conform with CRWL
computations. This rewrite relation, s � t, is defined by the following rules:

(Bottom step) e � e[⊥]p if p ∈ FPos(e)
(Function reduction) e[f(t1, . . . , tn)]p � e[r]p if f(t1, . . . , tn)→ r ∈ [R]⊥

The first rule allows the approximation of any (in particular, non-demanded) func-
tion call by ⊥. The second rule corresponds to classical rewrite steps except that
arguments must be already evaluated to partial values, which corresponds to a
call-time choice semantics. As usual, we denote by �∗ the reflexive-transitive
closure of the relation �.

Note that a similar rewrite relation has been proposed in [28] but with the
difference that also constructor terms can be approximated by ⊥. Hence, the
rewrite relation of [28], which we denote by �c , is defined as follows:

(Bottom step) e �c e[⊥]p if p ∈ Pos(e)
(Function reduction) e[f(t1, . . . , tn)]p �c e[r]p if f(t1, . . . , tn)→ r ∈ [R]⊥

Note that only the first rule differs from our relation � by allowing also the
replacement of constructor-rooted terms and variables by ⊥. The equivalence of
the rewrite relation �c and CRWL is shown in [28]. However, our rewrite relation
� restricts the nondeterministic choices due to the approximation of values since
it does not allow the approximation of constructor terms.3 In order to justify the
use of our rewrite relation, we establish a precise connection between the values
computable by both rewrite relations. Basically, we show that the restriction of our
relation � does does not change the applicability of rewrite rules but computes
better approximations of constructor terms. For this purpose, we define the usual
approximation ordering on partial expressions.

Definition 2.2 The set of partial expressions T (Σ⊥,X) is ordered by the approx-
imation ordering v which is defined as the least partial ordering satisfying ⊥ v t
and f(s1, . . . , sn) v f(t1, . . . , tn) if s1 v t1, . . . , sn v tn, for all si, ti, t ∈ T (Σ⊥,X)
and f/n ∈ Σ. 2

In a first step, we show that the replacement of bottom elements by other expres-
sions does not restrict potential derivations.

this requires the handling of complex graph structures and their approximations, we base our
development on the conceptually simpler rewriting logic CRWL.

3The advantage of such a restriction has been also recognized in [14] in the context of CRWL.

7

Lemma 2.3 Let e, e0 ∈ T (Σ⊥,X), p ∈ Pos(e) with e|p = ⊥, and e �∗ e1. Then
there is also a derivation e[e0]p �∗ e2 such that e1 v e2 and e2|p ∈ T (C⊥,X) for
all p ∈ Pos(e1) with e1|p = ⊥.

Proof: First we note that it is sufficient to construct a proof for the case that
e0 is a partial constructor term: if e0 contains operation-rooted subterms, these
subterms can be replaced by ⊥ with initial bottom steps in a rewriting derivation
of e[e0]p. Thus, we prove the lemma for e0 ∈ T (C⊥,X) by induction on the length
k of the derivation e �∗ e1.

Base case k = 0: Since there is no rewrite step, e = e1. Hence, e[e0]p �∗ e[e0]p
and e1 = e v e[e0]p by definition of v. Since e0 ∈ T (C⊥,X), the lemma holds.

Inductive case k > 0: Since there is at least one rewrite step in the derivation
e �∗ e1, it has the structure e � e′ �k−1 e1 and the lemma holds for e′ �k−1 e1.
We distinguish the possible cases of the initial step e � e′.

If e � e′ is a bottom step, then there is a position q ∈ FPos(e) with e′ = e[⊥]q.
We distinguish the possible relations between the positions p and q.

• If p is below q, then e[e0]p � e′ is also a valid bottom step so that we directly
obtain a derivation e[e0]p � e′ �∗ e1.

• If p is not below q, then p and q are independent (note that the case p = q
is impossible since e|p = ⊥ and q ∈ FPos(e)). Hence we can apply the same
bottom step to e[e0]p, i.e., e[e0]p � e′[e0]p and e′|p = e|p = ⊥. Thus, the
claim follows by applying the induction hypothesis to e′.

If e � e′ is not a bottom step, then there is a position q ∈ FPos(e), a rule
l→ r ∈ R, and a substitution σ : X → T (C⊥,X) with e|q = σ(l) and e′ = e[σ(r)]q.
If p and q are independent, then the same function reduction step is also applicable
to e[e0]p so that we can apply the induction hypothesis. If p is below q (note that p
cannot be equal to or above q since e|p = ⊥), then p is equal to or below a position
of a pattern variable x occurring in l (since e|p = ⊥ and the bottom symbol does
not occur in l). If x does not occur in r, then there is also a step e[e0]p � e′ (by
choosing the same rule with a different substitution for the variable x) so that we
directly obtain the desired derivation. If x occurs in r, there is a step e[e0]p � e′′

where e′′ differs from e′ by having e0 instead of ⊥ at some positions. Thus, we can
apply the induction hypothesis to each of these positions. ut
Now we can establish the relation between CRWL and � by stating that our
relation � computes the same or better approximations of constructor terms than
�c (which is equivalent to �, see [28, Theorem 1]).

Theorem 2.4 Let e ∈ T (Σ⊥,X) and t ∈ T (C⊥,X).

1. If e �∗ t, then e �c ∗ t.

8

2. If e �c ∗ t, then e �∗ t′ for some t′ ∈ T (C⊥,X) with t v t′.

Proof: The first claim immediately holds since every �-step is also a �c -step.
We prove the second claim by induction on the length k of the derivation e �c ∗ t.

The base case (k = 0, hence e = t) is trivial. For the inductive case (k > 0)
we note that the derivation has the structure e �c e′ �c k−1 t. By the induction
hypothesis, there is a derivation e′ �∗ t′ for some t′ ∈ T (C⊥,X) with t v t′. If the
first step e �c e′ is a function reduction step, e � e′ is also a function reduction
step. If e �c is a bottom step, e′ = e[⊥]p. Thus, by Lemma 2.3, there is also a
derivation e = e′[e|p]p �∗ t′′ with t′ v t′′ and t′′ ∈ T (C⊥,X). ut
Although our rewrite relation � has less nondeterministic choices than �c or
CRWL, there is still an apparent nondeterminism due to the choice between func-
tion evaluation or approximation of functions by ⊥ in the rules defining �. This
might cause an approximation of many partial values in a program analysis frame-
work based on this semantics. However, this potential disadvantage can be avoided
in the analysis by computing only maximal elements w.r.t. an information ordering
on abstract values, as we will see below.

For the purpose of our analysis of functional logic programs, it is sufficient
to use the rewrite relation � as a basis. Although concrete functional logic lan-
guages use sophisticated narrowing strategies to evaluate programs [23], narrowing
derivations have a strong correspondence to rewriting derivations, i.e., each nar-
rowing derivation usually corresponds to a rewriting derivation after applying the
substitutions computed by narrowing. Thus, if we approximate the call patterns
occurring in all rewriting derivations (as done in the following), we obtain also
approximations of all possible call patterns occurring in narrowing derivations.

3 Fixpoint Semantics for Functional Logic Com-

putations

In this section we develop a fixpoint characterization of functional logic computa-
tions that will be later used to approximate the call patterns occurring in concrete
computations. From now on, we assume a fixed signature Σ = F ∪ C and a set of
variables X .

In contrast to related abstractions of term rewriting systems (e.g., [2, 8, 9]),
we intend to approximate only those call patterns that might occur in concrete
computations for specific applications, i.e., starting from some set of initial function
calls. Therefore, we assume a given set

M⊆ {f(t1, . . . , tn) | f/n ∈ F , t1, . . . , tn ∈ T (C,X)}

of initial or main calls, i.e., functions applied to constructor terms from which any
concrete computation starts. Having only constructor terms as arguments is not

9

a restriction, since nested function calls can be easily removed by introducing new
auxiliary functions.

Our fixpoint semantics is based on interpretations that consist of pairs or equa-
tions of expressions describing the computed input/output relation of all functions.
Thus, the base domain is the set of equations

E = {f(t1, . . . , tn)
.
= t | f/n ∈ F , t1, . . . , tn, t ∈ T (C⊥,X)}

Note that we allow partial constructor terms in order to deal with the partial
construction of the input/output relation during the fixpoint computation. A
particular interpretation is a subset of E .

An important aspect of our semantics is the stepwise extension of the set of
initial calls with more function calls occurring during the computation. For this
purpose, we have to evaluate concrete terms occurring in a program w.r.t. a current
interpretation as defined next.

Definition 3.1 (Evaluation of terms) Let I ⊆ E be an interpretation. The
evaluation of a term t w.r.t. I is a mapping evalI : T (Σ,X)→ 2T (C⊥,X) defined by

evalI(x) = {x}
evalI(c(e1, . . . , en)) = {c(t1, . . . , tn) | ti ∈ evalI(ei), i = 1, . . . , n}
evalI(f(e1, . . . , en)) = {⊥} ∪ {t | ti ∈ evalI(ei), i = 1, . . . , n,

f(t1, . . . , tn)
.
= t ∈ I} 2

For instance, consider the interpretation

I = {coin .
= 0, coin

.
= S(0), double(0)

.
= 0, double(S(0))

.
= S(S(0))}

Then

evalI(coin) = {⊥, 0, S(0)}

and

evalI(double(coin)) = {⊥, 0, S(S(0))} .

Note that evalI(double(coin)) does not contain S(0) since this value does not occur
in any right-hand side of a double equation in interpretation I.

Obviously, partial constructor terms are always evaluated to their own values,
as formally stated in the following proposition.

Proposition 3.2 evalI(t) = {t} for all t ∈ T (C⊥,X) and interpretations I ⊆ E.

A specific term evaluation that is sometimes used is the interpretation where all
function calls are replaced by ⊥.

10

Definition 3.3 (Bottom evaluation) Let e ∈ T (Σ,X). Then the bottom eval-
uation e⊥ of e is defined by e⊥ = t for {t} = eval∅(e). 2

Proposition 3.4 e⊥ ∈ evalI(e) for all e ∈ T (Σ,X) and interpretations I ⊆ E.

Now we are able to define a transformation on interpretations (similarly to the
immediate consequence operator in logic programming) that covers information
about potential function calls and their computed results.

Definition 3.5 (Transformation on interpretations) Let R be a functional
logic program and M a set of main calls. The set of initial equations M⊥ is
defined by

M⊥ = {s .
= ⊥ | s ∈M}

The transformation TR,M on interpretations I ⊆ E is defined as follows:

TR,M(I) =M⊥ ∪ {s
.
= r′ | s .

= t ∈ I, s→ r ∈ [R]⊥, r
′ ∈ evalI(r)}

∪ {f(t1, . . . , tn)
.
= ⊥ | s .

= t ∈ I, s→ r ∈ [R]⊥,
p ∈ FPos(r) with r|p = f(e1, . . . , en),
ti ∈ evalI(ei), i = 1, . . . , n}

As usual, we define

TR,M ↑ 0 = ∅
TR,M ↑ k = TR,M(TR,M ↑ (k − 1)) (for k > 0)

2

Informally speaking, the transformation TR,M adds to the set of initial equations
in each iteration

1. better approximations of the rules’ right-hand sides (s
.
= r′) and

2. new function calls occurring in right-hand sides (f(t1, . . . , tn)
.
= ⊥).

As we will see later, the least fixpoint of the transformation TR,M contains the
information about all function calls and all results computed during derivations
starting from the main calls. Thus, the construction described by TR,M is similar
to the notion of minimal function graphs introduced in [26] to analyze (strict)
functional programs and relating program analysis frameworks based on opera-
tional [15] and denotational semantics. Minimal function graphs have been also
used to optimize logic programs (e.g., [19, 36]). Although all these frameworks are
based on a common principle (incremental computation of all reachable calls and
their results), the concrete computational methods are different. In our case, we
have to model CRWL computations that might be non-strict, i.e., functions might

11

reduce on arguments that have no value. For this purpose, our transformation
TR,M evaluates (by evalI) arbitrary argument expressions to partial constructor
terms before adding the new function calls so that it will be checked (in the next
iteration step) whether these calls can be evaluated by applying a rewrite rule or
stay unevaluated in the interpretation. The modelling of interpretations as sets
of equations provides an intuitive understanding of the elements of an interpreta-
tion: If an interpretation computed from a set of initial calls contains an equation
f(t1, . . . , tn)

.
= t, then the call f(t1, . . . , tn) might occur in a computation of some

initial call and t is an approximated result value of this call. Before stating this
intuition more formally, we provide an example computation w.r.t. TR,M.

Example 3.6 Consider the program of Example 2.1 extended by the rule

main→ double(coin)

If the set of main calls is M = {main}, the transformation TR,M computes the
following sequence of interpretations, where we write Ti for TR,M ↑ i.

T0 = ∅
T1 = {main .

= ⊥}
T2 = T1 ∪ {coin

.
= ⊥, double(⊥)

.
= ⊥}

T3 = T2 ∪ {add(⊥,⊥)
.
= ⊥, coin .

= 0, coin
.
= S(0)}

T4 = T3 ∪ {double(0)
.
= ⊥, double(S(0))

.
= ⊥}

T5 = T4 ∪ {add(0, 0)
.
= ⊥, add(S(0), S(0))

.
= ⊥}

T6 = T5 ∪ {add(0, 0)
.
= 0, add(0, S(0))

.
= ⊥, add(S(0), S(0))

.
= S(⊥)}

T7 = T6 ∪ {add(0, S(0))
.
= S(0), double(0)

.
= 0, double(S(0))

.
= S(⊥)}

T8 = T7 ∪ {add(S(0), S(0))
.
= S(S(0)),main

.
= 0,main

.
= S(⊥)}

T9 = T8 ∪ {double(S(0))
.
= S(S(0))}

T10 = T9 ∪ {main
.
= S(S(0))}

T11 = T10

Thus, a fixpoint is reached after 11 iterations. Note that the fixpoint contains 0 and
S(S(0)) as values of main but not S(0), as expected for functional logic programs
with call-time choice semantics.

Next we state the formal properties of the transformation TR,M. In the following
we assume a fixed functional logic program R and a set of main callsM. The first
important property of TR,M ensures the existence of a fixpoint.

Proposition 3.7 The mapping TR,M is continuous on 2E .

Proof: Let X be a directed subset of 2E . We have to show that TR,M(lub(X)) =
lub(TR,M(X)).

12

⊆: Let s
.
= t ∈ TR,M(lub(X)). If s

.
= t ∈ M⊥, obviously s

.
= t ∈ lub(TR,M(X)).

Otherwise, there are s′ = t′ ∈ lub(X), s′ → r ∈ [R]⊥ and

• either p ∈ Pos(r), r|p = f(e1, . . . , en), ti ∈ evallub(X)(ei) (i = 1, . . . , n)
so that s = f(t1, . . . , tn) and t = ⊥: Since only finitely many elements
of the sets in X are involved in evallub(X) and X is directed, there exists
an upper bound I ∈ X with s′

.
= t′ ∈ I and ti ∈ evalI(ei) (i = 1, . . . , n).

Hence, s
.
= t ∈ TR,M(I) ⊆ lub(TR,M(X)).

• or s = s′ and t ∈ evallub(X)(r): As above, there exists an upper bound
I ∈ X with t ∈ evalI(r). Hence s

.
= t ∈ TR,M(I) ⊆ lub(TR,M(X)).

⊇: Let s
.
= t ∈ lub(TR,M(X)). Hence there is an I ∈ X with s

.
= t ∈ TR,M(I). If

s
.
= t ∈ M⊥, then s

.
= t ∈ TR,M(lub(X)). Otherwise, there are s′ = t′ ∈ I,

s′ → r ∈ [R]⊥ and

• either p ∈ Pos(r), r|p = f(e1, . . . , en), ti ∈ evalI(ei) (i = 1, . . . , n)
so that s = f(t1, . . . , tn) and t = ⊥: Hence, s′

.
= t′ ∈ lub(X) and

ti ∈ evallub(X)(ei) (i = 1, . . . , n), and, thus, s
.
= t ∈ TR,M(lub(X)).

• or s = s′ and t ∈ evalI(r): Hence, t ∈ evallub(X)(r) which implies
s
.
= t ∈ TR,M(lub(X)).

ut
Thus, the mapping TR,M has a least fixpoint TR,M ↑ ω which is the least upper
bound of {TR,M ↑ k | k ≥ 0}.

Definition 3.8 The least fixpoint semantics of a program R w.r.t. a set of main
calls M is defined as CR,M = TR,M ↑ ω. 2

The following theorems justify the use of this fixpoint semantics to analyze pro-
grams, i.e., they show that interesting properties of concrete computations are
correctly represented by CR,M. The first theorem shows that the least fixpoint
contains all function calls (where unevaluated arguments are approximated by ⊥)
occurring in computations starting from main calls. For this purpose, we denote
by

calls(s) = {t|p | s �∗ t, p ∈ FPos(t)}

the set of all function calls occurring in derivations starting with the term s.

Theorem 3.9 (Call covering) Let s ∈ M and f(e1, . . . , en) ∈ calls(s). Then
f(e⊥1 , . . . , e

⊥
n)

.
= ⊥ ∈ CR,M.

13

Proof: Let s ∈ M and f(e1, . . . , en) ∈ calls(s). Thus, there is a term t with
s �∗ t and a position p ∈ FPos(t) with t|p = f(e1, . . . , en). The proof is done by
induction on the length k of the derivation s �∗ t.

Base case k = 0: Then s = t. Since s ∈ M, the only operation-rooted term is
at the root, i.e., f(e1, . . . , en) = s. Moreover, s

.
= ⊥ ∈ CR,M by Definition 3.5.

Hence, the theorem holds since u⊥ = u for all u ∈ T (C⊥,X).

Inductive case k > 0: Let s �k−1 t � u, where the theorem holds for s �k−1

t, and u|p = f(e1, . . . , en). In order to show f(e⊥1 , . . . , e
⊥
n)

.
= ⊥ ∈ CR,M, we

distinguish two cases for the step t � u:

• t � u is a bottom step: Then there is a position q such that u = t[⊥]q.
If q and p are independent positions, then t|p = u|p so that we can apply
the induction hypothesis. If q is below p, i.e., t|q is a subterm of t|p (note
that q cannot be above p), t|q is some function call that is replaced by ⊥ in
f(e⊥1 , . . . , e

⊥
n). Thus, we can apply the induction hypothesis.

• t � u is not a bottom step: Then there is a position q, l → r ∈ [R]⊥ such
that t|q = l and u = t[r]q. Let l = g(s1, . . . , sm) (note that s⊥i = si for
i = 1, . . . ,m). By induction hypothesis, g(s1, . . . , sm)

.
= ⊥ ∈ CR,M. By

Definition of TR,M, g(s1, . . . , sm)
.
= r′ ∈ CR,M for some r′ ∈ evalCR,M(r).

If q and p are independent positions, then t|p = u|p and we can apply the
induction hypothesis.
If p is below q, f(e1, . . . , en) is a subterm of r. Since g(s1, . . . , sm)

.
= r′ ∈

CR,M and g(s1, . . . , sm) → r ∈ [R]⊥, by definition of TR,M, f(t1, . . . , tn)
.
=

⊥ ∈ CR,M for all ti ∈ evalCR,M(ei). Hence, f(e⊥1 , . . . , e
⊥
n)

.
= ⊥ ∈ CR,M.

If p is above q, then u and t differ only in some argument of f(e1, . . . , en)
which is replaced by ⊥ in f(e⊥1 , . . . , e

⊥
n). Hence, we can apply the induction

hypothesis. ut
The next theorem states the soundness of the least fixpoint w.r.t. the rewrite
relation �, i.e., each equation contained in the least fixpoint corresponds to a
rewrite derivation.

Theorem 3.10 (Soundness) If s
.
= t ∈ CR,M, then s �∗ t.

Proof: If s
.
= t ∈ CR,M, then there is a number k with s

.
= t ∈ TR,M ↑ k. The

proof is done by induction on k, i.e., we show s
.
= t ∈ TR,M ↑ k implies s �∗ t for

all k ≥ 0.

Base case k = 0: The theorem vacuously holds.

Inductive case k > 0: We distinguish the different elements of TR,M ↑ k:

1. s
.
= t ∈M⊥: Then t = ⊥ and s � ⊥.

14

2. s
.
= t 6∈ M⊥: Let I = TR,M ↑ (k − 1). By definition of TR,M, there exist

s′
.
= t′ ∈ I and s′ → r ∈ [R]⊥ so that

• either p ∈ Pos(r), r|p = f(e1, . . . , en), ti ∈ evalI(ei) (i = 1, . . . , n) with
s = f(t1, . . . , tn) and t = ⊥: Then s � t by definition of �.

• or s = s′ and t ∈ evalI(r): By induction on the structure of r, we
show r �∗ u for all u ∈ evalI(r). The base cases (r is a vari-
able or a 0-ary constructor) are trivial. If r = c(u1, . . . , um), we ap-
ply the induction hypothesis to all arguments and concatenate their
rewrite sequences. If r = f(u1, . . . , um), then either u = ⊥, which
is trivial by f(u1, . . . , um) � ⊥, or f(u′1, . . . , u

′
m)

.
= u ∈ I with

u′i ∈ evalI(ui) (i = 1, . . . ,m). By induction hypothesis, ui �∗ u′i for
i = 1, . . . ,m. Furthermore, f(u′1, . . . , u

′
m) �∗ u by the hypothesis of

the main induction. Combining these rewriting derivations, we obtain
f(u1, . . . , um) �∗ u. ut

Since we have constructed the least fixpoint w.r.t. a set of main calls, it represents
all those rewrite derivations that start from these main calls. This is formally
stated in the next theorem. Since operation-rooted subterms occurring during
derivations might contain unevaluated arguments, we interpret these arguments
w.r.t. evalCR,M .

Theorem 3.11 (Completeness) Let s ∈ M and f(e1, . . . , en) ∈ calls(s). If
f(e1, . . . , en) �∗ u, then there exist ti ∈ evalCR,M(ei), i = 1, . . . , n, such that
f(t1, . . . , tn)

.
= u⊥ ∈ CR,M.

Proof: Let t = f(e1, . . . , en). We prove the theorem by induction on the length k
of the derivation t �∗ u.

Base case k = 0: Then t = u and u⊥ = ⊥. Theorem 3.9 implies that
f(e⊥1 , . . . , e

⊥
n)

.
= ⊥ ∈ CR,M. Since e⊥i ∈ evalCR,M(ei) (by Proposition 3.4), the

theorem holds.

Inductive case k > 0: We distinguish two possible cases for the first step of the
derivation t �k u:

• The first step is applied at the root: Then f(e1, . . . , en) � r �k−1 u
and f(e1, . . . , en) → r ∈ [R]⊥. Theorem 3.9 implies that f(e⊥1 , . . . , e

⊥
n)

.
=

⊥ ∈ CR,M. By definition of TR,M, f(e1, . . . , en)
.
= r′ ∈ CR,M for all r′ ∈

evalCR,M(r). Consider the outermost operation-rooted positions q in r, i.e.,
r|q = g(s1, . . . , sm). Since r �k−1 u, r|q �∗ u|q in less than k steps. By in-
duction hypothesis, g(s′1, . . . , s

′
m)

.
= u⊥|q ∈ CR,M for some s′i ∈ evalCR,M(si),

i = 1, . . . ,m. By Definition 3.1, f(e1, . . . , en)
.
= u⊥ ∈ CR,M.

15

• The first step is not applied at the root, i.e., there is a deriva-
tion f(e1, . . . , en) �∗ f(t1, . . . , tn) without root steps and a derivation
f(t1, . . . , tn) �∗ u where the first step is at the root, i.e., t1, . . . , tn ∈
T (C⊥,X), and both derivations consists of less than k steps. As in the previ-
ous case, we infer for the second derivation that f(t1, . . . , tn)

.
= u⊥ ∈ CR,M.

Now consider a non-empty subderivation ei �∗ ti with ei = g(s1, . . . , sm)
(if the root symbol of ei is not operation-rooted, consider an outermost
operation-rooted subterm). By induction hypothesis, g(s′1, . . . , s

′
m)

.
= ti ∈

CR,M for some s′j ∈ evalCR,M(sj), j = 1, . . . ,m. Thus, ti ∈ evalCR,M(ei) by
Definition 3.1. ut

This theorem implies that the least fixpoint contains all values of the main calls.

Corollary 3.12 If s ∈M, t ∈ T (C⊥,X) with s �∗ t, then s
.
= t ∈ CR,M.

Proof: By Theorem 3.11 and Proposition 3.2. ut
The bottom elements of the least fixpoint could indicate unsuccessful computa-
tions, i.e., computations that do not deliver a result since no rule is applicable at
some point or since they loop. Since the least fixpoint contains all approxima-
tions of result values, one can infer unsuccessful computations only if the bottom
element is maximal. Therefore, we define the notion of maximal elements of an
interpretation.

Definition 3.13 s
.
= t ∈ I is called maximal in an interpretation I ⊆ E if there

is no s
.
= t′ ∈ I with t′ 6= t and t v t′. The set of all maximal elements of an

interpretation I ⊆ E is denoted by max(I). 2

Corollary 3.14 If s ∈ M and s
.
= ⊥ ∈ max(CR,M), then s is not evaluable to a

value, i.e., there is no t ∈ T (C,X) with s �∗ t.

Proof: By contradiction with an application of Corollary 3.12. ut
The latter corollary is useful to detect unsuccessful computations at compilation
time if we can provide an appropriate and computable approximation of CR,M.
This is the purpose of the next section.

4 Abstraction of Functional Logic Computations

Abstract interpretation [15, 31] is a framework to construct program analyses by
approximating the concrete transformation function of the operational semantics
in order to obtain an approximation of the program’s behavior. Since we already
developed a fixpoint characterization of functional logic computations, we can
easily apply the abstract interpretation framework in order to analyze functional
logic programs.

16

We are mainly interested in the call patterns and input/output relation of
functions occurring in the program. We already described this information by
interpretations where the basic elements are equations of the form f(t1, . . . , tn)

.
= t

with f ∈ F and t1, . . . , tn, t ∈ T (C⊥,X), i.e., the concrete semantics is based on
partial constructor terms. Therefore, an approximation of the concrete semantics
can be based on abstract partial constructor terms. In order to provide a general
framework that can be used with different abstract domains, we assume an abstract
domain AC representing abstract partial constructor terms and a concretization
function τ : AC → 2T (C⊥,X) that maps abstract partial constructor terms into sets
of concrete terms. To ensure finite computations on the abstract domain, one could
require that AC is finite. However, this is not strictly necessary since there exist
other methods to ensure terminating abstract computations even in the presence
of infinite abstract domains [15].

The concrete domain E is the powerset 2E ordered by set inclusion as already
introduced in Section 3. Similarly, the abstract domain A is the powerset of the
base set

{f(a1, . . . , an)
.
= a | f ∈ F , a1, . . . , an, a ∈ AC}

ordered by some set ordering. Based on the concretization function τ , we define a
Galois insertion of A into E by

α(I) = {f(a1, . . . , an)
.
= a | f(t1, . . . , tn)

.
= t ∈ I for all

t1 ∈ τ(a1), . . . , tn ∈ τ(an), t ∈ τ(a)}
γ(A) = {f(t1, . . . , tn)

.
= t | f(a1, . . . , an)

.
= a ∈ A,

t1 ∈ τ(a1), . . . , tn ∈ τ(an), t ∈ τ(a)}
The theory of abstract interpretation shows that an optimal abstract version
TαR,M : A→ A of TR,M can be defined by TαR,M = α ◦TR,M ◦ γ. In general, weaker
abstract transformations are sufficient to ensure the correctness of abstract inter-
pretation, i.e., if there is a continuous mapping Tα : A→ A with α◦TR,M◦γ v Tα,
then the least fixpoint (lfp) of TR,M is correctly approximated by the least fixpoint
of Tα, i.e., CR,M v γ(lfp(Tα)).

In order to define a mapping Tα for a specific abstract domainAC, one could try
to follow the definition of TR,M and replace the operations on concrete terms, like
pattern matching for rule application or eval by corresponding abstract versions.
In particular, the following abstract values and operations are sufficient to define
a mapping Tα:

1. Abstract bottom element ⊥α with ⊥ ∈ τ(⊥α)

2. Abstract variable >α with τ(>α) = T (C⊥,X)

3. Abstract constructor application cα : ACn → AC for each n-ary constructor
c such that τ(cα(a1, . . . , an)) ⊇ {c(t1, . . . , tn) | ti ∈ τ(ai), i = 1 . . . , n}

17

4. Abstract matching matchα : T (C,X), AC → Sub(AC)∪{fail} that approx-
imates the concrete matching of linear constructor terms, where Sub(AC)
denotes the set of all abstract substitutions that are mappings from X into
abstract values from AC with a finite domain.

The abstract bottom element is necessary when introducing unknown values dur-
ing a fixpoint computation. The abstract variable is necessary for free variables
occurring in a rewrite rule. In a concrete computation, such free variables are
instantiated to all possible partial constructor terms (compare the definition of
[R]⊥) so that we need an element in the abstract domain to capture the set of
these values.

Based on these abstract entities, the definition of an abstract version TαR,M :
A → A of TR,M is straightforward by abstracting each base operation. First,
we define the abstract initial equations Mα

⊥ for the set M of main calls by (the
abstract evaluation of terms evalα∅ will be defined below)

Mα
⊥ = {f(evalα∅(∅, t1), . . . , evalα∅(∅, tn))

.
= ⊥α | f(t1, . . . , tn) ∈M}

We define TαR,M for all I ∈ A as follows (here we use a straightforward extension of
matchα where we apply it to (abstract) constructor terms wrapped with a top-level
operation symbol):

TαR,M(I) =Mα
⊥ ∪ {s

.
= a | s .

= t ∈ I, l→ r ∈ R,
matchα(l, s) = σ 6= fail, a ∈ evalαI (σ, r)}

∪ {f(a1, . . . , an)
.
= ⊥α | s .

= t ∈ I, l→ r ∈ R,
matchα(l, s) = σ 6= fail,
p ∈ FPos(r) with r|p = f(t1, . . . , tn),
ai ∈ evalαI (σ, ti), i = 1, . . . , n}

To distinguish between variables occurring in a rule’s left-hand side and extra
variables, we pass the abstract substitution of the rule matching to the abstract
evaluation of a (concrete) term which is defined by

evalαI (σ, x) = {σ(x)} if x ∈ Dom(σ)
evalαI (σ, x) = {>α} if x 6∈ Dom(σ)

evalαI (σ, c(t1, . . . , tn)) = {cα(a1, . . . , an) | ai ∈ evalαI (σ, ti), i = 1, . . . , n}
evalαI (σ, f(t1, . . . , tn)) = {⊥α} ∪ {a | ai ∈ evalαI (σ, ti), i = 1, . . . , n,

f(a1, . . . , an)
.
= a ∈ I}

Note that we abstract extra variables by >α, i.e., the set of all constructor terms.
One can have the impression that this is a weak approximation, since many im-
plementations of functional logic languages (e.g., based on needed narrowing [4])
instantiate such variables only to those constructor terms that can be unified with
the left-hand side of some rule. However, it has been shown [6] that this is equiva-
lent to a demand-driven instantiation to all constructor terms and, actually, there

18

are implementations where extra variables are replaced by operations that nonde-
terministically evaluate to all constructor terms [12]. Therefore, our abstraction
is reasonable and makes the analysis less dependent on particular implementation
strategies.

In the next section, we show the application of this abstract interpretation
framework with a specific abstract domain.

5 Abstract Interpretation with Depth-bounded

Terms

An interesting finite abstraction of an infinite set of constructor terms are sets of
terms up to a particular depth k, e.g., as already used in the abstract diagnosis
of functional programs [2] or in the abstraction of term rewriting systems [8, 9].
Although this domain is useful in practice only for depth k = 1 (due to its quickly
growing size for k > 1), we present the general case since we use it also with k > 1
in our initial experiments (see below). This domain is discussed here to provide a
concrete application of our analysis framework. The application of our framework
with other more sophisticated domains is left for future work.

In the domain of depth-bounded terms, subterms that exceed the given depth k
are replaced by the specific constant > that represents any term, i.e., the abstract
domain of depth-k terms is the set AC = T (C⊥ ∪ {>},∅) together with the
concretization function

τ(⊥) = {⊥}
τ(>) = T (C⊥,X)

τ(c(t1, . . . , tn)) = {c(t′1, . . . , t′n) | t′i ∈ τ(ti), i = 1, . . . , n}

Furthermore, the abstract entities according to the previous section are defined as
follows:

1. Abstract bottom element: ⊥α = ⊥

2. Abstract variable: >α = >

3. Abstract constructor application:

cα(t1, . . . , tn) = cutk(c(t1, . . . , tn))

where the cut operation cutk is defined by

cutk(⊥) = ⊥
cut0(t) = > if t 6= ⊥

cutk(c(t1, . . . , tn)) = c(cutk−1(t1), . . . , cutk−1(tn)) if k > 0

19

4. Abstract matching of linear constructor terms against depth-k terms:

matchα(x, t) = {x 7→ t}
matchα(c(t1, . . . , tn),⊥) = fail
matchα(c(t1, . . . , tn),>) = {x 7→ > | x ∈ Var(c(t1, . . . , tn)}
matchα(c(· · ·), d(· · ·)) = fail if c 6= d

matchα(c(t1, . . . , tn), c(s1, . . . , sn)) =

σ1 ◦ · · · ◦ σn if matchα(ti, si) = σi

σi 6= fail, i = 1, . . . , n

fail otherwise

As shown in Section 4, these definitions are sufficient to define a transformation on
A whose least fixpoint approximates all concrete computations. Since the abstract
domain is finite, the abstract least fixpoint can be computed in a finite number of
steps.

Example 5.1 Consider the program and main call of Example 3.6. With a depth
bound of 3, our abstract semantics computes exactly the same fixpoint as shown in
Example 3.6. With a depth bound of 1 (i.e., each term is abstracted to its top-level
constructor), the following fixpoint is computed:

{add(⊥,⊥)
.
= ⊥, add(0, 0)

.
= ⊥, add(0, 0)

.
= 0,

add(S(>), S(>))
.
= ⊥, add(S(>), S(>))

.
= S(⊥), add(S(>), S(>))

.
= S(>),

add(>, S(>))
.
= ⊥, add(>, S(>))

.
= S(⊥), add(>, S(>))

.
= S(>),

coin
.
= ⊥, coin .

= 0, coin
.
= S(>),

double(⊥)
.
= ⊥, double(0)

.
= ⊥, double(0)

.
= 0,

double(S(>))
.
= ⊥, double(S(>))

.
= S(⊥), double(S(>))

.
= S(>),

main
.
= ⊥, main .

= 0, main
.
= S(⊥), main

.
= S(>)}

In this example, the computed abstract information is not very useful. More inter-
esting examples are situations where one has not the complete concrete information
available at analysis time. This is the case when unknown values, e.g., logic vari-
ables are present. For instance, consider the rule

main→ add(x, add(y, S(z)))

where x, y, z are extra variables. With a depth bound of 1, our abstract semantics
computes the fixpoint as follows for the set of main calls {main}:
T0 = ∅
T1 = {main .

= ⊥}
T2 = T1 ∪ {add(>,⊥)

.
= ⊥, add(>, S(>))

.
= ⊥}

T3 = T2 ∪ {add(>,⊥)
.
= S(⊥), add(>, S(>))

.
= S(⊥), add(>, S(>))

.
= S(>)}

T4 = T3 ∪ {add(>,⊥)
.
= S(>), add(>, S(⊥))

.
= ⊥,main .

= S(⊥),main
.
= S(>)}

T5 = T4 ∪ {add(>, S(⊥))
.
= S(⊥)}

T6 = T5 ∪ {add(>, S(⊥))
.
= S(>)}

T7 = T6

20

Thus, the fixpoint contains the equation main
.
= S(>) which shows that the result

of evaluating the main call is always headed by the constructor S, i.e., it is a
positive number.

As one can see in these examples, the abstract semantics contains many el-
ements where one is less evaluated than the other. For instance, the previous
example contains the elements

add(>,⊥)
.
= ⊥ add(>, S(>))

.
= ⊥ add(>, S(>))

.
= S(>)

where the first two contain less information than the last element. This is due
to the fact that we do not know at analysis time how far a function call will be
evaluated during run time. Since more elements in the abstract semantics require
more computation and one is usually interested in more precise values for call
patterns, it is reasonable to transfer the approximation ordering of Definition 2.2
also to abstract values, i.e., compute only the maximal elements of the abstract
semantics and remove smaller elements (e.g., the first two elements above) during
the fixpoint computation. The positive effect of this improvement will be shown
in the practical evaluation below.

As a further example, consider the function

f(0) → 0
f(S(x)) → f(f(x))

from [9]. With a depth bound of 1 and the set of main calls {f(x)}, the least
fixpoint of our abstract semantics contains the equation f(>)

.
= 0 indicating that

f is a constant function.
The final example in this section includes nondeterministic operations as well

as extra variables. The operation half (taken from [3]) is nondeterministic due to
two possible roundings of odd numbers, and the main operation checks whether
doubling a half of some natural number is one (where double is defined as above):

half (0) → 0 isOne(0) → False
half (S(0)) → 0 isOne(S(0)) → True
half (S(0)) → S(0) isOne(S(S(x))) → False

half (S(S(x))) → S(half (x)) main → isOne(double(half (x))

With a depth bound of 2, our analysis computes a fixpoint with main
.
= False

as the only maximal equation for main. Thus, the soundness of our analysis
implies that doubling a half of a natural is always different from one. Note that
the consideration of a call-time choice semantics is relevant here since main might
reduce to True w.r.t. a traditional term rewriting semantics.

Although our semantics is designed to compute call patterns w.r.t. some main
calls, the examples show that we can also use our semantics to approximate the

21

complete input/output relation for all functions in the sense of [2]: we just have to
put an initial call of the form f(x1, . . . , xn) (where the arguments xi are pairwise
distinct variables) for each n-ary function f into the set of main calls.

6 Extensions for Application Programs

Our analysis presented so far is based on programs described by first-order
constructor-based term rewriting systems. In order to apply our analysis to realis-
tic functional logic programs, we have to support two additional concepts apparent
in modern functional logic languages like Curry [22, 24]: higher-order functions and
primitive operations. This will be discussed in this section.

6.1 Higher-order Features

Higher-order features of functional (logic) languages can be supported through a
transformation into first-order programs by defining a predicate apply that im-
plements the application of an arbitrary function occurring in the program to an
expression. This technique is also known as “defunctionalization” [33] (and con-
ceptually also used in logic languages [35]) and enough to support the higher-order
features of current functional (logic) languages (e.g., lambda abstractions can be
replaced by new function definitions). For instance, consider a program with the
operations add and double of Example 2.1 and the following rules (here we use the
Curry/Haskell notation for lists):

map(f, []) → []
map(f, x : xs) → apply(f, x) : map(f, xs)

main(xs) → map(apply(add, S(0)),map(double, xs))

map is the standard higher-order function that applies a function to each element
of a list. The application operation is defined by the following rules that can be
automatically derived from the program:

apply(add, x1) → add(x1) apply(map, x1) → map(x1)
apply(add(x1), x2) → add(x1, x2) apply(map(x1), x2) → map(x1, x2)

apply(double, x1) → double(x1) apply(main, x1) → main(x1)

Thus, for each n-ary function, n corresponding apply rules are defined. After
adding the apply rules to the program, we obtain a standard program, i.e., a first-
order term rewriting system4 so that we can apply our analysis to it. For instance,
a depth-k analysis with a depth bound of 2 computes the following least fixpoint:

A = {main .
= S(>) : (> : >), main

.
= S(>) : [], . . .}

4Note that n-ary functions applied to less than n arguments are considered as constructors
so that the resulting program is constructor-based.

22

Thus, one can infer that the first element of the computed list is always a positive
integer. Furthermore, the equations for apply contained in A reflect the functions
that are used in a higher-order manner, e.g., all apply equations contained in A
have left-hand sides of the form apply(add(S(>)), . . .) or apply(double, . . .) so that
we know that only the second and third rule defining apply are used during run
time. This information could be used to optimize the code of programs based on
the defunctionalization technique, e.g., as in Prolog-based implementations [5].

6.2 Primitive Operations

Real world programs contain various calls to primitive operations that are not
explicitly defined by rewrite rules, e.g., arithmetic operations on integers or floats,
I/O operations etc. Although some of these operations can be conceptually ex-
plained with infinite sets of rewrite rules [10], we need a constructive method to
deal with such operations at analysis time. Since we only need to approximate the
meaning of such operations, we can approximate an n-ary primitive operation f
by the following rewrite rule:

f(x1, . . . , xn)→ x

(where x1, . . . , xn, x are pairwise different variables). This rule specifies that the
result of a call to the primitive function is arbitrary. Of course, one could add
more precise descriptions for specific functions and abstract domains, but this
“least specific” description is always sufficient, in particular, for input operations
where one does not know the user input at analysis time.

I/O operations can be treated in declarative languages by the well-known
monadic approach where I/O actions are considered as transformations on the
outside world [34]. Thus, each I/O action takes a state of the world and returns
a pair consisting of the desired result value and a new state of the world. For
instance, the operation getChar that reads and returns the next character from
the keyboard takes a state of the world and returns a character from the input and
a state of the world. Thus, we can approximate this operation by the following
rule (where we ignore the fact that the state of the world is usually changed):

getChar(w)→ (c, w)

The basic sequence combinator on I/O actions is usually called bind: bind(a, f, w)
executes action a on the given world w and applies the action function f to the
result of the first action. Since each action returns a value together with a new
state of the world, we use an auxiliary operation bind′ to decompose these items
and apply the action function f , i.e., we define these operations by the following
rules:

bind(a, f, w) → bind′(apply(a, w), f)

bind′((r, w), f) → apply(apply(f, r), w)

23

With this representation of primitive operations, we can apply our analysis also to
programs with I/O operations. For instance, consider the following program where
the main call reads a character from standard input and returns the contents of a
file with this name stored in the directory “/tmp” (note that strings are represented
as lists of characters):

conc([], ys) → ys
conc(x : xs, ys) → x : conc(xs, ys)

tmpDir → ’/’ : ’t’ : ’m’ : ’p’ : ’/’ : []

readTmpFile(c) → readF ile(conc(tmpDir, c : []))

main(w) → bind(getChar, readTmpFile, w)

where readF ile is a primitive to read the contents of a file. Applying a depth-k
analysis with bound 8 to this program returns the following abstract equation for
the primitive readF ile (all other equations for readF ile contain less information):

readF ile(’/’ : ’t’ : ’m’ : ’p’ : ’/’ : > : [],>)
.
= · · ·

Thus, we can infer that this program only accesses files in the directory /tmp, as
expected. Of course, verifying more interesting safety properties requires other
sophisticated domains (e.g., regular types [16]).

6.3 Practical Evaluation

In order to provide some data about the practical application of our framework,
we have implemented the proposed fixpoint analysis as a prototype system.5 The
analyzer is generic w.r.t. the abstract domain, i.e., the operations implementing
the abstract domain as described in Section 4 are passed to the generic fixpoint
computation. The analyzer is implemented in Curry in a straightforward way
where the depth-bounded term analysis, as described in Section 5, is used as
an abstract domain. It is not very efficient but a high-level implementation to
compare the analysis of simple programs. The analyzer is executed with the Curry
implementation KiCS [11] that compiles Curry programs into Haskell programs
executed by the Glasgow Haskell Compiler.

Table 1 contains, for various example programs, the number of rewrite rules
(including rules for primitive operations), the depth bound used for the analysis,
the number of equations of the least fixpoint (FP Size) and the least fixpoint con-
taining only maximal elements (MFP Size) as well as the speedup obtained by
computing only maximal elements instead of all elements of the abstract seman-
tics (see discussion in Section 5 above), and the time in milliseconds to compute

5Available at http://www.informatik.uni-kiel.de/\char126mh/reports/
PatternAnalysis/.

24

Program Rules Depth FP Size MFP Size Speedup MFP Time
k (# eqs.) (# eqs.) (FP/MFP) (ms)

addadd 3 1 12 2 5.0 4
addlast 7 2 20 7 4.5 4
bertconc 3 1 12 2 15.0 1
bertf0 3 1 7 3 8.0 1
doublecoin 6 1 22 9 2.7 4
family 29 1 43 29 2.2 40
halfdouble 11 2 60 15 6.9 12
head 12 1 90 19 14.3 28
mapadddouble 12 2 424 35 102.4 72
readfile 34 8 160 17 28.5 16
risers 9 1 13 9 2.3 4
tails 15 1 31 7 13.3 4

Table 1: Analysis of example programs

the fixpoint of maximal elements (note that values lower than 10 ms are not quite
accurate). Timings were done on a 3.0 Ghz Linux PC (AMD Athlon). addadd is
the double call to add of Example 5.1, addlast concatenates a two-element list at
the end of an arbitrary list and checks whether the resulting list is a one-element
list, bertf0 and bertconc are the two examples of [9], doublecoin was presented
in Example 3.6, family is a family database represented by nondeterministic op-
erations where a recursive ancestor function is evaluated, halfdouble is the final
example of Section 5, head is an example to verify the correct use of the partially
defined function head in various situations, mapadddouble and readfile are the
examples of Sections 6.1 and 6.2, respectively, and risers and tails are the ex-
amples of [29] to verify safe pattern matching in Haskell by static analysis. All
programs are available with the implementation of the prototype.

7 Conclusions and Related Work

We have presented an approach to analyze call patterns and their computed results
occurring in functional logic computations. For this purpose, we have introduced a
new fixpoint characterization of functional logic computations w.r.t. a set of main
calls. An approximation of the concrete behavior can be obtained by approximat-
ing the operations used to compute this fixpoint. If the abstract domain of this
approximation is finite, the complete approximation can be computed in a finite
amount of time. We have demonstrated the application of this idea by a depth-
bounded term analysis. Furthermore, it has been shown how to cover higher-order

25

features and primitive operations in order to approximate realistic programs. The
analysis results can be used to optimize programs (e.g., for partial evaluation), to
catch pattern-match errors at compile time, or to verify safety conditions of pro-
grams. We have implemented this fixpoint analysis as a prototype system which
is able to compute all examples in this paper.

Although our approach is the first one to approximate call patterns in func-
tional logic computations, there are various related works. We have already men-
tioned the works on minimal function graphs (e.g., [19, 26, 36]) that have similar
aims as this paper, i.e., the computation of function or predicate calls and their
corresponding results. Jones and Mycroft [26] introduced this notion for strict
functional languages which has been also applied to logic programs (e.g., [19, 36])
or extended to lazy functional programs [25]. Some works proposed rather general
frameworks to compute minimal function graphs [19], but the application of this
idea to a concrete programming language must take into account the details of its
operational semantics. In the case of modern functional logic languages, the com-
bination of nondeterministic and non-strict computations is essential. Although
nondeterministic computations are handled by logic programs and non-strict com-
putations by functional programs, the combination of both requires a carefully
designed calculus (CRWL [20]). Therefore, one can not simply combine the works
in both areas [19, 25, 36] so that we defined an appropriate fixpoint characteriza-
tion of the intermediate states of CRWL computations starting from a set of initial
calls.

Bert et al. [9] proposed abstract rewriting (which was extended in [8] to con-
ditional term rewriting systems). The objective of abstract rewriting is the ap-
proximation of the top-level constructors of term evaluations in order to improve
E-unification. For this purpose, they associate to a set of rewrite rules an abstract
rewrite system that is able to compute finite approximations of top-level construc-
tors. However, their framework is restricted to constructor-based, confluent and
terminating rewrite systems without partial functions and, therefore, too limited
for functional logic programming.

Alpuente et al. [2] presented a fixpoint characterization of the input/output
relation of functions defined by term rewriting systems in order to detect program
errors. Their approach is not goal-oriented, i.e., does not approximate call pat-
terns, and uses the classical notion of rewriting instead of a rewrite relation suitable
for modern functional logic languages with non-strict, nondeterministic operations.
A fixpoint characterization of functional logic programs based on CRWL was pre-
sented in [30]. Although it covers the input/output relation of functions similarly
to our semantics, it is not goal-oriented and, thus, not suitable to approximate call
patterns.

Albert et al. [1] proposed a method to verify safety properties of logic programs
in the spirit of proof-carrying code. Their method derives call and success patterns

26

w.r.t. sophisticated abstract domains. Since they analyze logic programs, their
analysis is based on and/or graphs (as well as similar methods for logic programs,
e.g., [13]). Such a method is not applicable to functional logic programs due their
demand-driven evaluation strategy.

A different method with similar goals has been presented by Mitchell and
Runciman [29]. In order to check a Haskell program for the absence of pattern-
match errors due to functions with incomplete patterns in their definitions, they
propose a static checker that extracts constraints from pattern-based definitions
and tries to solve them by simplification and fixpoint iteration. Since they do not
use the framework of abstract interpretation, the correctness of their approach is
not proved. Furthermore, they consider only the restricted class of purely func-
tional programs rather than general functional logic programs as in this paper.
However, it is interesting to note that such kinds of pattern-match errors can be
also easily detected by our framework. For instance, one can complete all partial
function definitions by rules for the missing patterns that rewrite to some error
function. For instance, if the function head that extracts the first element of a list
is defined by

head(x : xs) → x

one can complete its definition by adding the rule

head([]) → matchError

If our analysis shows that the function matchError will not be called, i.e., there
is no equation of the form matchError

.
= · · · in the least fixpoint, the correctness

of our framework ensures the absence pattern-match errors. Actually, we have
successfully applied our analysis with depth-bounded terms to the examples given
in [29], where it was sufficient to use a depth of k = 1 (see Table 1).

For future work, we intend to implement the fixpoint analysis more efficiently
in order to apply it to larger programs. Furthermore, we want to apply this
analysis with other domains that could be more suitable to verify safety properties
of programs.

References

[1] E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-
based Approach to Mobile Code Safety. Electronic Notes in Theoretical Com-
puter Science, Vol. 132, pp. 113–129, 2005.

[2] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract
Diagnosis of Functional Programs. In Proc. of the 12th Int’l Workshop on
Logic-Based Program Synthesis and Transformation (LOPSTR 2002), pp. 1–
16. Springer LNCS 2664, 2002.

27

[3] S. Antoy. Optimal Non-Deterministic Functional Logic Computations.
In Proc. International Conference on Algebraic and Logic Programming
(ALP’97), pp. 16–30. Springer LNCS 1298, 1997.

[4] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal
of the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

[5] S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs
into Prolog. In Proc. International Workshop on Frontiers of Combining
Systems (FroCoS’2000), pp. 171–185. Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Overlapping Rules and Logic Variables in Functional
Logic Programs. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), pp. 87–101. Springer LNCS 4079, 2006.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

[8] D. Bert and R. Echahed. Abstraction of Conditional Term Rewriting Systems.
In Proc. of the 1995 International Logic Programming Symposium, pp. 147–
161. MIT Press, 1995.

[9] D. Bert, R. Echahed, and M. Østvold. Abstract Rewriting. In Proc. Third
International Workshop on Static Analysis, pp. 178–192. Springer LNCS 724,
1993.

[10] S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic
Programs with External Procedures. In Proc. 5th Conference on Logic Pro-
gramming & 5th Symposium on Logic Programming (Seattle), pp. 311–326.
MIT Press, 1988.

[11] B. Braßel and F. Huch. The Kiel Curry System KiCS. In Proc. 17th Inter-
national Conference on Applications of Declarative Programming and Knowl-
edge Management (INAP 2007) and 21st Workshop on (Constraint) Logic
Programming (WLP 2007), pp. 215–223. Technical Report 434, University of
Würzburg, 2007.

[12] B. Braßel and F. Huch. On a Tighter Integration of Functional and Logic
Programming. In Proc. APLAS 2007, pp. 122–138. Springer LNCS 4807,
2007.

[13] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming (10), pp. 91–124, 1991.

28

[14] J.M. Cleva, J. Leach, and F.J. López-Fraguas. A logic programming ap-
proach to the verification of functional-logic programs. In Proceedings of the
6th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pp. 9–19. ACM Press, 2004.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixpoints. In
Proc. of the 4th ACM Symposium on Principles of Programming Languages,
pp. 238–252, 1977.

[16] P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
F. Pfenning, editor, Types in Logic Programming, pp. 157–187. MIT Press,
1992.

[17] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier,
1990.

[18] R. Echahed and J.-C. Janodet. Admissible Graph Rewriting and Narrowing.
In Proc. Joint International Conference and Symposium on Logic Program-
ming (JICSLP’98), pp. 325–340, 1998.

[19] J.P. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Pro-
gram Specialisation. New Generation Computing, Vol. 9, No. 3/4, pp. 305–
334, 1991.

[20] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, Vol. 40, pp. 47–87, 1999.

[21] M. Hanus. The Integration of Functions into Logic Programming: From
Theory to Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628,
1994.

[22] M. Hanus. A Unified Computation Model for Functional and Logic Program-
ming. In Proc. of the 24th ACM Symposium on Principles of Programming
Languages (Paris), pp. 80–93, 1997.

[23] M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Inter-
national Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer
LNCS 4670, 2007.

[24] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers.
0.8.2). Available at http://www.informatik.uni-kiel.de/~curry, 2006.

29

[25] N. Jones and N. Andersen. Flow Analysis of Lazy Higher Order Functional
Programs. Theoretical Computer Science, Vol. 375, No. 1-3, pp. 120–136,
2007.

[26] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using
minimal function graphs. In Proc. 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 296–306, 1986.

[27] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declar-
ative System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

[28] F.J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A Sim-
ple Rewrite Notion for Call-time Choice Semantics. In Proceedings of the
9th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’07), pp. 197–208. ACM Press, 2007.

[29] N. Mitchell and C. Runciman. A Static Checker for Safe Pattern Matching in
Haskell. In Trends in Functional Programming, volume 6, pp. 15–30. Intellect,
2007.

[30] J.M. Molina-Bravo and E. Pimentel. Modularity in Functional-Logic Pro-
gramming. In Proc. of the Fourteenth International Conference on Logic Pro-
gramming (ICLP’97), pp. 183–197. MIT Press, 1997.

[31] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[32] S. Peyton Jones. Call-pattern Specialization for Haskell Programs. In Proc. of
the 12th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2007), pp. 327–337, 2007.

[33] J.C. Reynolds. Definitional Interpreters for Higher-Order Programming Lan-
guages. In Proceedings of the ACM Annual Conference, pp. 717–740. ACM
Press, 1972.

[34] P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

[35] D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In
Machine Intelligence 10, pp. 441–454, 1982.

[36] W. Winsborough. Multiple Specialization using Minimal-Function Graph Se-
mantics. Journal of Logic Programming, Vol. 13, No. 2&3, pp. 259–290, 1992.

30

