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and logic programming languages (see [19] for a recent survey) are based on narrowing. Narrowing,originally introduced in automated theorem proving [35], solves equations by computing uni�erswith respect to an equational theory [11]. Informally, narrowing uni�es a term with the left-handside of a rewrite rule and �res the rule on the instantiated term.Example 1 Consider the following rewrite rules de�ning the addition for natural numbers, whichare represented by terms built with 0 and s:0 +X ! X R1s(X) + Y ! s(X + Y ) R2To narrow the equation Z + s(0) � s(s(0)), rule R2 is applied by instantiating Z to s(X). Tonarrow the resulting equation, s(X + s(0)) � s(s(0)), R1 is applied by instantiating X to 0. Theresulting equation, s(s(0)) � s(s(0)), is trivially true. Thus, fZ 7! s(0)g is the equation's solution.A brute-force approach to �nding all the solutions of an equation would attempt to unify eachrule with each non-variable subterm of the given equation. The resulting search space would behuge even for small rewrite programs. Therefore, many narrowing strategies for limiting the size ofthe search space have been proposed [19]. Recently, an optimal narrowing strategy for inductivelysequential rewrite systems (e.g., the rewrite system in Example 1) has been discovered by extendingresults from term rewriting to narrowing [3]. In this paper we continue with the same approach fora more general class of programs, namely those underlied by weakly orthogonal, constructor-basedsystems.Example 2 Consider the following de�nition of Boolean disjunction known as parallel-or.X _ true ! true R1true _X ! true R2false _ false ! false R3 (1)A signi�cant di�erence of this system w.r.t. to the previous one is the overlapping of the �rst tworules. A consequence of the overlapping is that a term of the form t1 _ t2 may be narrowed tonormal form by narrowing either t1 or t2, although we do not know of any criterion to make thischoice without look-ahead.To place our results in a context, we brie
y review relevant results about rewriting strategies.O'Donnell has shown [30] that the parallel outermost strategy is normalizing for almost orthogonalTRSs, hence for weakly orthogonal, constructor-based TRSs. In general, some reductions performedby this strategy could be avoided. This opportunity prompted two substantial improvements. Huetand L�evy have shown [20] that by restricting the class of TRSs to those strongly sequential thereis an e�ective strategy that performs only unavoidable reductions. Sekar and Ramakrishnan [34]have re�ned O'Donnell's result in a di�erent direction. Within the class of the weakly orthogonal,constructor-based TRSs, they have shown that it is possible to minimize the set of redexes thatmust be reduced in parallel in a term to compute its normal form. The resulting strategy, similarto Huet and L�evy's, does not take into account the right hand sides of the TRS's rules, and it isoptimal among the strategies with this limitation.Narrowing strategies, to date, mimic rewriting strategies only partially. Huet and L�evy's approachhas been extended to narrowing for inductively-sequential TRSs with comparable properties. The2



resulting strategy, called needed [3], performs only unavoidable steps and turns out to be optimalalso with respect to the computed uni�ers. However, narrowing strategies for weakly orthogonalTRSs depart radically from O'Donnell's and Sekar and Ramakrishnan's approaches in that theyare sequential. This departure has a major impact on the operational meaning of completeness ofa strategy.If a ground term t has a normal form, then both O'Donnell's and Sekar and Ramakrishnan's strate-gies compute the normal form of t, the latter generally more e�ciently, by means of deterministic,parallel1 steps. Narrowing t is equivalent to rewriting it, since we are assuming that t is ground. Allthe existing narrowing strategies that are known to be ground complete narrow t to its normal formby means of possibly don't-know non-deterministic, sequential steps. This notion of completenessis somewhat reductive in the sense that the implementations of these strategies don't know how tocompute the normal form of t without a severe penalty in e�ciency. We guess that this unsatisfyingsituation has been tolerated only because of other non-deterministic choices, e.g., the uni�er of astep, occur in narrowing computations. However, this need not be the case for all ground and forsome non-ground terms.The subject of this paper is a parallel strategy|the �rst one to be proposed|for narrowing. Ourstrategy is sound and complete and can be implemented relatively e�ciently by uni�cation. Italways computes the normal form of a ground term, if there exists one, without non-determinismand thus it is ideal for the implementation of functional logic programming languages. Our strat-egy narrows a necessary set of positions, which generally contains fewer than all the outermostnarrowable positions of a term. By virtue of its de�nition, our parallel strategy falls back to theneeded narrowing strategy [3] on the inductively sequential portions of a TRS, and consequentlyis optimal on these portions, and falls back to Sekar and Ramakrishnan's strategy on the groundterms, and consequently is optimal (in a weaker sense) on the ground portions of a computation,too.The paper is organized as follows. Some preliminary de�nitions and notations are listed in the nextsection. Section 3 de�nes the weakly needed rewriting strategy which is a parallel rewriting strategydesigned for the class of weakly orthogonal, constructor-based TRSs. In Section 4, we presenta sequential narrowing strategy which is a natural extension of needed narrowing to overlappingTRSs. We de�ne the parallel narrowing strategy in Section 5 and discuss its optimality in Section 6.Comparison with related work is given in Section 7. Section 8 contains our conclusions.2 PreliminariesWe recall some key notions and notations about rewriting. We are consistent with the conventionsof [8, 22]. First of all, we �x the notations for terms.De�nition 1 A many-sorted signature � is a pair (S;
) where S is a set of sorts and 
 is a familyof operation sets of the form 
 = (
w;sjw 2 S�; s 2 S). Let X = (Xsjs 2 S) be an S-sorted,countably in�nite set of variables . Then the set T (�;X )s of terms of sort s built from � and Xis the smallest set containing Xs such that f(t1; : : : ; tn) 2 T (�;X )s whenever f 2 
(s1;:::;sn);s andti 2 T (�;X )si. If f 2 
�;s, we write f instead of f(). T (�;X ) denotes the set of all terms. The setof variables occurring in a term t is denoted by Var(t). A term t is called ground term if Var(t) = ?.A term is called linear if it does not contain multiple occurrences of one variable. In the following1In this context, parallel means that several, possibly di�erent redexes are simultaneously reduced in a single step.3



� stands for a many-sorted signature.In practice, most equational logic programs are constructor-based, i.e., symbols, called constructors,that construct data terms are distinguished from those, called de�ned functions or operations, thatoperate on data terms (see, for instance, the Equational Interpreter [31] and the functional logiclanguages ALF [17], BABEL [28], K-LEAF [14], LPG [5], SLOG [12]). Hence we de�ne:De�nition 2 A many-sorted signature � is constructor-based i� the set of operations 
 is par-titioned into two disjoint sets C and D. C is the set of constructors and D is the set of de�nedoperations. The terms in T (C;X ) are called constructor terms. A term f(t1; : : : ; tn) (n � 0) iscalled pattern if f 2 D and t1; : : : ; tn are constructor terms. A term f(t1; : : : ; tn) (n � 0) is calledoperation-rooted term (respectively constructor-rooted term) if f 2 D (respectively f 2 C). Aconstructor-based term rewriting system R is a set of rewrite rules, l ! r, such that l and r havethe same sort, l is a pattern, and Var(r) � Var(l).In the rest of this paper we assume that R is a constructor-based term rewriting system. Substitu-tions are essential to the notions of rewriting and narrowing.De�nition 3 A substitution is a mapping �:X ! T (�;X ) with �(x) 2 T (�;X )s for all variablesx 2 Xs such that its domain Dom(�) = fx 2 X j �(x) 6= xg is �nite. We frequently identify asubstitution � with the set fx 7! �(x) j x 2 Dom(�)g. We denote by Im(�) the set of variablesintroduced by the substitution �, i.e., Im(�) = Sx2Dom(�) Var(�(x)). Substitutions are extendedto morphisms on T (�;X ) by �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)) for every term f(t1; : : : ; tn). Asubstitution � is called (ground) constructor substitution if �(x) is a (ground) constructor term forall x 2 Dom(�). The composition of two substitutions � and � is de�ned by (� � �)(x) = �(�(x))for all x 2 X . We denote by Sub the set of all substitutions and by id the identity substitution.The restriction �jV of a substitution � to a set V of variables is de�ned by �jV (x) = �(x) if x 2 Vand �jV (x) = x if x 62 V . A substitution � is more general than �0, denoted by � � �0, if there isa substitution � with �0 = � � �. If V is a set of variables, we write � = �0[V ] i� �jV = �0jV , andwe write � � �0[V ] i� there is a substitution � with �0 = � � �[V ]. Two substitutions � and �0 areindependent on a set of variables V i� there exists some x 2 V such that �(x) and �0(x) are notuni�able.A term t0 is an instance of t if there is a substitution � with t0 = �(t). In this case we write t � t0.A term t0 is a variant of t if t � t0, t0 � t and Var(t) \ Var(t0) = ?. We de�ne a renaming relation� over terms and substitutions as follows: we write t � t0 i� t � t0 and t0 � t; or equivalently, t � t0i� there exists an injective substitution (renaming substitution) � such that Dom(�) � Var(t),8x 2 Dom(�); �(x) 2 Var(t0), �(t) = t0 and ��1(t0) = t. We write � � �[V ] i� there exists aninjective substitution (renaming substitution) � such that �� = �[V ] and � = ��1�[V ].A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er � is called mostgeneral (mgu) if � � �0 for every other uni�er �0. Most general uni�ers are unique up to variablerenaming. By introducing a total ordering on variables, we can uniquely choose the most generaluni�er of two terms. Hence we denote by mgu(s; t) the most general uni�er of s and t.We use in our proofs that a uni�er is an idempotent substitution and that any variable in thedomain of a uni�er is already contained in one of the terms being uni�ed. Positions, too, areessential to the notions of rewriting and narrowing.De�nition 4 An occurrence or position is a sequence of positive integers identifying a subterm ina term. For every term t, the empty sequence, denoted by �, identi�es t itself. For every term4



of the form f(t1; : : : ; tk), the sequence i � p, where i is a positive integer not greater than k andp is a position, identi�es the subterm of ti at p. The subterm of t at p is denoted by tjp and theresult of replacing tjp with s in t is denoted by t[s]p. If p and q are positions, we write p � q todenote the position resulting from the concatenation of the positions p and q, i.e., we overloadthe symbol \�." We write p � q if p is above or is a pre�x of q, i.e., there exists a position q0such that q = p � q0, and we write p k q if the positions are disjoint , i.e., neither p is pre�xof q nor q is pre�x of p. (see [8] for details). We denote by size(t), the size of a term t, i.e.,size(t) = cardinal(fp j p is a non-variable position in tg). The size of a substitution � is de�nedas size(�) =Px2Dom(�) size(�(x)).We are now ready to de�ne rewriting.De�nition 5 A reduction step is an application of a rewrite rule to a term, i.e., t !p;R s if thereexist a position p, a rewrite rule R = l ! r and a substitution � with tjp = �(l) and s = t[�(r)]p.In this case we say t is rewritten (at position p) to s and tjp is a redex of t. We will omit thesubscripts p and R if they are clear from the context. A redex tjp of t is an outermost redex if thereis no redex tjq of t with q < p. �! denotes the transitive and re
exive closure of !. �$ denotes thesymmetric closure of �!. A term t is reducible to a term s if t �! s. A term t is called irreducibleor in normal form if there is no term s with t! s. A term s is a normal form of t if t is reducibleto the irreducible term s. A term rewriting system R is called terminating if there are no in�niterewrite derivations w.r.t. R.The di�culty in applying reductions steps is the determination of the position where the reductionstep is applied. For particular rewrite systems, e.g., the strongly sequential ones [20], it is possibleto determine a single position where a reduction step must be performed in order to compute anormal form. However, for rewrite systems with overlapping left-hand sides, such a position maynot exist (see [34] for an example), or we may not know how to �nd it without look-ahead, whichde�es the reason we want to �nd it in the �rst place. For instance, Example 2 shows a term inwhich it is not apparent which of two subterms should be reduced to compute a normal form. Bothterms could be reduced at the same time, therefore, we de�ne reduction multisteps.De�nition 6 Let t !pi;li!ri ti, for i in some set of indices I = f1; : : : ; ng, be a reduction stepsuch that for any distinct i and j in I , pi and pj are disjoint. We say that t is reducible to t0 in amultistep, denoted t !f(pi;li!ri)gi2I t0, i� t0 = (: : : ((t[�1(r1)]p1)[�2(r2)]p2) : : : [�n(rn)]pn) such that8i 2 I; �i(li) = tjpi . We also call the multistep t!f(pi;li!ri)gi2I t0 a parallel rewriting step.Rewriting is computing, i.e., the value of a functional expression is its normal form obtained byrewriting. Functional logic programs compute with partial information, i.e., a functional expressionmay contain logical variables. The goal is to compute values for these variables such that theexpression is evaluable to a particular normal form, e.g., a constructor term [5, 14, 28]. This isdone by narrowing.De�nition 7 A term t is narrowable to a term s if there exist a non-variable position p in t (i.e.,tjp 62 X ), a variant l ! r of a rewrite rule in R with Var(t) \ Var(l ! r) = ? and a uni�er � oftjp and l such that s = �(t[r]p). In this case we write t ;p; l!r; � s. If � is a most general uni�erof tjp and l, the narrowing step is called most general. We write t0 �;� tn if there is a narrowingderivation t0 ;p1;R1; �1 t1 ;p2;R2; �2 � � �;pn;Rn; �n tn with � = �n � � � � � �2 � �1.Since the instantiation of the variables in the rule l! r by � is not relevant for the computed resultof a narrowing derivation, we will omit this part of � in the example derivations in this paper.5



Example 3 Referring to Example 1,A +B ;�;R2;fA7!s(0);B 7!0g s(0 + 0)and A +B ;�;R2;fA7!s(X)g s(X +B)are narrowing steps of A +B, but only the latter is a most general narrowing step.Padawitz [32] too distinguishes between narrowing and most general narrowing, but in most papersnarrowing is intended as most general narrowing [19]. Most general narrowing has the advantagethat most general uni�ers are uniquely computable, whereas there exist many independent uni�ers.However, as shown in [3], for optimal narrowing strategies it is crucial to drop the requirement formost general uni�ers. This paper follows the same approach.Narrowing solves equations, i.e., computes values for the variables in an equation such that theequation becomes true, where an equation is a pair t � t0 of terms of the same sort. Since we donot require terminating term rewriting systems, normal forms may not exist. Hence, we de�ne thevalidity of an equation as a strict equality on terms in the spirit of functional logic languages witha lazy operational semantics such as K-LEAF [14] and BABEL [28].De�nition 8 An equation is a pair t � t0 of terms of the same sort. A substitution � is a solutionfor an equation t � t0 i� �(t) and �(t0) are reducible to a same ground constructor term.Our de�nition of solution is weaker than convertibility, i.e., �(t) �$ �(t0). This is due to the factthat we are discussing constructor-based, not necessarily terminating rewrite systems.Equations can also be interpreted as terms by de�ning the symbol � as a binary operation symbol,more precisely, one operation symbol for each sort. Therefore all notions for terms, such as substi-tution, rewriting, narrowing etc., will also be used for equations. The semantics of � is de�ned bythe following rules, where ^ is assumed to be a right-associative in�x symbol, and c is a constructorof arity 0 in the �rst rule and arity n > 0 in the second rule.c � c ! truec(X1; : : : ; Xn) � c(Y1; : : : ; Yn) ! (X1 � Y1) ^ � � � ^ (Xn � Yn)true ^X ! XThese are the equality rules of a signature. It is easy to see that if a rewrite system is orthogonal,to be de�ned shortly, then it remains orthogonal by the addition of these rules. With these rules asolution of an equation is computed by narrowing it to true|an approach also taken in K-LEAF[14] and BABEL [28]. The following proposition shows the equivalence between reducibility to asame ground constructor term and reducibility to true using the equality rules.Proposition 1 [3] Let R be a term rewriting system without rules for � and ^. Let R0 be thesystem obtained by adding the equality rules to R. The following propositions are equivalent for allterms t and t0:1. t and t0 are reducible in R to a same ground constructor term.2. t � t0 is reducible in R0 to `true'. 6



The following proposition, which is an obvious consequence of the de�nition of the equality rules,is important since our rewriting and narrowing strategies will be de�ned only for operation-rootedterms.2Proposition 2 Let R be a term rewriting system extended by the equality rules and t0 ! t1 !t2 ! � � � be a rewrite derivation w.r.t. R starting with an equation, i.e., t0 = (t � t0). Then theroot of each reducible term ti in this derivation is the operation symbol � or ^.To ensure the con
uence of the rewrite relation, we also require weak orthogonality.De�nition 9 A term rewriting system R is orthogonal if for each rule l! r 2 R the left-hand sidel is linear (left-linearity) and for each non-variable subterm ljp of l there exists no rule l0 ! r0 2 Rsuch that ljp and l0 unify (non-overlapping) (where l0 ! r0 is not a variant of l! r in case of p = �).R is weakly orthogonal if it is left-linear and for each pair of rules l ! r; l0 ! r0 2 R, non-variablesubterm ljp of l, and mgu � for ljp and l0, the terms �(l[r0]p) and �(r) are identical. R is almostorthogonal if it is weakly orthogonal and for each pair of rules l! r; l0 ! r0 2 R, the only possiblenon-variable subterm of l that may unify with l0 is l itself. Since we consider in the following onlyConstructor-based, Almost orthogonal, Term rewriting systems, we write CAT for this class.It is easy to see that for constructor-based systems almost and weak orthogonality are the sameconcept, since the left hand sides of the rules are patterns. The di�erence between these classeshowever is signi�cant. The notion of descendant, well-known for orthogonal systems [20], is extendedto almost orthogonal systems without di�culties.De�nition 10 Let A = t !u; l!r t0 be a reduction step of some term t into t0 at position u withrule l! r. The set of descendants (or residuals) of a position v by A, denoted v nA, isv nA = 8><>:? if u = v,fvg if u 6� v,fu � p0 � q such that rjp0 = xg if v = u � p � q and ljp = x, where x is a variable.The set of descendants of a position v by a reduction sequence B is de�ned by induction as followsv nB = 8><>:fvg if B is the null derivation,[w2vnB0w nB00 if B = B0B00, where B0 is the initial step of B.A position u of a term t is called needed i� in every reduction sequence of t to a normal form adescendant of tju is rewritten at its root.A position uniquely identi�es a subterm of a term. The notion of descendant for terms stemsdirectly from the corresponding notion for positions.A more intuitive de�nition of descendant of a position or term is proposed in [23]. Let t �! t0 bea reduction sequence and s a subterm of t. The descendants of s in t0 are computed as follows:Underline the root of s and perform the reduction sequence t �! t0. Then, every subterm of t0 withan underlined root is a descendant of s.2This is for the sake of simplicity. The extension of our strategies to constructor-rooted terms is simple but requiresan additional case distinction, see [1]. 7



Example 4 Consider the operation that doubles its argument by means of an addition. The rulesof addition are in Example 1.double(X) ! X +X R3In the following reduction of double(0 + 0) we show, by means of underlining, the descendants of0 + 0. double(0 + 0)!�;R3 (0 + 0) + (0 + 0)The set of descendants of position 1 by the above reduction is f1; 2g.3 Weakly needed rewritingFor inductively sequential systems there exists a narrowing strategy [3] that performs only stepsthat are needed for computing solutions of equations. This strategy may be considered as a naturalextension to narrowing of the sequential rewrite strategy presented in [1]. In this paper we investi-gate the narrowing relation for the class of weakly orthogonal, constructor-based rewrite systems.We will propose, in the next two sections, two narrowing strategies for this class of TRSs. Bothstrategies are based on a parallel rewrite strategy that we refer to as weakly needed rewriting. Thisrewrite strategy has been sketched �rst in [1] and computes the same reduction sequences of [34],although the overall approach is quite di�erent. In this section, we reformulate the weakly neededrewriting strategy and address some of its properties. We begin with some technical de�nitions.A de�nitional tree is a hierarchical structure containing the rules (only the rules' left-hand sidesreally matter) of a de�ned operation of a rewrite system. Below we recall both the de�nition ofparallel de�nitional tree and a few results that will come handy later on in our discussion.The symbols branch and rule occurring in the next de�nition, are uninterpreted functions used toclassify the nodes of the tree. A de�nitional tree can be seen as a partially ordered set of patternswith some additional constraints.De�nition 11 T is a partial parallel de�nitional tree, or ppdt, with pattern � i� the depth of T is�nite and one of the following cases holds:T = branch(�; �o; ��T ); where � is a pattern, �o is a list o1; : : : ; ok, k > 0, of occurrences of distinctvariables of �, and ��T is a sequence �T1; : : : ; �Tk of sequences of ppdts such that for all j inf1; : : : ; kg, �Tj = Tj1 ; : : : ; Tjkj , cj1 ; : : : ; cjkj are di�erent constructors of the sort of �joj , and forall i in f1; : : : ; kjg, the pattern in the root of Tji is �[cji(X1; : : : ; Xn)]oj , where n is the arityof cji and X1; : : : ; Xn are new variables.T = rule(� ! r); where � ! r is a variant of a rule of R.In the remainder of the paper we will use the notation pattern(T ) to denote the pattern argumentof a ppdt T .Let R be a rewrite system. T is a parallel de�nitional tree, abbreviated prdt, of an operation fi� T is a ppdt such that pattern(T ) = f(X1; : : : ; Xn), where n is the arity of f and X1; : : : ; Xnare new distinct variables, and for every rule l ! r of R with l = f(t1; : : : ; tn) there exists a leafrule(l0 ! r0) of T such that l is a variant of l0, and we say that the node rule(l0 ! r0) representsthe rule l! r. 8



X1 _X2true _X2true false _X2 X1 _ truetrue X1 _ falsefalse _ false false _ falsefalse falseFigure 1: Pictorial representation of a parallel de�nitional tree of the operation parallel-or de�ned indisplay (1). The edges connecting a parent to children belonging to the same sequential componentof the tree are joined together.X1 _X2true _X2true false _X2 X1 _X2X1 _ truetrue X1 _ falsefalse _ false false _ falsefalse falseFigure 2: Pictorial representation of the sequential components of the parallel de�nitional tree ofthe operation parallel-or de�ned in display (1). Each component is a sequential de�nitional treeand is obtained by splitting the tree of Fig. 1 at the root.A (partial) parallel de�nitional tree T is called (partial) de�nitional tree, abbreviated pdt , i� ineach branch node of T the list of occurrences contains exactly one element.3Figure 1 pictorially represents the parallel de�nitional tree of the rules of the parallel-or shown inExample 2.If the lhs of a rule l! r of a weakly orthogonal rewrite system is subsumed by the lhs of another,distinct rule, say l0 ! r0, i.e., l0 < l, then also l0 ! r0 < l ! r. Subsumed rules are useless and canbe eliminated from a system without changing the rewrite relation [1, Lemma 18].If we eliminate all the useless rules from a rewrite system R, then every operation of the resultingsystem has a parallel de�nitional tree.Theorem 1 [1, Th. 19] If f is an operation of a CAT R, then there exists a parallel de�nitionaltree T of f such that the rules represented by T are all and only the useful rules de�ning f in R.The proof of Theorem 1 is constructive, based on an algorithm that, for example, on input therules of display 1 generates the tree shown in Fig. 1.9



From now on, we assume that every rewrite system that we are dealing with has no useless rules.A parallel de�nitional tree may be decomposed into a set of sequential components each of which isa (sequential) de�nitional tree. The sequential components of a ppdt T are obtained by the inverseof the \collapsing" operation discussed in [1].De�nition 12 If T = rule(l ! r), then T itself is the only sequential component of T . IfT = branch(�; ho1; : : : ; oki; h �T1; : : : ; �Tki), for some k > 0, then branch(�; oj; T 0) is a sequentialcomponent of T for all j in 1; : : : ; k and for all sequential components T 0 of �Tj .Below, we recall the de�nition of needed rewriting. Needed rewriting is a strategy for inductivelysequential systems, i.e., rewrite systems where each function has a de�nitional tree. Loosely speak-ing, the rewriting (and narrowing) strategies presented in this note are obtained by breaking up aCAT into its inductively sequential components, applying needed rewriting (or narrowing) to eachcomponent, and combining together the results of each application.The needed rewriting strategy is implemented by a function, ', that takes two arguments, anoperation-rooted term, t, and a de�nitional tree, T , of the root of t. Throughout an interleaveddescent down both t and T , ' computes, whenever possible, a position p and a rule R such that tis reducible at p by rule R.In the following, � denotes the Noetherian ordering on T (�;X )�P(�) (where P(�) is the set ofall partial de�nitional trees over the signature �) de�ned by: (t1; T1) � (t2; T2) if and only if either:(i) t1 has fewer occurrences of de�ned operation symbols than t2 or (ii) t1 = t2 and T1 is a propersubtree of T2.De�nition 13 The partial function ' takes two arguments, an operation-rooted term t and apartial de�nitional tree T such that pattern(T ) � t. If '(t; T ) is de�ned, it yields a pair, (p; R),where p is a position of t and R is a rewrite rule applicable to t at p. The function ' is de�ned byinduction on � as follows.'(t; T ) =8>>>>>>>>><>>>>>>>>>:(�; R) if T = rule(R);'(t; Ti) if T = branch(�; o; T1; : : : ; Tk) and pattern(Ti) � t, for some i;(o � p; R) if T = branch(�; o; T1; : : : ; Tk),tjo is operation-rooted,T 0 is a de�nitional tree of the root of tjo, and'(tjo; T 0) = (p; R).In order to extend the strategy ' to CATs, we apply ' to all the sequential components of a prdtand combine the results together. The resulting strategy, denoted �', is de�ned as follows.De�nition 14 The function �' takes two arguments, an operation-rooted term t and a ppdt T suchthat pattern(T ) � t. The function �' yields a �nite set of pairs, f(pi; Ri)gi2I , where for all i in I ,pi is a position of t and Ri is a rewrite rule. Thus, let t be a term, T be a ppdt in the domain of�', ' the function de�ned in De�nition 13, andS = f(p; R) j T 0 is a sequential component of T ; '(t; T 0 ) = (p; R)g3This corresponds to the de�nition given in [3] except that we ignore the exempt nodes.10



We partition S into two disjoint sets S1 and S2 such that, for all distinct pairs (p1; R1); (p2; R2) 2 S1,p1 and p2 are disjoint and for all (p; R) 2 S2 there is some (p0; R0) 2 S1 with p0 � p. Then�'(t; T ) = S1, i.e., �'(t; T ) contains all pairs computed by the sequential components of T withdisjoint outermost positions. This de�nition does not uniquely characterize S1 if (p; R1); (p; R2) 2 Swith R1 6= R2. However, we can always select a uniquely de�ned subset by introducing a totalordering on rewrite system's rules. Since this does not in
uence the results of reduction multisteps(due to the triviality of overlapping), a stricter de�nition is unnecessary.Example 5 Consider the rewrite system of Example 2 and the term t = (true _ (true _ true)) _(X _ (false _ false). The rewrite derivation computed by �' ist!(1;R2);(2�2;R3) true _ (X _ false)!(�;R2) trueSometimes we abbreviate this notation as followst �'! true _ (X _ false) �'! trueWe are going to prove that �rst, unless we perform at least one reduction step computed by �' wecannot obtain the normal form of an equation and second, that if we perform all the steps computedby �' we do obtain the normal form (whenever it exists) of an equation.Next, we lay the foundations for proving these key results. We introduce some technical de�nitionsto simplify the statements that follow and prove a few facts about the de�ned concepts. We beginwith arbitrary reductions.De�nition 15 Let R be a CAT and t a term. We call arbitrary reduction of t a reduction of t bya rule l! r, where l is the left-hand side of a rule of R and r is any term. We write l 6? t i� thereexists some term t0 that is both a descendant of t w.r.t. arbitrary reduction and an instance of l.An arbitrary reduction is an abstraction used to capture the impossibility of reducing a term bycertain rules, as shown by the next example.Example 6 Consider the following rewrite rules de�ning the usual operation \less than or equalto" on the naturals0 � X ! true R1s(X) � 0 ! false R2s(X) � s(Y ) ! X � Y R3 (2)and the term t = s(0) � (0 + 0). Let l1 and l2 denote the left-hand sides of R1 and R2. It isimmediate to verify that t is not a redex, and that l1 66? t and l2 6? t. Thus, no descendant of twill ever be reduced by R1, whereas we cannot exclude that some descendant of t might be reducedby R2. The latter claim holds for R3 too.Lemma 1 Let R be a CAT, t an operation-rooted term, and T a sequential component of a parallelde�nitional tree of the root of t. Let � be the pattern of a subtree T 0 of T such that � � t. If l! ris a rule of R contained in a leaf of T , but not represented by a leaf of T 0, then l 66? t.11



Proof The proof is by induction on the depth of T 0 in T . The base case vacuously hold. Letbranch(�0; o; T1; : : : ; Tk) be the parent of T 0. For some i in 1; : : : ; k, Ti = T 0. The symbol of � atposition o is a constructor, say c. The term t has the same constructor at position o. If j 6= i, thenthe pattern of Tj as well as the left-hand side of any rule l0 ! r0 represented by a leaf of Tj havea constructor di�erent from c at position o, and consequently l0 66? t. Thus, the claim stems fromthe induction hypothesis. 2Lemma 1 justi�es the de�nition of '. The second case of De�nition 13 eliminates rules that cannotbe applied at the root of a term t. ' repeats this computation until either it �nds an applicablerule (case 1 of the de�nition) or it �nds necessary to reduce a proper subterm of t (case 3).The next lemma explains why the positions computed by �' are relevant|unless a reduction isperformed at one of these positions, the (constructor) normal form of a term cannot be computed.De�nition 16 Let R be a CAT, t an operation-rooted term, and T a parallel de�nitional tree ofthe root of t. We say that a position p is computed by �' (on t and T ) i� (p; R) is in �'(t; T ) forsome rule R in R. We say that a redex tjp is computed by �' (on t and T ) i� (p; R) is in �'(t; T ) forsome rule R in R.Lemma 2 Let R be a CAT, t an operation-rooted term, and T a parallel de�nitional tree of theroot of t. No descendant of t can be reduced to a constructor-rooted term unless a descendant of tjpis reduced to a constructor-rooted term for some position p computed by �'.Proof If t is a redex, then � is the only position computed by �'. In almost orthogonal systemsthe redex patterns of a term overlap at the root or not at all. Thus, internal reductions do notchange both the redexness and the root of t and the claim is immediately veri�ed. If t is not aredex, we prove the claim by structural induction on t. Base case: the claim holds vacuously, sincet is an irreducible constant. Inductive case: let f be the root of t, and let fqigi2I be the set ofpositions computed by �', where I is the set of indices. For all i 2 I , let qi = oi�pi, where oi andpi are uniquely determined by the third case of De�nition 13. Observe that the root of tjoi is ade�ned operation. Observe also that every rule l ! r de�ning f , that might reduce a descendantof t is, by Lemma 1, represented by a leaf of the node of T containing oi. In the left-hand side ofany such rule, the symbol at position oi is a constructor. Thus, no descendant of t can be reducedto a constructor-rooted term unless a descendant of tjoi is reduced to a constructor-rooted term forat least one i in I . By the induction hypothesis, for all i in I , no descendant of tjoi can be reducedto a constructor-rooted term unless a descendant of tjoi jp0 is reduced to a constructor-rooted termfor some p0 computed by �' on tjoi and Ti, where Ti is a de�nitional tree of the root of tjoi . From thede�nition of �', oi�p0 = oj �pj , for some j in I . Since tjoi jp0 = tjoi�p0 , the claim holds by transitivity.2The above result shows the necessity of reducing some position computed by �', though it may notbe obvious which one, for computing the normal form of a term. The next lemma is the foundationfor showing that this set of positions is in some sense complete. If we reduce all the positionscomputed by �', we make some progress toward the computation of normal forms. We measure thisnotion of progress by the cost function, cost , on coinitial multiderivations de�ned in [3, Def. 8].Informally, we measure the cost of a multistep of a derivation of a term t as if t were representedas a graph [4, 36].We denote with a semicolon the concatenation of rewriting or narrowing steps and/or derivations.12



Lemma 3 Let R be a CAT, t0 a term, and t0 A1! t1 A2! t2 : : : An! tn a multiderivation normalizingt0. Let B be a set of disjoint redexes in t0 such that in any derivation of t0 to normal form aresidual of a redex of B is contracted and let t0 B0� u0 be a multiderivation such that in u0 thereare no descendants of the redexes of B. There exists a multiderivation C normalizing u0 such thatcost(B0;C)� cost(B0) < cost(A).Proof De�ne, by induction on n, the multiderivation C = C1; : : : ;Cn and the family of multi-derivations Bi, i in 1; : : : ; n, as follows: Ci = Ai nBi�1 and Bi = Bi�1 nAi (see diagram below)t0 A1 t1 A2 � � � An tnB0 B1 Bnu0 C1 u1 C2 � � � Cn unand let ti Bi� ui, 0 � i � n. Since tn is a normal form, by the commutativity of the diagram, Bncontracts an empty set of redexes and un = tn. We now prove the claim about the cost of thederivations. For every i in 1; : : : ; n, cost(Ci) � cost(Ai), since any redex contracted by Ci is thedescendant by Bi�1 of a redex contracted by Ai. By the assumption on B, there exists a step Aj ,j in 1; : : : ; n, that contracts some descendant of some redex, say r, of B. However, no descendantof r is contracted in Cj , since no descendant of r occurs in u0, and consequently in ui�1, for i in1; : : : ; n. Thus, cost(Cj) < cost(Aj) and the claim follows. 2We now use the above results to explore some relationships between �' and normalizing strategiesfor CATs.Theorem 2 Let R be a CAT extended by the equality rules, and t an equation t0 � t00 which isreducible to the constant `true'.1. [Necessity] Every strategy normalizing t must reduce a descendant of t at some position com-puted by �'.2. [Su�ciency] The strategy S that reduces the descendants of the redexes computed in t by �' isnormalizing.Proof1. [Necessity] The claim stems by strengthening the antecendent and weakening the consequentof Lemma 2.2. [Su�ciency] Suppose that S were not normalizing and that B10;B20; : : : were an in�nite Sderivation of t. Let t00 = t and A01;A02; : : : ;A0n be a derivation normalizing t. Considerthe following diagram, constructed as in Lemma 3, and, for all i, let Ai denote the derivation13



Ai1;Ai2; : : : ;Ain. t00 A01 t01 A02 � � � A0n t0nB10 B11 B1nt10 A11 t11 A12 � � � A1n t1nB20 ... B21 ... B2n ...For every i, there exists a d(i) such that every redex computed by �' in ti0 has no descendantin td(i);0. By the necessity claim, one redex in this set is reduced in Ai, and consequentlycost(Bi0; : : : ;Bd(i);0;Ad(i)) � cost(Bi0; : : : ;Bd(i);0) < cost(Ai). By considering the horizon-tal derivations at indices 0; d(0); d2(0); : : : one would obtain an in�nite sequence of strictlydecreasing non-negative integers, which is impossible. Thus, B10;B20; : : : is �nite and S isnormalizing. 2The proof of the su�ciency claim also shows that S is hypernormalizing. The order in whichthe redexes computed by �' are reduced and whether other reduction are interspersed with thereductions of these redexes are irrelevant factors as far as computing the normal form of t isconcerned.4 Weakly needed narrowingIn this section we study our �rst narrowing strategy for weakly orthogonal, constructor-based TRSs.This strategy is sequential and could be seen as a natural extension to overlapping TRSs of needednarrowing [3].In order to de�ne the narrowing steps starting from a term, we use the sequential components of aparallel de�nitional tree. Loosely speaking, we apply the function � de�ned in [3, Def. 6] to all thesequential components of a prdt and combine the results together. Since the function � computesoptimal narrowing derivations for inductively sequential programs (these are programs where eachparallel de�nitional tree has exactly one sequential component), our strategy is a conservativeextension of an optimal strategy.Similar to rewriting, we establish �rst that the elimination of useless rules from a weakly orthogonalTRS does not change the solutions of equations.Lemma 4 If R is a weakly orthogonal rewrite system and R0 is obtained from R by removing anyuseless rule, then, for every equation e, � is a solution of e in R if and only if � is a solution of ein R0.Proof Since any rewrite relation is closed under substitution, removing useless rules from R doesnot change the rewrite relation as well as the congruence it generates. So, the congruences �$R14



and �$R0 are the same. Therefore, a substitution � is a solution of an equation e w.r.t. R if andonly if � is a solution of e w.r.t. R0. 2Before de�ning our sequential narrowing strategy, we recall the de�nition of the function � (incontrast to [3], here we omit the failure elements with the symbol \?"). � takes two arguments, anoperation-rooted term t and a partial de�nitional tree T of the root of t, and non-deterministicallyreturns a triple, (p; l! r; �), where p is a position of t, l! r is a rule of R and � is a substitution.If (p; l! r; �) 2 �(t; T ), then t;p; l!r; � �(t[r]p) is a narrowing step.De�nition 17 The function � takes two arguments, an operation-rooted term t and a partialde�nitional tree T such that pattern(T ) and t unify. The function � yields a set of triples of theform (p; R; �), where p is a position of t, R is a rewrite rule and � is a uni�er of pattern(T ) and t.Thus, let t be a term and T a partial de�nitional tree in the domain of �. The function � is de�nedto yield least sets of triples satisfying the following conditions (note that we use an induction on �similarly to De�nition 13).�(t; T ) �8>>>>>>>>>>>>><>>>>>>>>>>>>>:f(�; l! r;mgu(t; l))g if T = rule(l! r);�(t; Ti) if T = branch(�; o; T1; : : : ; Tk),t and pattern(Ti) unify, for some i;f(o � p; R; � � �)g if T = branch(�; o; T1; : : : ; Tk),tjo is operation-rooted,� = mgu(t; �),T 0 is a de�nitional tree of the root of �(tjo) , and(p; R; �) 2 �(�(tjo); T 0).As in proof procedures for logic programming, we have to apply variants of the rewrite rules withfresh variables to the current term. Therefore, we assume in the following that the (parallel)de�nitional trees always contain new variables if they are used in a narrowing step.Now we are ready to de�ne our sequential narrowing strategy ��.De�nition 18 The function �� takes two arguments, an operation-rooted term t and a ppdt T suchthat pattern(T ) and t unify. Let T1; : : : ; Tn be the sequential components of the ppdt T . Then, thefunction �� yields a set of triples of the form (p; R; �) where p is a position, R is a rewrite rule and� is a substitution, de�ned by��(t; T ) = [ni=1�(t; Ti)We call weakly needed step any narrowing step computed by ��.Example 7 We compute the set of weakly needed narrowing steps of the term t = X _ Y . Let Tdenote the parallel de�nitional tree of \_" pictorially represented in Fig. 1. Let Tl and Tr be thesequential components of T pictorially represented in the left and right sides respectively of Fig. 2.Using De�nition 17 we obtain�(t; Tl) = f(�;R2; fX 7! trueg); (�;R3; fY 7! false; X 7! falseg)g�(t; Tr) = f(�;R1; fY 7! trueg); (�;R3; fY 7! false; X 7! falseg)g15



According to the previous de�nition, ��(t; T ) is the following set:f(�;R2; fX 7! trueg); (�;R1; fY 7! trueg); (�;R3; fY 7! false; X 7! falseg)gThe resulting weakly needed narrowing steps are:t;�;R2;fX 7!trueg truet;�;R1;fY 7!trueg truet;�;R3;fX 7!false;Y 7!falseg falseNow consider the additional rulef(a) ! true R4and the term t0 = f(X) _ f(X). Then the results w.r.t. the sequential components Tl and Tr are�(t0; Tl) = f(1;R4; fX 7! ag)g�(t0; Tr) = f(2;R4; fX 7! ag)gAccording to the previous de�nition, ��(t0; T ) isf(1;R4; fX 7! ag); (2;R4; fX 7! ag)gwhich speci�es the following narrowing stepst0 ;1;R4;fX 7!ag true _ f(a)t0 ;2;R4;fX 7!ag f(a) _ trueTheorem 3 (Soundness of weakly needed narrowing) Let R be a CAT extended by the equalityrules. If t � t0 �;� true is a narrowing derivation computed by ��, then � is a solution for t � t0.Proof The claim can be proved as usual (see, e.g., [2, Theorem 2]). 2Next we prove the completeness of narrowing with ��. For this purpose, we will show a strongrelation between the functions ' and �. First, we show a relationship between these functionsw.r.t. the sequential components of the parallel de�nitional trees.Lemma 5 Let R be a CAT. Let t be an operation-rooted term, T be a sequential component of aparallel de�nitional tree of the root of t and � be a constructor substitution. If '(�(t); T ) = (p; R),then there exists a substitution � such that1. (p; R; �) 2 �(t; T )2. � � �[Var(t)]Proof The proof is by Noetherian induction on �. We consider the cases of the de�nition of '.Base case: consider (t; T ) where t is an operation-rooted term and T = rule(l! r), for some rulel ! r. Hence (p; R) = (�; l ! r) and l � �(t). This implies the existence of a substitution� with �(l) = �(t). Hence l and t are uni�able (we assume that l and t are variable disjoint,otherwise take a new variant of the parallel de�nitional tree) and there exists a most generaluni�er � of l and t with � � �[Var(t)]. By the de�nition of �, (p; R; �) 2 �(t; T ).16



Induction step: consider (t; T ) where t is an operation-rootedterm and T = branch(�; o; T1; : : : ; Tk), for some pattern �, position o, and pdts T1; : : : ; Tk, forsome k � 0. We consider the three subcases of the de�nition of ' for branch nodes.�(t)jo is constructor-rooted.By the de�nition of ' and pdt , there exists some i in f1; : : :kg such that pattern(Ti) � �(t)and '(�(t); T ) = '(�(t); Ti). Since '(�(t); T ) = (p; R), by the induction hypothesis, thereexists a substitution � such that (p; R; �) 2 �(t; Ti) and � � �[Var(t)]. By the de�nitionof � (note that pattern(Ti) and t unify), (p; R; �) 2 �(t; T ).�(t)jo is operation-rooted.By the de�nition of ', � � �(t). �(t) and pattern(Ti) do not unify for each i in f1; : : :kgsince �(t)jo is operation-rooted but pattern(Ti) has a constructor symbol at position o.Let T 0 be a de�nitional tree of the root of �(t)jo and '(�(t)jo; T 0) = (p0; R0). By thede�nition of ', (p; R) = (o � p0; R0). Since � � �(t), there exists a most general uni�er �of � and �(t) with � � �[Var(t)] (we assume that � and t are variable disjoint, otherwisetake a new variant of the de�nitional tree). �jVar(t) is a constructor substitution since� is a linear pattern and t is operation-rooted. Let �0 be a constructor substitutionsuch that �0 � � = �[Var(t)]. Since � is a constructor substitution, o is a position of t,and tjo is operation-rooted. Since o is di�erent from the root position, t is operation-rooted, and �jVar(t) is a constructor substitution, �(tjo) has fewer occurrences of de�nedoperation symbols than t. Hence we can apply the induction hypothesis to (�(tjo); T 0)and �0. If '(�0(�(tjo)); T 0) = (p0; R0), there exists a substitution �0 such that (p0; R0; �0) 2�(�(tjo); T 0) and �0 � �0[Var(�(tjo))]. By the de�nition of �, (o �p0; R0; �0��) 2 �(t; T ), i.e.,(p; R; �0 � �) 2 �(t; T ). �0 � �0[Var(�(tjo))] implies �0 � �0[Var(�(t))] since �0 instantiatesonly variables from �(tjo) and new variables of the de�nitional tree. Hence �0 � � ��0 � � [Var(t)] which is equivalent to �0 � � � �[Var(t)].�(t)jo is a variable x.This case cannot occur since '(�(t); T ) is supposed to be de�ned. 2The following lemma shows how to lift a single reduction step using �' to a narrowing step using ��.Lemma 6 Let R be a CAT. Let � be a constructor substitution, V be a �nite set of variables, tbe an operation-rooted term with Var(t) � V , and T be a parallel de�nitional tree of the root oft. If �(t) !p;R s with (p; R) 2 �'(�(t); T ), then there exist a narrowing step t ;p;R; � t0 and aconstructor substitution �0 such that (p; R; �) 2 ��(t; T ), �0(t0) = s and �0 � � = �[V ].Proof Let R be l ! r. Since �(t) !p;R s, there exists a substitution � such that �(l) = �(t)jp= �(tjp). Let � = � � � (we assume Dom(�) � Var(R) and R is a rule with new variables notoccurring in V and the image of �, otherwise take an appropriate variant of R). By de�nitionof �', there exists a sequential component T 0 of T with (p; R) = '(�(t); T 0). By Lemma 5, thereis a triple (p; R; �) 2 �(t; T 0) with � � �[Var(t)]. Hence (p; R; �) 2 ��(t; T ) and there exists�0 such that �0 � � = �[V ] (w.l.o.g. we assume that �(x) = x for all x 2 V � Var(t)). Thisimplies �0 � � = �[V ] by de�nition of �. �0 is a constructor substitution since �jV is. Finally,�0(t0) = �0(�(t[r]p)) = �(t[r]p) = �(t)[�(r)]p = s. 2The following lemma shows that for each term t which has a normal form, there exists a reductionsequence that normalizes t by reducing at each step one position computed by �'.17



Lemma 7 Let R be a CAT extended by the equality rules and t an equation t0 � t00 that is reducibleto the constant `true'. Then, there exists a derivationt = t0 !(p1;R1) t1 � � � !(pn;Rn) tnsuch that 8i 2 f1; : : : ; ng; (pi; Ri) 2 �'(ti�1; Ti�1) where Ti�1 is a parallel de�nitional tree of the rootof ti�1, and tn is the constant `true'.Proof The proof is based on a setup identical to that of Theorem 2. Let t00 = t, letA01;A02; : : : ;A0n be a derivation normalizing t, and, for all i, let Ai denote the derivationAi1;Ai2; : : : ;Ain. By point 1 of Theorem 2, there exists a minimum index j such that t0j !(p0 ;R)t0;j+1 where (p; R) is computed by �' on t00 and p0 is a descendant of p. We de�ne B10 as thestep t00 !(p;R) t10 and likewise B20; B30; : : : Observe that cost(B10;A1) � cost(B10) < cost(A0),since A1 does not reduce any descendant of p in t. Similar to Theorem 2, for all i > 0,cost(B10; : : : ;Bi0;Ai) � cost(B10; : : : ;Bi0) < cost(Ai�1). If B10;B20; : : : were in�nite, one wouldobtain an in�nite sequence of strictly decreasing non-negative integers, which is impossible. 2Now we can prove the completeness of weakly needed narrowing. In fact we show the completenessw.r.t. constructor substitutions as solutions of equations. This is not a limitation in practice,since more general solutions would contain unevaluated or unde�ned expressions. This is not alimitation with respect to related work, since most general narrowing is known to be complete onlyfor irreducible solutions [21], and lazy narrowing is complete only for constructor substitutions[14, 28]. The following theorem states the completeness of our strategy ��.Theorem 4 (Completeness of weakly needed narrowing) Let R be a CAT extended by the equalityrules. Let � be a constructor substitution that is a solution of an equation t � t0 and V be a �nite setof variables containing Var(t) [ Var(t0). Then there exists a narrowing derivation t � t0 �;�0 truecomputed by �� such that �0 � �[V ].Proof By De�nition 8 and Proposition 1, �(t � t0) is reducible to true . By Lemma 7, there existsa derivation�(t � t0) = s0 !(p1;R1) s1 !(p2;R2) � � � !(pn ;Rn) sn (3)such that (pi; Ri) 2 �'(si�1; Ti�1), where Ti�1 is a parallel de�nitional tree of the root of ti�1,for i 2 f1; : : : ; ng, and sn is the constant true. By Proposition 2, si is operation-rooted, fori 2 f1; : : : ; n� 1g. We prove by induction on n, the length of the derivation (3), the existence of acorresponding narrowing derivationt � t0 = t0 ;(p1;R1;�1) t1 � � � ;(pn;Rn;�n) true (4)such that for i 2 f1; : : : ; ng; (pi; Ri; �i) 2 ��(ti�1; Ti�1) and �n � � � � � �1 � �[V ].Base case: Consider n = 1. In this case, derivation (3) is reduced to one step rewriting s0 !(p1;R1)true . By Lemma 6, there exists a narrowing step t0 ;(p1;R1;�1) true with (p1; R1; �1) 2 ��(t0; T0)and �1 � �[V ].Induction step: Consider n > 1. By Lemma 6 applied to the �rst reduction step, there exists anarrowing step t0 ;(p1;R1;�1) t1 and a constructor substitution �0 with (p1; R1; �1) 2 ��(t0; T0),18



�0 � �1 = �[V ] and �0(t1) = s1. Let V1 = (V � Dom(�1)) [ Im(�1). By induction hypothesisapplied to V1, �0 and the derivations1 !(p2;R2) � � � !(pn;Rn) sn ;there exists a narrowing derivationt1 ;(p2;R2;�2) t2 � � �;(pn;Rn;�n) true (5)such that (pi; Ri; �i) 2 ��(ti�1; Ti�1) for i 2 f2; : : : ; ng and �n � � � ���2 � �0[V1]. Combining the�rst narrowing step t0 ;(p1;R1;�1) t1 with derivation (5), we obtain the required derivation (4)with �n � � � � � �1 � �[V ] since �0 � �1 = �[V ]. 2If we consider again the term t0 in Example 7, we can observe that, to narrow t0 to true , the strategy�� computes four distinct derivations with the same substitution fX 7! ag, i.e.,t0 ;1;R4;fX 7!ag true _ f(a);�;R2; id truet0 ;1;R4;fX 7!ag true _ f(a);2;R4; id true _ true ;�;R2; id truet0 ;2;R4;fX 7!ag f(a) _ true ;�;R1; id truet0 ;2;R4;fX 7!ag f(a) _ true ;1;R4; id true _ true ;�;R2; id trueIn order to avoid such redundant computations we propose a parallel narrowing strategy for weaklyorthogonal, constructor-based TRSs in the next section.5 Parallel NarrowingClassic narrowing may be de�ned in two steps as follows: t narrows to t0 i� there exists a substitution� such that the term �(t) rewrites to t0 using some rewrite rule l! r. It is clear from this informalde�nition that the substitution � is a uni�er of the left-hand side l and the subterm of t thathas been narrowed. From this informal de�nition, narrowing di�ers from rewriting only by theinstantiation step. Now, if we generalize this idea to parallel rewriting, i.e., if we replace therewriting step, in the narrowing relation, by a parallel rewriting step, we obtain a new relationthat we call parallel narrowing. The de�nition below formalizes the idea that we just sketched andde�nes a parallel narrowing step as an instantiation followed by a parallel rewriting step.De�nition 19 Let R be a term rewriting system, S a parallel rewriting strategy, t a term and �a substitution such that �(t) is reducible. We de�ne parallel narrowing as a binary relation overterms, denoted by t S;; � t0, and de�ned as follows: t S;; � t0 i� �(t) S! t0.Given a parallel rewriting strategy, the de�nition of the induced parallel narrowing relation doesnot specify how narrowing substitutions are computed. This is the rôle of a parallel narrowingstrategy.De�nition 20 Let R be a term rewriting system, S a parallel rewriting strategy. A parallelnarrowing strategy NS is a function from terms to sets of substitutions, NS : T (�;X )! 2Sub . Asubstitution � is in NS(t) only if there exists a term t0 such that t S;; � t0. We denote the parallelnarrowing relation w.r.t. strategy NS by NS;; . 19



Throughout this section parallel narrowing is de�ned upon the parallel rewriting strategy �'. Belowwe de�ne the parallel narrowing strategy ���. There are two main di�erences w.r.t. weakly needednarrowing: parallel narrowing may disregard some uni�ers computed by weakly needed narrowing,and at every narrowing step a necessary set of redexes of the instantiated term is reduced in parallel.De�nition 21 Let R be a CAT, t an operation-rooted term, T a parallel de�nitional tree of theroot of t. We de�ne the parallel narrowing strategy ��� as follows4���(t; T ) = f�jVar(t) modulo renaming j 9 (p; R; �) 2 ��(t; T ); 8 (q; R0; �) 2 ��(t; T );(� � �[Var(t)] and � 6� id[Var(t)]) � � �[Var(t)]) and(� � id[Var(t)] and q � p) �jVar(t) � idg:Intuitively, a substitution � belongs to ���(t; T ) i� � is either the identity or a minimal substitution(w.r.t. �) among the non-identity substitutions computed by ��(t; T ). Furthermore, whenever twotriples (p; R; id) and (q; R0; �) belong to ��(t; T ) with p being a pre�x of q (p � q), the substitution� is not considered by the strategy ���. Note that instantiations and positions eliminated by ��� willeventually come back later in a derivation, if they are necessary for computing the constructornormal form of a term.Example 8 Consider the following rewrite rules:f(X; s(Y )) ! s(0) R1f(0; Y ) ! s(0) R2h(s(s(X))) ! s(0) R3g(X)! s(g(X)) R4and the term t = f(g(X); f(h(Y ); f(0; h(s(Y ))))). One can easily verify that for some parallelde�nitional tree T��(t; T ) = f(1;R4; id); (2�1;R3; fY 7! s(s(Y1))g); (2�2;R2; id); (2�2�2;R3; fY 7! s(Y2)g)g���(t; T ) = fidgThe uni�er fY 7! s(s(Y1))g is discarded since it is an instance of fY 7! s(Y2)g. The uni�erfY 7! s(Y2)g is discarded since its application would create a non-outermost redex.Proposition 3 (Soundness of the strategy ���) Let R be a CAT extended by the equality rules. Thesubstitution �n � � � � � �1 deduced from a derivation computed by ���t � t0 ���;; �1 � � � ���;; �n trueis a solution of the equation t � t0.Proof Let Ti be the i-th term in the considered parallel narrowing derivation. Let Pi be the set ofpositions of subterms that have been reduced at the i-th step in the considered parallel narrowingderivation, i.e., Pi = fp j 9(p; R) 2 �'(�i(Ti�1); Ti�1)g where Ti�1 is a prdt of the root of Ti�1. Thenit is easy to see that we obtain the following parallel rewrite derivation�n � � � � � �1(t � t0)!P1 � � � !Pn true4The set notation f�jVar(t) modulo renaming j � � �g means that this set must not contain two substitutions �1; �2with �1 � �2[Var(t)]. 20



where the relation t !P t0 means that the term t0 is obtained from t by rewriting in parallel thesubterms of t at the positions in P . 2In order to prove the completeness of the strategy ���, we need some technical results that weformulate below.Proposition 4 Let R be a CAT, t an operation-rooted term, p a position of t, R a rewrite rule inR, � a constructor substitution and T a sequential component of a prdt of the root of t such that'(t; T ) = (p; R). Then '(�(t); T ) = (p; R).Proof The proof is by Noetherian induction on �. We consider the cases of the de�nition of '.Base case: consider (t; T ) where t is an operation-rooted term and T = rule(�;R0) for some pattern� and rule R0. In this case '(t; T ) = (p; R) = (�; R0) and � � t. As � � �(t) we deduce that'(�(t); T ) = (p; R0) = (�; R0).Induction step: consider (t; T ) where t is an operation-rootedterm and T = branch(�; o; T1; : : : ; Tk), for some pattern �, position o, and pdts T1; : : : ; Tk, forsome k � 0. We consider the two subcases of the de�nition of ' for branch nodes.tjo is constructor-rooted.By the de�nition of pdt , there exists some i in f1; : : : ; kg such that pattern(Ti) � t.By transitivity of �, we also have pattern(Ti) � �(t). Then, '(t; T ) = '(t; Ti) and'(�(t); T ) = '(�(t); Ti). By induction hypothesis, '(t; Ti) = '(�(t); Ti) and thus'(t; T ) = '(�(t); T ).tjo is operation-rooted.Let T 0 be a de�nitional tree of the root of tjo, '(tjo; T 0) = (p1; R1) and '(�(t)jo; T 0) =(p2; R2). By the de�nition of ', '(t; T ) = (o � p1; R1) and '(�(t); T ) = (o � p2; R2). Byinduction hypothesis, '(�(t)jo; T 0) = '(tjo; T 0), i.e., (p1; R1) = (p2; R2). Thus, '(t; T ) ='(�(t); T ). 2Proposition 5 Let R be a CAT, t an operation-rooted term, � a constructor substitution and Ta parallel de�nitional tree of the root of t such that for all (p; R; �) 2 ��(t; T ), either �jVar(t) = id or� 6� �[Var(t)]. Then, �'(t; T ) = �'(�(t); T ).Proof Let T 0 be a sequential component of T . We show that '(t; T 0) = '(�(t); T 0). For thatwe use the following two implications: (p; R) = '(t; T 0) ) (p; R) = '(�(t); T 0) and (p; R) ='(�(t); T 0) ) (p; R) = '(t; T 0). The �rst implication has been proven in Proposition 4. To provethe second implication, let us assume that (p; R) = '(�(t); T 0). Then, by Lemma 5, there existsa triple (p; R; �) in �(t; T 0) such that � � �[Var(t)]. Thus, from the hypothesis, we infer that�jVar(t) = id. Therefore, �(t) = t and consequently '(t; T 0) = '(�(t); T 0) = (p; R). 2Proposition 6 Let R be a CAT, t an operation-rooted term in normal form, T a parallel de�ni-tional tree of the root of t, � a constructor substitution and (p; R) a pair in �'(�(t); T ). Then, thereexists a substitution � such that (p; R; �) 2 ��(t; T ), � � �[Var(t)] and size(�jVar(t)) 6= 0.Proof (p; R) 2 �'(�(t); T ) implies the existence of a sequential component of T , say T 0, such that(p; R) = '(�(t); T 0). From Lemma 5, there exists a substitution � such that21



1. (p; R; �) 2 �(t; T 0) and thus (p; R; �) 2 ��(t; T ) and2. � � �[Var(t)].To complete the proof, we show by contradiction that size(�jVar(t)) 6= 0. Assume thatsize(�jVar(t)) = 0. Then, the substitution �jVar(t) maps variables to variables. Since the left-hand sides of R are linear, we deduce that '(t; T 0) = '(�(t); T 0). Thus, '(t; T 0) = (p; R) since'(�(t); T 0) = (p; R). This contradicts the assumption that t is in normal form, i.e., '(t; T 0) is notde�ned. 2Lemma 8 Let R be a CAT extended by the equality rules, t0 a term5 headed either by the operation� or ^ and T0 a parallel de�nitional tree of the root of t0. Let �0 be a ground constructor substitutionsuch that size(�0) 6= 0 and �0(t0) reduces to the constructor term `true'. Then, there exists a �'!-derivationt0 �'! t1 �'! � � � �'! tnsuch that n � 0 and either:� tn is the constructor term `true', or� f(p; R; �) 2 ��(tn; Tn) j � � �0[Var(tn)] and size(�jVar(tn)) 6= 0g 6= ?.Proof Let us consider the �'!-derivation issued from t0.t0 �'! t1 �'! � � � (6)This derivation is either �nite or not.Case where derivation (6) is �nite: Let tn be the last element of derivation (6). tn is the normalform of t0 since �' is normalizing. As �0(t0) reduces to true and R is con
uent, we deducethat either tn is the constant true or �0(tn) reduces to true. In the last case, by Proposition6, there exists a triple (p; R; �) in ��(tn; Tn) such that � � �0[Var(tn)] and size(�jVar(tn)) 6= 0.Case where derivation (6) is in�nite: Assume that there is no term tn in derivation (6) such that��(tn; Tn) includes a triple (p; R; �) with � � �0[Var(tn)] and size(�jVar(tn)) 6= 0. Then, byProposition 5, �'(tn; Tn) = �'(�0(tn); Tn). Therefore, the �'!-derivation issued from �0(t0) isin�nite. Thus, �0(t0) has no normal form which contradicts the hypothesis. 2Lemma 9 Let R be a CAT extended by the equality rules, t0 a term headed either by the operation� or ^ and �0 a constructor substitution such that �0(t0) reduces to the constructor term `true'.Then, there exists a ���;; -derivation issued from t0t0 ���;; �1 t1 ���;; �2 t2 � � � ���;; �n truesuch that n � 1 and �n � : : : � �1 � �0[Var(t0)].5In fact, this result holds for any operation-rooted term.22



Proof The proof is by induction on the size of �0Base case: Assume that the size of the substitution �0 is 0. That is to say, �0 maps variables tovariables. Since �' is normalizing (see Theorem 2), the left-hand sides of the rules in R areleft-linear and by hypothesis �0(t0) reduces to `true', we have the following �'!-derivation:t0 �'! t1 �'! � � � �'! true (7)From Lemma 5, we deduce that for each term ti in derivation (7) but the last one (true), thereexists at least a position pi+1, a rule Ri+1, and a substitution �i+1 with �i+1jVar(ti) = id suchthat (pi+1; Ri+1; �i+1) 2 ��(ti; Ti) with Ti a parallel de�nitional tree of the root of ti. Thus,derivation (7) is also a ���;; -derivationt0 ���;; �1 t1 ���;; �2 � � � ���;; �n truesuch that �n � � � � � �1 = id[Var(t0)]. Hence, �n � � � � � �1 � �0[Var(t0)].Induction step: Assume that the size of the substitution �0 is not 0. From Lemma 8, there existsa �'!-derivationt0 �'! t1 �'! � � � �'! tn (8)such that n � 0 and either:tn is the constructor term `true'.As in the base case, from the �'!-derivation we deduce that for each term ti but thelast one, there exists at least a position pi+1, a rule Ri+1 and a substitution �i+1 with�i+1jVar(ti) = id such that (pi+1; Ri+1; �i+1) 2 ��(ti; Ti) with Ti a parallel de�nitional treeof the root of ti. Thus we obtain the following ���;; -derivationt0 ���;; �1 t1 ���;; �2 � � � ���;; �n tnsuch that �n � � � � � �1 = id[Var(t0)]. Hence, �n � � � � � �1 � �0[Var(t0)].or:The set A = f�jVar(tn) j 9 (p; R; �) 2 ��(tn; Tn); � � �0[Var(tn)] and size(�jVar(tn)) 6= 0g is notempty.Since the set A is �nite, we can de�ne �n+1 as a minimal substitution in A. By de�nitionof the strategy ���, �n+1 2 ���(tn; Tn). By Lemma 5, derivation (8) is also a ���;; -derivation.t0 ���;; �1 t1 ���;; �1 � � � ���;; �n tn (9)In this case, we have tn ���;; �n+1 tn+1. Let us consider the set P = �'(�n+1(tn); Tn). FromLemma 1 in [21], we deduce the existence of a constructor substitution �1 such that�0(tn) !P �1(tn+1) and �1 � �n+1 = �0[Var(tn)]. Since size(�n+1) 6= 0, we deduce from�1 � �n+1 = �0[Var(tn)] that size(�1) < size(�0). Since R is con
uent, �1(tn+1) reducesalso to true. Then, by the induction hypothesis, there exists a ���;; -derivationtn+1 ���;; �n+2 � � � ���;; �m true (10)23



such that m � n+ 2 and �m � � � � � �n+2 � �1[Var(tn+1)]. Combining derivations (9) and(10), we obtain the required ���;; -derivation with �m � � � � � �1 � �0[Var(t0)]. 2From Lemma 9 we can easily infer the completeness of the strategy ���.Theorem 5 (Completeness of the strategy ���) Let R be a CAT extended by the equality rules. Let� be a constructor substitution that is a solution of an equation t � t0 and V a set of variablescontaining Var(t) [ Var(t0). Then there exists a derivation computed by ���t � t0 ���;; �1 � � � ���;; �n truesuch that �n � � � � � �1 � �[V ].The strategy ��� may perform some redundant computations when the considered term rewritingsystem is terminating, as shown in the following example:Example 9 Consider the rewrite rules R1, R2 and R3 of Example 8. Let t = f(h(s(s(Y )));f(h(Y ); h(s(Y )))). Then, for an appropriate prdt T , ���(t; T ) = fid; fY 7! s(Y2)gg. If we developthe search space of t, we will compute twice the substitution fY 7! s(Y2)g. However, if we consideronly minimal substitutions (including identity) in the sets computed by ���, we will compute onlyonce the substitution fY 7! s(Y2)g for the considered term t.Next we improve the strategy ��� and de�ne a new parallel narrowing strategy, denoted by ���#, whichavoids some redundant computations performed by ��� for terminating TRSs.De�nition 22 Let R be a terminating CAT, t an operation-rooted term, T a parallel de�nitionaltree of the root of t. The parallel narrowing strategy ���# is de�ned by���#(t; T ) = f� modulo renaming j 9 (p; R; �) 2 ��(t; T ) and 8 (q; R0; �) 2 ��(t; T );(� � �[Var(t)]) � � �[Var(t)])g :Notice that ���#(t; T ) is always included in ���(t; T ).Example 10 Let us consider the term t given in Example 9. There is only one narrowing deriva-tion developed by the strategy ���#, starting from t. This derivation, given below, computes thesubstitution fY 7! s(Y1)g.f(h(s(s(Y ))); f(h(Y ); h(s(Y )))) ���#;; id f(s(0); f(h(Y ); h(s(Y ))))���#;; fY 7!s(Y1)g f(s(0); f(h(s(Y1)); s(0)))���#;; id f(s(0); s(0))���#;; id s(0)The completeness of the strategy ���# is based on the following lemma.24



Lemma 10 Let R be a terminating CAT, t0 a term headed either by the operation � or ^ and�0 a constructor substitution such that �0(t0) reduces to the constructor term `true'. Then, thereexists a ���#;; -derivation issued from t0t0 ���#;; �1 t1 ���#;; �2 � � � ���#;; �n truesuch that n � 1 and �n � � � � � �1 � �0[Var(t0)].Proof The proof is by induction on the size of �0Base case: The base case, i.e. size(�0) = 0, is the same as in Lemma 9.Induction step: Assume that the size of the substitution �0 is not 0. Since �' is normalizing and Ris terminating, the normal form of t0 exists and can be obtained by the following �'!-derivationt0 �'! t1 �'! � � � �'! tn (11)It is clear that derivation (11) is also a ���#-derivation. Now if tn is the constructor term `true',the claim is obvious. Otherwise, �0(tn) reduces to `true'. De�ne the set S asf(p; R; �) j (p; R; �) 2 ��(tn; Tn) and � � �0[Var(tn)] and size(�jVar(tn)) 6= 0g :Since tn is in normal form, S is not empty by Proposition 6. Then we can choose �n+1 sothat there exists a triple (pn+1; Rn+1; �n+1) in S and �n+1 is minimal among the substitu-tions occurring in S, i.e., 8 (q; R; �) 2 S; � 6� �n+1. Then �n+1 2 ���#(tn). Thus we obtaintn ���#;; �n+1 tn+1. Let us consider the set of positions P = �'(�n+1(tn); Tn). From Lemma 1 in [21],we deduce the existence of a constructor substitution �1 such that �0(tn) !P �1(tn+1) and�1 � �n+1 = �0[Var(tn)]. Thus, since size(�n+1) 6= 0, we deduce from �1 � �n+1 = �0[Var(tn)]that size(�1) < size(�0). Since R is con
uent, �1(tn+1) reduces also to true. Then, byinduction hypothesis, there exists a ;; -derivation.tn+1 ���#;; �n+2 � � � ���#;; �m true (12)such that m � n + 2 and �m � � � � � �n+2 � �1[Var(tn+1)]. Combining derivations (11) and(12), we obtain the required ;; -derivation with �m � � � � � �1 � �0[Var(t0)]. 2From Lemma 10 we can easily infer the completeness of the strategy ���#.Theorem 6 (Completeness of the strategy ���#) Let R be a terminating CAT extended by the equalityrules. Let � be a constructor substitution that is a solution of an equation t � t0 and V a set ofvariables containing Var(t) [ Var(t0). Then there exists a derivation computed by ���#t � t0 ���#;; �1 � � � ���#;; �n truesuch that �n � � � � � �1 � �[V ]. 25



Notice that the parallel narrowing strategy ���# is not complete for non-terminating TRSs, as shownin the following example.Example 11 Consider the following non-terminating TRS:f(X; 0)! 0 R1f(0; X)! 0 R2h(0) ! 0 R3g(X)! g(s(X)) R4Let u be the term f(g(X); h(Y )). The strategy ���# computes only one derivation starting from uwhich isf(g(X); h(Y )) ���#;; id f(g(s(X)); h(Y ))���#;; id f(g(s(s(X))); h(Y ))���#;; id f(g(s(s(s(X)))); h(Y ))���#;; id � � �However, the term u can be narrowed, using the strategy ���, to the constructor term 0 as shownbelow. f(g(X); h(Y )) ���;; fY 7!0g f(g(s(X)); 0) ���;; id 06 OptimalityIn this section we discuss two optimality results of our narrowing strategies. Inductively sequentialsystems are a subclass of weakly orthogonal, constructor-based systems. Within our frameworkit is convenient to look at the di�erences between these two classes in terms of de�nitional trees.An inductively sequential operation f has a parallel de�nitional tree T with exactly one sequentialcomponent, i.e., T itself is a (sequential) de�nitional tree. Both weakly needed narrowing andparallel narrowing behave as needed narrowing when they operate on such a tree.Theorem 7 Let R be a CAT, t an operation-rooted term whose de�ned operations symbols are allinductively sequential. Then, for appropriate de�nitional trees for the operations in t, the narrowingsteps of t computed by both weakly needed narrowing and parallel narrowing are the same as thenarrowing steps of t computed by needed narrowing.Proof Each operation in t has a sequential de�nitional tree. Suppose that these trees are used tocompute weakly needed or parallel narrowing steps. Let S, �S, and ��S be the set of steps computedon t by needed narrowing, weakly needed narrowing and parallel narrowing respectively. It is easyto verify from the de�nitions of � and �� that S and �S di�er at most for triples in S of the form(p; ?; �) which are absent from �S. These triples do not denote a narrowing step, rather, they areused in needed narrowing to detect exceptional computations [3, p. 273]. Since needed narrowingcomputes only independent substitutions, from the de�nition of ��� we obtain that �S = ��S, too. 226



We now turn our attention to the behavior of parallel narrowing on ground equations.Theorem 8 The parallel narrowing strategy is (deterministically) normalizing on ground equa-tions.Proof Let t be a ground equation. Weakly needed narrowing applied to t computes a substitutionthat is the identity on the variables of t. Hence, by De�nition 19 a parallel narrowing step of t is arewriting step of t according to �'. The claim is thus a direct consequence of Theorem 2. 2The above results show that parallel narrowing is a conservative extension of two optimal strategies,needed narrowing on inductively sequential systems and rewriting necessary sets on ground terms.The strong optimality results of needed narrowing do not hold for weakly needed and parallelnarrowing. In particular, we recall that rewriting and/or narrowing needed positions is not alwayspossible in almost orthogonal TRSs, since such positions generally do not exist [34]. Furthermore,computing only independent uni�ers seems unlikely, too, without look-ahead.Example 12 Consider the parallel-or of Example 2 together with the following operationsf(0; X)! Xh(0) ! trueand the equation true � f(X; h(Y )) _ f(Y; h(X)). Parallel narrowing computes two derivations oft beginning with di�erent uni�ers, eventually to discover that they yield the same substitution.7 Related workIn this section we compare our parallel narrowing strategy with other narrowing strategies pro-posed for constructor-based weakly orthogonal rewrite systems. There are also many narrowingstrategies for rewrite systems which are not necessarily constructor-based and weakly orthogonal,like innermost [12], outermost [9, 10], basic [21], or LSE narrowing [6]. However, all these strate-gies require the termination of the rewrite relation which is di�cult to check6 and immediatelyexcludes typical functional programming techniques like in�nite data structures. Therefore, weare interested in narrowing strategies for rewrite systems which permit non-terminating rules. Inorder to ensure the con
uence of the rewrite relation, constructor-based and weakly orthogonalrules are a natural requirement. For this class of rewrite systems, lazy narrowing has been pro-posed in [7, 14, 28, 27, 33]. Similarly to lazy evaluation in functional languages, lazy narrowingevaluates an inner term only when its value is demanded to narrow an outer term. In contrast tofunctional languages, a naive version of lazy narrowing may evaluate the same argument severaltimes due to the non-deterministic choice of a function's rewrite rules. Therefore, several methodshave been proposed aiming at evaluating arguments commonly demanded by all rules before thenon-deterministic choice [3, 15, 25, 29]. The currently best strategy is needed narrowing [3] sinceit is the only one which is shown to be optimal w.r.t. the length of derivations and the number ofcomputed solutions. Needed narrowing is de�ned for inductively sequential systems, where in everyterm that, roughly speaking, is not fully evaluated there always exists a needed position. We haveshown in Theorem 7 that parallel narrowing is a conservative extension of an optimal narrowingstrategy.6Since the termination property of a rewrite system is undecidable, there are only su�cient criteria for it.27



In case of overlapping rules,7 the situation is more di�cult since an argument may be demandedby some rule but not demanded by another rule for the same function. Naive lazy narrowing is acomplete but often ine�cient strategy for overlapping rules as the following example shows.Example 13 Consider the following term rewriting system:one(0) ! s(0) R1one(s(X))! one(X) R2 f(0; X)! 0 R3f(X; 0)! 0 R4In order to solve the goal f(0; one(X))� 0, lazy narrowing selects a rule and evaluates the demandedarguments to head normal form (i.e., constructor-rooted term or variable) before the rule is applied.If rule R3 is selected, the �rst argument of f(0; one(X)) is demanded, and the second argumentis demanded if rule R4 is selected. Unfortunately, there are in�nitely many narrowing derivationsof one(X) to a head normal form|for every n � 0, one(X) �;fX 7!sn(0)g s(0). Therefore, lazynarrowing has an in�nite search space since both rules R3 and R4 are tried.In order to avoid this drawback of lazy narrowing, there are at least three methods aiming toimprove lazy narrowing for overlapping rewrite rules:1. Dynamic cut [26]2. Lazy narrowing with simpli�cation [18]3. Parallel narrowingLoogen and Winkler [26] propose the dynamic cut which ignores subsequent alternative rules fornarrowing if a rule is applicable without binding of goal variables (note that the dynamic cut hasbeen developed in the context of a sequential implementation of narrowing by backtracking). Inthe previous example, rule R3 is the �rst rule which is used to narrow the left-hand side of the goalf(0; one(X)) � 0. Since the argument 0 is already in head normal form, narrowing produces thetrivial goal 0 � 0 without binding the goal variable X . Therefore, the alternative rule R4 is ignoredwhich avoids the in�nite search space.The e�ect of the dynamic cut is subsumed by our parallel narrowing strategy since parallel nar-rowing prefers deterministic reductions at the root of a function call. This is made precise by thefollowing proposition.Proposition 7 Let R be a CAT, t an operation-rooted term and l ! r 2 R a rule with �(l) = tfor some substitution �. Then t ���;; id �(r) is the only parallel narrowing step starting at t.Proof Let T be a parallel de�nitional tree of the root of t. Since all rules of the root of tare contained in T , there is a sequential component T 0 of T containing the rule l ! r. W.lo.g.we assume that l ! r and t have no variables in common, otherwise take a variant of l ! r.Since �(l) = t and ' computes outermost redexes [2, Theorem 3], '(t; T 0) = (�; �) (w.l.o.g. weassume that Dom(�) � Var(l)). Moreover, (�; l ! r; �) 2 �(t; T 0) � ��(t; T ). Since �jVar(t) = id,���(t; T ) = fidg by de�nition of ���. By de�nition of ���;; , there exists exactly one parallel narrowingstep for t, namely t ���;; id �(r). 27There exist also non-overlapping rewrite systems which are not inductively sequential, but they seem to be notrelevant for application programs. 28



This proposition also shows another advantage of our parallel narrowing strategy in comparison tothe dynamic cut: parallel narrowing is independent of the order of rewrite rules. If there is a rewriterule applicable to the root without instantiating goal variables, parallel narrowing performs exactlyone step which is indeed a reduction step. However, the dynamic cut only discards alternative rulesafter the current rule. For instance, the dynamic cut has no e�ect for the goal f(one(X); 0) � 0w.r.t. Example 13. This disadvantage is omitted in [18] where the combination of lazy narrowingwith possible reduction steps between narrowing steps is proposed. For instance, a reduction stepapplied to the left-hand side of the goal f(one(X); 0) � 0 reduces it to the trivial goal 0 � 0 andavoids the in�nite search space. Attempts for reduction steps are also made at inner positions ifthey are demanded. For instance, the goal f(f(one(X); 0);X) � 0 is also reduced to 0 � 0 beforea non-deterministic narrowing step can take place. In order to ensure the completeness of this lazynarrowing with simpli�cation strategy, a terminating subset of all rewrite rules is used for reduction.For a terminating CAT, lazy narrowing with simpli�cation is subsumed by parallel narrowing: ifa simpli�cation step is applicable at some demanded subterm of t, the identity substitution idis contained in the set ���(t; T ) (similarly to Proposition 7) and thus ���#(t; T ) = fidg, i.e., theparallel narrowing strategy ���# also performs a deterministic reduction step. In the presence ofnon-terminating rules, parallel narrowing does not subsume lazy narrowing with simpli�cation asthe following example shows.Example 14 Consider the following non-terminating CAT:f(0; X; Y ) ! 0 R1f(X; 0; Y ) ! 0 R2f(X; Y; 0)! 0 R3g(X)! g(s(X)) R4h(0) ! 0 R5Let t be the term f(g(X); h(Y ); h(0)) and T be a parallel de�nitional tree of f . Then ���(t; T ) =fid; fY 7! 0gg, i.e., there are two parallel narrowing steps:f(g(X); h(Y ); h(0)) ���;; id f(g(s(X)); h(Y ); 0)f(g(X); h(Y ); h(0)) ���;; fY 7!0g f(g(s(X)); 0; 0)Thus, parallel narrowing reduces t to 0 in two di�erent ways. Lazy narrowing with simpli�cationhas a fully deterministic behavior and performs the following reduction steps:f(g(X); h(Y ); h(0)) ! f(g(X); h(Y ); 0) ! 0On the other hand, lazy narrowing with simpli�cation has the same behavior as lazy narrowing ifsimpli�cation is not applicable. For instance, consider the rules of Example 2 and the term X _X .Since no simpli�cation rules are applicable, there are three possible lazy narrowing steps. However,parallel narrowing allows only two possible narrowing steps.Although lazy narrowing with simpli�cation and parallel narrowing are not directly comparablein the presence of non-terminating rules, parallel narrowing has an important advantage over allclassic lazy narrowing strategies. Since the parallel narrowing strategy ��� computes only the identitysubstitution on ground terms, parallel narrowing evaluates ground goals in a fully deterministic way.29



Moreover, it always computes the normal form of a ground term if it exists (see Theorem 8). On theother hand, lazy narrowing strategies perform non-deterministic steps even for ground goals. Asa consequence, lazy narrowing may fail to compute normal forms in a sequential implementation.Thus, parallel narrowing is an ideal strategy for functional logic languages.Parallel narrowing is not intended as a strategy to implement functional logic languages on paral-lel architectures. Although there is some potential for parallel implementation, the parallelism ofthis strategy is too �ne-grained since the parallel reduction processes must be synchronized aftereach parallel narrowing step. This is in contrast to the AND-parallel narrowing implementationpresented in [24] where independent subterms are evaluated in parallel. However, due to the factthat parallel narrowing reduces the number of non-deterministic choices in narrowing steps (com-pared to classic narrowing), parallel narrowing is useful to improve OR-parallel implementations ofnarrowing [16].8 ConclusionsWe have presented a new narrowing strategy for constructor-based weakly orthogonal rewrite sys-tems. Since this class includes non-terminating systems, it is the basis of the functional componentof many integrated functional logic languages. The main idea of our narrowing strategy is theparallel evaluation of necessary sets of redexes. This leads to a generalization of Sekar and Ra-makrishnan's work on rewriting to narrowing. Parallel narrowing is a conservative extension ofan optimal narrowing strategy, needed narrowing [3], to weakly orthogonal rewrite systems. Fur-thermore, parallel narrowing is the only known narrowing strategy for possibly non-terminatingand overlapping rewrite rules which evaluates ground terms without any non-deterministic choice.This strategy can be implemented relatively e�ciently, since narrowing steps are computed by localcomputations based on uni�cation.8 Therefore, this strategy is ideal for functional logic languages.References[1] S. Antoy. De�nitional trees. In Proc. of the 4th Intl. Conf. on Algebraic and Logic programming,pages 143{157. Springer LNCS 632, 1992.[2] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Technical report MPI-I-93-243, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1993.[3] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st ACMSymposium on Principles of Programming Languages, pages 268{279, Portland, 1994.[4] H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, and M. Sleep. Term graph rewriting.In PARLE'87, pages 141{158. Springer LNCS 259, 1987.[5] D. Bert and R. Echahed. Design and implementation of a generic, logic and functional pro-gramming language. In ESOP-86, pages 119{132. Springer LNCS 213, 1986.[6] A. Bockmayr, S. Krischer, and A. Werner. An optimal narrowing strategy for general canonicalsystems. In Proc. of the 3rd Intern. Workshop on Conditional Term Rewriting Systems, pages483{497. Springer LNCS 656, 1992.8An implementation of parallel narrowing based on the compilation of functional logic programs into Prolog isdescribed in [13]. 30
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