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1 Introduction

The interest in integrating functional and logic programming has grown over the last decade, since
the languages resulting from this integration are expected to have advantages of both paradigms.
Most proposals with a sound and complete operational semantics for the integration of functional
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and logic programming languages (see [19] for a recent survey) are based on narrowing. Narrowing,
originally introduced in automated theorem proving [35], solves equations by computing unifiers
with respect to an equational theory [11]. Informally, narrowing unifies a term with the left-hand
side of a rewrite rule and fires the rule on the instantiated term.

Example 1 Consider the following rewrite rules defining the addition for natural numbers, which
are represented by terms built with 0 and s:

0+X — X R4
sS(X)+Y — s(X+Y) Ry

To narrow the equation Z + s(0) ~ s(s(0)), rule Ry is applied by instantiating Z to s(X). To
narrow the resulting equation, s(X + s(0)) = s(s(0)), Ry is applied by instantiating X to 0. The
resulting equation, s(s(0)) ~ s(s(0)), is trivially true. Thus, {Z — s(0)} is the equation’s solution.

A brute-force approach to finding all the solutions of an equation would attempt to unify each
rule with each non-variable subterm of the given equation. The resulting search space would be
huge even for small rewrite programs. Therefore, many narrowing strategies for limiting the size of
the search space have been proposed [19]. Recently, an optimal narrowing strategy for inductively
sequential rewrite systems (e.g., the rewrite system in Example 1) has been discovered by extending
results from term rewriting to narrowing [3]. In this paper we continue with the same approach for
a more general class of programs, namely those underlied by weakly orthogonal, constructor-based
systems.

Example 2 Consider the following definition of Boolean disjunction known as parallel-or.

X V true — true R4
true VX — true R» (1)
false V false — false Rs

A significant difference of this system w.r.t. to the previous one is the overlapping of the first two
rules. A consequence of the overlapping is that a term of the form t; V {3 may be narrowed to
normal form by narrowing either ¢; or t;, although we do not know of any criterion to make this
choice without look-ahead.

To place our results in a context, we briefly review relevant results about rewriting strategies.
O’Donnell has shown [30] that the parallel outermost strategy is normalizing for almost orthogonal
TRSs, hence for weakly orthogonal, constructor-based TRSs. In general, some reductions performed
by this strategy could be avoided. This opportunity prompted two substantial improvements. Huet
and Lévy have shown [20] that by restricting the class of TRSs to those strongly sequential there
is an effective strategy that performs only unavoidable reductions. Sekar and Ramakrishnan [34]
have refined O’Donnell’s result in a different direction. Within the class of the weakly orthogonal,
constructor-based TRSs, they have shown that it is possible to minimize the set of redexes that
must be reduced in parallel in a term to compute its normal form. The resulting strategy, similar
to Huet and Lévy’s, does not take into account the right hand sides of the TRS’s rules, and it is
optimal among the strategies with this limitation.

Narrowing strategies, to date, mimic rewriting strategies only partially. Huet and Lévy’s approach
has been extended to narrowing for inductively-sequential TRSs with comparable properties. The



resulting strategy, called needed [3], performs only unavoidable steps and turns out to be optimal
also with respect to the computed unifiers. However, narrowing strategies for weakly orthogonal
TRSs depart radically from O’Donnell’s and Sekar and Ramakrishnan’s approaches in that they
are sequential. This departure has a major impact on the operational meaning of completeness of
a strategy.

If a ground term ¢ has a normal form, then both O’Donnell’s and Sekar and Ramakrishnan’s strate-
gies compute the normal form of ¢, the latter generally more efficiently, by means of deterministic,
parallel! steps. Narrowing ¢ is equivalent to rewriting it, since we are assuming that ¢ is ground. All
the existing narrowing strategies that are known to be ground complete narrow ¢ to its normal form
by means of possibly don’t-know non-deterministic, sequential steps. This notion of completeness
is somewhat reductive in the sense that the implementations of these strategies don’t know how to
compute the normal form of ¢ without a severe penalty in efficiency. We guess that this unsatisfying
situation has been tolerated only because of other non-deterministic choices, e.g., the unifier of a
step, occur in narrowing computations. However, this need not be the case for all ground and for
some non-ground terms.

The subject of this paper is a parallel strategy—the first one to be proposed—for narrowing. Our
strategy is sound and complete and can be implemented relatively efficiently by unification. It
always computes the normal form of a ground term, if there exists one, without non-determinism
and thus it is ideal for the implementation of functional logic programming languages. Our strat-
egy narrows a necessary set of positions, which generally contains fewer than all the outermost
narrowable positions of a term. By virtue of its definition, our parallel strategy falls back to the
needed narrowing strategy [3] on the inductively sequential portions of a TRS, and consequently
is optimal on these portions, and falls back to Sekar and Ramakrishnan’s strategy on the ground
terms, and consequently is optimal (in a weaker sense) on the ground portions of a computation,
too.

The paper is organized as follows. Some preliminary definitions and notations are listed in the next
section. Section 3 defines the weakly needed rewriting strategy which is a parallel rewriting strategy
designed for the class of weakly orthogonal, constructor-based TRSs. In Section 4, we present
a sequential narrowing strategy which is a natural extension of needed narrowing to overlapping
TRSs. We define the parallel narrowing strategy in Section 5 and discuss its optimality in Section 6.
Comparison with related work is given in Section 7. Section 8 contains our conclusions.

2 Preliminaries

We recall some key notions and notations about rewriting. We are consistent with the conventions
of [8, 22]. First of all, we fix the notations for terms.

Definition 1 A many-sorted signature ¥ is a pair (.5, 2) where S is a set of sorts and € is a family
of operation sets of the form Q = (Qus|w € 7,5 € §). Let X' = (Xs]s € 5) be an S-sorted,
countably infinite set of variables. Then the set 7(X,X)s of terms of sort s built from ¥ and A’
is the smallest set containing X such that f(t1,...,t,) € 7(X,X)s whenever f € Q). and
L € T(E,X);,. If feQ.,, wewrite f instead of f(). 7(X, X') denotes the set of all terms. The set
of variables occurring in a term ¢ is denoted by Var(t). A term ¢ is called ground term if Var(t) = @.
A term is called linear if it does not contain multiple occurrences of one variable. In the following

!In this context, parallel means that several, possibly different redexes are simultaneously reduced in a single step.



Y} stands for a many-sorted signature.

In practice, most equational logic programs are constructor-based, i.e., symbols, called constructors,
that construct data terms are distinguished from those, called defined functions or operations, that
operate on data terms (see, for instance, the Equational Interpreter [31] and the functional logic

languages ALF [17], BABEL [28], K-LEAF [14], LPG [5], SLOG [12]). Hence we define:

Definition 2 A many-sorted signature ¥ is constructor-based iff the set of operations Q is par-
titioned into two disjoint sets C and D. C is the set of constructors and D is the set of defined
operations. The terms in 7(C,X') are called constructor terms. A term f(ty,...,¢,) (n > 0) is
called pattern if f € D and tq,...,t, are constructor terms. A term f(¢1,...,%,) (n > 0) is called
operation-rooted term (respectively constructor-rooted term) if f € D (respectively f € C). A
constructor-based term rewriting system R is a set of rewrite rules, | — r, such that [ and r have
the same sort, [ is a pattern, and Var(r) C Var(l).

In the rest of this paper we assume that R is a constructor-based term rewriting system. Substitu-
tions are essential to the notions of rewriting and narrowing.

Definition 3 A substitution is a mapping o: X' — 7(X,X) with o(2) € 7(X, X)), for all variables
x € X, such that its domain Dom(c) = {z € X' | o(z) # x} is finite. We frequently identify a
substitution o with the set {z +— o(2) | x € Dom(o)}. We denote by Zm(o) the set of variables
introduced by the substitution o, i.e., Zm(o) = Uyepom(s) Var(o(z)). Substitutions are extended
to morphisms on 7(X,X) by o(f(t1,...,t,)) = f(o(t1),...,0(t,)) for every term f(t1,...,t,). A
substitution o is called (ground) constructor substitution if o(z) is a (ground) constructor term for
all @ € Dom(o). The composition of two substitutions o and 7 is defined by (o o 7)(2) = o(7(2))
for all x € X. We denote by Sub the set of all substitutions and by id the identity substitution.
The restriction o)y of a substitution o to a set V of variables is defined by oy (z) = o(z)ifz € V
and o)y (z) = z if ¢ V. A substitution o is more general than o', denoted by o < o', if there is
a substitution 7 with 0/ = 7o 0. If V' is a set of variables, we write o = o'[V] iff oy = U|’V, and
we write o < o[V] iff there is a substitution 7 with ¢’ = 7 0 o[V]. Two substitutions o and o’ are
independent on a set of variables V iff there exists some z € V such that o(z) and o'(z) are not
unifiable.

A term t' is an instance of t if there is a substitution o with ¢ = o(¢). In this case we write ¢t < ¢'.
A term t' is a variant of t if t < ', ¢/ <t and Var(t) N Var(t') = @. We define a renaming relation
= over terms and substitutions as follows: we write ¢t = ¢’ iff t < ¢/ and ¢’ < ¢; or equivalently, ¢t = ¢/
iff there exists an injective substitution (renaming substitution) § such that Dom(3) C Var(?),
Vo € Dom(B),3(z) € Var(t'), 3(t) = t' and B~1(t') = t. We write o = 0[V] iff there exists an
injective substitution (renaming substitution) 8 such that 3o = 6[V] and o = g~16[V].

A wunifier of two terms s and t is a substitution o with o(s) = o(¢). A unifier o is called most
general (mgu) if o < o' for every other unifier ¢’. Most general unifiers are unique up to variable
renaming. By introducing a total ordering on variables, we can uniquely choose the most general
unifier of two terms. Hence we denote by mgu(s,t) the most general unifier of s and t.

We use in our proofs that a unifier is an idempotent substitution and that any variable in the
domain of a unifier is already contained in one of the terms being unified. Positions, too, are
essential to the notions of rewriting and narrowing.

Definition 4 An occurrence or position is a sequence of positive integers identifying a subterm in
a term. For every term t, the empty sequence, denoted by A, identifies ¢ itself. For every term



of the form f(t1,...,%x), the sequence i - p, where 7 is a positive integer not greater than k and
p is a position, identifies the subterm of #; at p. The subterm of ¢ at p is denoted by ?|, and the
result of replacing t, with s in ¢ is denoted by #[s],. If p and ¢ are positions, we write p - ¢ to
denote the position resulting from the concatenation of the positions p and g, i.e., we overload
the symbol “7 We write p < ¢ if p is above or is a prefix of ¢, i.e., there exists a position ¢
such that ¢ = p- ¢/, and we write p || ¢ if the positions are disjoint, i.e., neither p is prefix
of ¢ nor ¢ is prefix of p. (see [8] for details). We denote by size(t), the size of a term ¢, i.e.,
size(t) = cardinal({p| pis a non-variable position in t}). The size of a substitution o is defined

as s12€(0) = 3 epom(o) St2€(0(2)).
We are now ready to define rewriting.

Definition 5 A reduction step is an application of a rewrite rule to a term, i.e., t —, g s if there
exist a position p, a rewrite rule R = [ — r and a substitution ¢ with #, = o(/) and s = t[a(7)],.
In this case we say t is rewritten (at position p) to s and t), is a reder of t. We will omit the
subscripts p and R if they are clear from the context. A redex ?|, of ¢ is an outermost redex if there

is no redex ¢, of ¢ with ¢ < p. ~ denotes the transitive and reflexive closure of —. < denotes the

symmetric closure of —. A term t is reducible to a term s if t = s. A term ¢ is called irreducible
or in normal form if there is no term s with t — s. A term s is a normal form of t if t is reducible
to the irreducible term s. A term rewriting system R is called terminating if there are no infinite
rewrite derivations w.r.t. K.

The difficulty in applying reductions steps is the determination of the position where the reduction
step is applied. For particular rewrite systems, e.g., the strongly sequential ones [20], it is possible
to determine a single position where a reduction step must be performed in order to compute a
normal form. However, for rewrite systems with overlapping left-hand sides, such a position may
not exist (see [34] for an example), or we may not know how to find it without look-ahead, which
defies the reason we want to find it in the first place. For instance, Example 2 shows a term in
which it is not apparent which of two subterms should be reduced to compute a normal form. Both
terms could be reduced at the same time, therefore, we define reduction multisteps.

Definition 6 Let ¢t —,, ;,_.,, ¢;, for 7 in some set of indices [ = {1,...,n}, be a reduction step
such that for any distinct ¢ and j in I, p; and p; are disjoint. We say that ¢ is reducible to ¢’ in a
multistep, denoted t — ¢, 1, —ri)yie, U F 8 = (oo ((to1(r)]p )[o2(r2)]p,) - - [on(ra)]p,) such that

Vi€ I,0,l;) = tp,. We also call the multistep ¢ — (. 1.—.r;)},c, t @ parallel rewriting step.

Rewriting is computing, i.e., the value of a functional expression is its normal form obtained by
rewriting. Functional logic programs compute with partial information, i.e., a functional expression
may contain logical variables. The goal is to compute values for these variables such that the
expression is evaluable to a particular normal form, e.g., a constructor term [5, 14, 28]. This is
done by narrowing.

Definition 7 A term ¢ is narrowable to a term s if there exist a non-variable position p in ¢ (i.e.,
tp, € X'), a variant I — 7 of a rewrite rule in R with Var(t) N Var(l — r) = @ and a unifier o of
t)p and [ such that s = o(#[r],). In this case we write t ~+, ;. , s. If 0 is a most general unifier

. . . b . . .
of 7|, and [, the narrowing step is called most general. We write tg ~+, t, if there is a narrowing
derivation tg ~p, Ry,01 1 ~py,Ra,0n " “Fpn, Rn,on n With 0 = 0,0 00300;.

Since the instantiation of the variables in the rule [ — r by o is not relevant for the computed result
of a narrowing derivation, we will omit this part of ¢ in the example derivations in this paper.



Example 3 Referring to Example 1,

A+ B o) Ry, {Aes(0),Bro0} (04 0)
and
A+ B o Ry, (Aes(x)) S(X + B)
are narrowing steps of A + B, but only the latter is a most general narrowing step.

Padawitz [32] too distinguishes between narrowing and most general narrowing, but in most papers
narrowing is intended as most general narrowing [19]. Most general narrowing has the advantage
that most general unifiers are uniquely computable, whereas there exist many independent unifiers.
However, as shown in [3], for optimal narrowing strategies it is crucial to drop the requirement for
most general unifiers. This paper follows the same approach.

Narrowing solves equations, i.e., computes values for the variables in an equation such that the
equation becomes true, where an equation is a pair ¢ &~ ¢ of terms of the same sort. Since we do
not require terminating term rewriting systems, normal forms may not exist. Hence, we define the

validity of an equation as a strict equality on terms in the spirit of functional logic languages with
a lazy operational semantics such as K-LFEAF [14] and BABEL [28].

Definition 8 An equation is a pair t &~ t' of terms of the same sort. A substitution ¢ is a solution
for an equation t ~ t' iff o(t) and o(¢') are reducible to a same ground constructor term.

Our definition of solution is weaker than convertibility, i.e., o(t) < o(#'). This is due to the fact
that we are discussing constructor-based, not necessarily terminating rewrite systems.

Equations can also be interpreted as terms by defining the symbol & as a binary operation symbol,
more precisely, one operation symbol for each sort. Therefore all notions for terms, such as substi-
tution, rewriting, narrowing etc., will also be used for equations. The semantics of & is defined by
the following rules, where A is assumed to be a right-associative infix symbol, and ¢ is a constructor
of arity 0 in the first rule and arity » > 0 in the second rule.

cxc — lrue
(X1, X))~ e(Vi,.. Y, — (Xya YA A (X, 2 Y,)
true N X — X

These are the equality rules of a signature. It is easy to see that if a rewrite system is orthogonal,
to be defined shortly, then it remains orthogonal by the addition of these rules. With these rules a
solution of an equation is computed by narrowing it to true—an approach also taken in K-LFEAF
[14] and BABFEL [28]. The following proposition shows the equivalence between reducibility to a
same ground constructor term and reducibility to true using the equality rules.

Proposition 1 [3] Let R be a term rewriting system without rules for ~ and A. Let R’ be the
system obtained by adding the equality rules to R. The following propositions are equivalent for all
terms t and t':

1. t and t' are reducible in R to a same ground constructor term.

2. t =t is reducible in R’ to ‘true’.



The following proposition, which is an obvious consequence of the definition of the equality rules,
is important since our rewriting and narrowing strategies will be defined only for operation-rooted

terms.2

Proposition 2 Let R be a term rewriting system extended by the equality rules and ty — t1 —
ty — «-- be a rewrite derivation w.r.t. R starting with an equation, i.e., to = (t = t'). Then the
root of each reducible term t; in this derivation is the operation symbol =~ or A.

To ensure the confluence of the rewrite relation, we also require weak orthogonality.

Definition 9 A term rewriting system R is orthogonal if for each rule | — r € R the left-hand side
[ is linear (left-linearity) and for each non-variable subterm [, of [ there exists no rule I’ — ' € R
such that [, and I" unify (non-overlapping) (where I’ — 7' is not a variant of / — r in case of p = A).
R is weakly orthogonal if it is left-linear and for each pair of rules [ — 7, — ' € R, non-variable
subterm [}, of [, and mgu o for I}, and I', the terms o({['],) and o(r) are identical. R is almost
orthogonal if it is weakly orthogonal and for each pair of rules [ — r,I"’ — ' € R, the only possible
non-variable subterm of [ that may unify with I’ is [ itself. Since we consider in the following only
Constructor-based, Almost orthogonal, Term rewriting systems, we write CAT for this class.

It is easy to see that for constructor-based systems almost and weak orthogonality are the same
concept, since the left hand sides of the rules are patterns. The difference between these classes
however is significant. The notion of descendant, well-known for orthogonal systems [20], is extended
to almost orthogonal systems without difficulties.

Definition 10 Let A = ¢ —, ;_., t’ be a reduction step of some term ¢ into ¢’ at position u with
rule [ — r. The set of descendants (or residuals) of a position v by A, denoted v\ A, is

%) if u=mw,
v\ A=< {v} if udw,

{u-p’-q such that r, ==} ifv=wu-p-qandl, ==z, where z is a variable.

The set of descendants of a position v by a reduction sequence B is defined by induction as follows

{v} if B is the null derivation,
v\ B = U w\ B" if B= B'B", where B’ is the initial step of B.
wev\B!

A position u of a term t is called needed iff in every reduction sequence of ¢ to a normal form a
descendant of |, is rewritten at its root.

A position uniquely identifies a subterm of a term. The notion of descendant for terms stems
directly from the corresponding notion for positions.

A more intuitive definition of descendant of a position or term is proposed in [23]. Let ¢t = ¢ be
a reduction sequence and s a subterm of ¢. The descendants of s in ¢ are computed as follows:
Underline the root of s and perform the reduction sequence t = ¢'. Then, every subterm of ¢ with
an underlined root is a descendant of s.

2This is for the sake of simplicity. The extension of our strategies to constructor-rooted terms is simple but requires
an additional case distinction, see [1].



Example 4 Consider the operation that doubles its argument by means of an addition. The rules
of addition are in Example 1.

double(X) — X + X Rs

In the following reduction of double(0 + 0) we show, by means of underlining, the descendants of
0+0.

double(0_+ 0) —5 g, (0+0)+(0£0)

The set of descendants of position 1 by the above reduction is {1, 2}.

3 Weakly needed rewriting

For inductively sequential systems there exists a narrowing strategy [3] that performs only steps
that are needed for computing solutions of equations. This strategy may be considered as a natural
extension to narrowing of the sequential rewrite strategy presented in [1]. In this paper we investi-
gate the narrowing relation for the class of weakly orthogonal, constructor-based rewrite systems.
We will propose, in the next two sections, two narrowing strategies for this class of TRSs. Both
strategies are based on a parallel rewrite strategy that we refer to as weakly needed rewriting. This
rewrite strategy has been sketched first in [1] and computes the same reduction sequences of [34],
although the overall approach is quite different. In this section, we reformulate the weakly needed
rewriting strategy and address some of its properties. We begin with some technical definitions.

A definitional tree is a hierarchical structure containing the rules (only the rules’ left-hand sides
really matter) of a defined operation of a rewrite system. Below we recall both the definition of
parallel definitional tree and a few results that will come handy later on in our discussion.

The symbols branch and rule occurring in the next definition, are uninterpreted functions used to
classify the nodes of the tree. A definitional tree can be seen as a partially ordered set of patterns
with some additional constraints.

Definition 11 7 is a partial parallel definitional tree, or ppdt, with pattern 7 iff the depth of 7 is
finite and one of the following cases holds:

T = branch(w,0,7), where 7 is a pattern, o is a list 0,...,04, k > 0, of occurrences of distinct
variables of 7, and 7 is a sequence 7q,...,7; of sequences of ppdts such that for all j in
{1, kT, =T,.. .,’]}kj, Cjise ey Cjy, aTe different constructors of the sort of Tlojs and for
all ¢ in {1,...,k;}, the pattern in the root of 7;, is w[c;(X1,..., X,)]o,, where n is the arity
of ¢, and Xy,..., X, are new variables.

7 = rule(m — r), where 7 — r is a variant of a rule of R.

In the remainder of the paper we will use the notation pattern(7 ) to denote the pattern argument
of a ppdt T.

Let R be a rewrite system. 7 is a parallel definitional tree, abbreviated prdt, of an operation f
iff 7 is a ppdt such that pattern(7) = f(Xy,...,X,), where n is the arity of f and Xy,..., X,
are new distinct variables, and for every rule [ — r of R with [ = f(t1,...,t,) there exists a leaf
rule(l’” — ') of 7 such that [ is a variant of I, and we say that the node rule(!’ — r') represents
the rule [ — r.



X1V X,

7 N

true V Xy false v X5 X4V true X1V false
true false V false true false V false
false false

Figure 1: Pictorial representation of a parallel definitional tree of the operation parallel-or defined in
display (1). The edges connecting a parent to children belonging to the same sequential component
of the tree are joined together.

X1V X, X1V X,
/\ /\
true V Xy false v X5 X4V true X1V false
: | : |
true false V false true false V false
l l
false false

Figure 2: Pictorial representation of the sequential components of the parallel definitional tree of
the operation parallel-or defined in display (1). Each component is a sequential definitional tree
and is obtained by splitting the tree of Fig. 1 at the root.

A (partial) parallel definitional tree 7 is called (partial) definitional tree, abbreviated pdt, iff in
each branch node of 7 the list of occurrences contains exactly one element?

Figure 1 pictorially represents the parallel definitional tree of the rules of the parallel-or shown in
Example 2.

If the lhs of a rule [ — r of a weakly orthogonal rewrite system is subsumed by the lhs of another,
distinct rule, say I’ — ¢/, i.e., I’ < I, then also I’ — ' < 1 — r. Subsumed rules are useless and can
be eliminated from a system without changing the rewrite relation [1, Lemma 18].

If we eliminate all the useless rules from a rewrite system R, then every operation of the resulting
system has a parallel definitional tree.

Theorem 1 [1, Th. 19] If f is an operation of a CAT R, then there exists a parallel definitional
tree T of [ such that the rules represented by T are all and only the useful rules defining f in R.

The proof of Theorem 1 is constructive, based on an algorithm that, for example, on input the
rules of display 1 generates the tree shown in Fig. 1.



From now on, we assume that every rewrite system that we are dealing with has no useless rules.

A parallel definitional tree may be decomposed into a set of sequential components each of which is
a (sequential) definitional tree. The sequential components of a ppdt 7 are obtained by the inverse
of the “collapsing” operation discussed in [1].

Definition 12 If 7 = rule(l — r), then 7 itself is the only sequential component of 7. If
T = branch(r,(o1,...,01),(T1,...,Tx)), for some k > 0, then branch(w,o0;,7") is a sequential
component of T for all 7 in 1,...,k and for all sequential components 7’ of ’j}

Below, we recall the definition of needed rewriting. Needed rewriting is a strategy for inductively
sequential systems, i.e., rewrite systems where each function has a definitional tree. Loosely speak-
ing, the rewriting (and narrowing) strategies presented in this note are obtained by breaking up a
CAT into its inductively sequential components, applying needed rewriting (or narrowing) to each
component, and combining together the results of each application.

The needed rewriting strategy is implemented by a function, ¢, that takes two arguments, an
operation-rooted term, ¢, and a definitional tree, 7, of the root of t. Throughout an interleaved
descent down both t and 7, ¢ computes, whenever possible, a position p and a rule R such that ¢
is reducible at p by rule R.

In the following, < denotes the Noetherian ordering on 7(X,X') x P(X) (where P(X) is the set of
all partial definitional trees over the signature ¥) defined by: (#1,77) < (f2,73) if and only if either:

(i) t1 has fewer occurrences of defined operation symbols than ¢ or (i¢) {1 =t and 77 is a proper
subtree of 75.

Definition 13 The partial function ¢ takes two arguments, an operation-rooted term t and a
partial definitional tree 7 such that pattern(7) < t. If ¢(¢,7) is defined, it yields a pair, (p, R),
where p is a position of ¢t and R is a rewrite rule applicable to ¢ at p. The function ¢ is defined by
induction on < as follows.

(A R) if 7 = rule(R);
o(t,7;) it T = branch(r,0,71,...,7;) and pattern(7Z;) < t, for some i;
o(t,T) = (o-p,R) if T =branch(r,0,T1,...,T}),

{|, is operation-rooted,
7" is a definitional tree of the root of ¢|,, and

@(t|ov T/) = (pv R)

In order to extend the strategy ¢ to CATs, we apply ¢ to all the sequential components of a prdt
and combine the results together. The resulting strategy, denoted ¢, is defined as follows.

Definition 14 The function ¢ takes two arguments, an operation-rooted term ¢ and a ppdt 7 such
that pattern(7 ) < t. The function ¢ yields a finite set of pairs, {(p;, R;)}ic1, where for all ¢ in 1,
p; is a position of ¢ and R; is a rewrite rule. Thus, let ¢ be a term, 7 be a ppdt in the domain of
@, ¢ the function defined in Definition 13, and

S ={(p,R)| T"is a sequential component of 7,¢(t,7" ) = (p, R)}

®This corresponds to the definition given in [3] except that we ignore the exempt nodes.
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We partition S into two disjoint sets 57 and S such that, for all distinct pairs (p1, R1), (p2, R2) € 51,
p1 and py are disjoint and for all (p, R) € 53 there is some (p/, R') € Sy with p’ < p. Then
P(t,T) = 51, i.e., ¢(t,7) contains all pairs computed by the sequential components of 7 with
disjoint outermost positions. This definition does not uniquely characterize Sy if (p, R1),(p, R2) € S
with Ry # Ry. However, we can always select a uniquely defined subset by introducing a total
ordering on rewrite system’s rules. Since this does not influence the results of reduction multisteps
(due to the triviality of overlapping), a stricter definition is unnecessary.

Example 5 Consider the rewrite system of Example 2 and the term ¢ = (true V (true V true)) v
(X V (false V false). The rewrite derivation computed by ¢ is

t = (1,Rs),(2:2,Ry) lrue V (X V false) —p g,y true
Sometimes we abbreviate this notation as follows
t £ true v (X V false) 2 true

We are going to prove that first, unless we perform at least one reduction step computed by ¢ we
cannot obtain the normal form of an equation and second, that if we perform all the steps computed
by @ we do obtain the normal form (whenever it exists) of an equation.

Next, we lay the foundations for proving these key results. We introduce some technical definitions
to simplify the statements that follow and prove a few facts about the defined concepts. We begin
with arbitrary reductions.

Definition 15 Let R be a CAT and t a term. We call arbitrary reduction of t a reduction of ¢ by
arule [ — r, where [ is the left-hand side of a rule of R and r is any term. We write [ <7 ¢ iff there
exists some term ¢’ that is both a descendant of ¢ w.r.t. arbitrary reduction and an instance of /.

An arbitrary reduction is an abstraction used to capture the impossibility of reducing a term by
certain rules, as shown by the next example.

Example 6 Consider the following rewrite rules defining the usual operation “less than or equal
to” on the naturals

0< X — true R4
s(X) <0 — false R» (2)
s(X)<s(Y) = X<V Rs

and the term ¢ = s(0) < (0 + 0). Let [; and /3 denote the left-hand sides of Ry and Ra. It is
immediate to verify that ¢ is not a redex, and that l; €+ t and I3 <2 t. Thus, no descendant of ¢
will ever be reduced by Ry, whereas we cannot exclude that some descendant of ¢ might be reduced
by Rs. The latter claim holds for R3 too.

Lemma 1 Let R be a CAT, t an operation-rooted term, and T a sequential component of a parallel
definitional tree of the root of t. Let © be the pattern of a subtree T' of T such that # <t. Ifl — 1
is a rule of R contained in a leaf of T, but not represented by a leaf of T', then I £+ t.

11



Proof The proof is by induction on the depth of 7/ in 7. The base case vacuously hold. Let
branch(x’, 0,7y, ...,T;) be the parent of 7’. For some i in 1,...,k, 7; = 7’. The symbol of 7 at
position o is a constructor, say ¢. The term ¢ has the same constructor at position o. If j # ¢, then
the pattern of 7; as well as the left-hand side of any rule I” — r’ represented by a leaf of 7; have
a constructor different from ¢ at position o, and consequently I’ £» t. Thus, the claim stems from
the induction hypothesis. a

Lemma 1 justifies the definition of . The second case of Definition 13 eliminates rules that cannot
be applied at the root of a term t. ¢ repeats this computation until either it finds an applicable
rule (case 1 of the definition) or it finds necessary to reduce a proper subterm of ¢ (case 3).

The next lemma explains why the positions computed by ¢ are relevant—unless a reduction is
performed at one of these positions, the (constructor) normal form of a term cannot be computed.

Definition 16 Let R be a CAT, ¢ an operation-rooted term, and 7 a parallel definitional tree of
the root of t. We say that a position p is computed by ¢ (on t and 7) iff (p, R) is in ¢(¢,7) for
some rule R in R. We say that a redex ¢, is computed by ¢ (on t and T) iff (p, R) is in (¢, 7) for
some rule R in K.

Lemma 2 Let R be a CAT, t an operation-rooted term, and T a parallel definitional tree of the
root of t. No descendant of t can be reduced to a constructor-rooted term unless a descendant of 1,
s reduced to a constructor-rooted term for some position p computed by ¢.

Proof 1Iftis aredex, then A is the only position computed by ¢. In almost orthogonal systems
the redex patterns of a term overlap at the root or not at all. Thus, internal reductions do not
change both the redexness and the root of ¢t and the claim is immediately verified. If ¢ is not a
redex, we prove the claim by structural induction on ¢. Base case: the claim holds vacuously, since
t is an irreducible constant. Inductive case: let f be the root of ¢, and let {¢;};c; be the set of
positions computed by @, where I is the set of indices. For all ¢ € I, let ¢; = 0;-p;, where o; and
pi are uniquely determined by the third case of Definition 13. Observe that the root of ¢, is a
defined operation. Observe also that every rule [ — r defining f, that might reduce a descendant
of t is, by Lemma 1, represented by a leaf of the node of 7 containing o;. In the left-hand side of
any such rule, the symbol at position o; is a constructor. Thus, no descendant of ¢ can be reduced
to a constructor-rooted term unless a descendant of 7|,, is reduced to a constructor-rooted term for
at least one ¢ in I. By the induction hypothesis, for all ¢ in I, no descendant of ¢|,, can be reduced
to a constructor-rooted term unless a descendant of ?|,,,
for some p’ computed by ¢ on t)o; and 7;, where 7; is a definitional tree of the root of ¢|,.. From the
definition of ¢, 0;-p’ = 0;-p;, for some j in I. Since Llos|p' = jo;pr» the claim holds by transitivity.

O

¢ 1s reduced to a constructor-rooted term

The above result shows the necessity of reducing some position computed by ¢, though it may not
be obvious which one, for computing the normal form of a term. The next lemma is the foundation
for showing that this set of positions is in some sense complete. If we reduce all the positions
computed by ¢, we make some progress toward the computation of normal forms. We measure this
notion of progress by the cost function, cost, on coinitial multiderivations defined in [3, Def. 8].
Informally, we measure the cost of a multistep of a derivation of a term ¢ as if ¢ were represented
as a graph [4, 36].

We denote with a semicolon the concatenation of rewriting or narrowing steps and/or derivations.

12



Lemma 3 Let R be a CAT, ty a term, and tq 4 tq 4 ty... Ay t, a multiderivation normalizing
to. Let B be a set of disjoint redexes in tg such that in any derivation of tg to normal form a

. . B . . . .
residual of a redex of B is contracted and let tg Z ug be a multiderivation such that in ug there
are no descendants of the redexes of B. There exists a multiderivation C' normalizing ug such that
cost(Bo; C') — cost(By) < cost(A).

Proof Define, by induction on n, the multiderivation C' = Cy;...; ), and the family of multi-
derivations By, iin 1,...,n, as follows: C; = A4; \ B;_1 and B; = B;_1 \ A; (see diagram below)

Ay Ay An
to —_— tl —_— s —— tn
By By B,
1 Cy Cy
Ug— Uy ——— -+ —— U,

and let ¢, B;i u;, 0 < 7 < n. Since i, is a normal form, by the commutativity of the diagram, B,
contracts an empty set of redexes and u, = t,. We now prove the claim about the cost of the
derivations. For every i in 1,...,n, cost(C;) < cost(A;), since any redex contracted by C; is the
descendant by B;_; of a redex contracted by A;. By the assumption on B, there exists a step A4;,
7in 1,...,n, that contracts some descendant of some redex, say r, of B. However, no descendant
of r is contracted in (), since no descendant of r occurs in ug, and consequently in u;_y, for ¢ in
1,...,n. Thus, cost(C}) < cost(A;) and the claim follows. ]

We now use the above results to explore some relationships between ¢ and normalizing strategies

for CATs.

Theorem 2 Let R be a CAT extended by the equality rules, and t an equation t' ~ t" which is
reducible to the constant ‘true’.

1. [Necessity] Every strategy normalizing t must reduce a descendant of t at some position com-
puted by ¢.

2. [Sufficiency] The strategy S that reduces the descendants of the redexes computed in t by ¢ is

normalizing.

Proof

1. [Necessity] The claim stems by strengthening the antecendent and weakening the consequent
of Lemma 2.

2. [Sufficiency] Suppose that & were not normalizing and that Bjg; B2o;. .. were an infinite S
derivation of t. Let fpg = t and Ag1; Aog;...; Apn be a derivation normalizing t. Consider
the following diagram, constructed as in Lemma 3, and, for all ¢, let A; denote the derivation

13



Ay Aoy A

Aoy Aoz Aoy,
loo— lor—— -+ —— 1o,
Bio Bn Bin
An Az Ay
t10H 11— - Htln
Bso Ban Ban

For every i, there exists a d(?) such that every redex computed by ¢ in t;0 has no descendant
in #3(;),0- By the necessity claim, one redex in this set is reduced in A;, and consequently
cost(Bio; .- .3 Bygiy,0i Aagiy) — cost(Bios - . .3 By o) < cost(A;). By considering the horizon-

tal derivations at indices 0,d(0),d*(0),... one would obtain an infinite sequence of strictly
decreasing non-negative integers, which is impossible. Thus, Big; Bao;... is finite and & is
normalizing. O

The proof of the sufficiency claim also shows that & is hypernormalizing. The order in which
the redexes computed by ¢ are reduced and whether other reduction are interspersed with the
reductions of these redexes are irrelevant factors as far as computing the normal form of ¢ is
concerned.

4 Weakly needed narrowing

In this section we study our first narrowing strategy for weakly orthogonal, constructor-based TRSs.
This strategy is sequential and could be seen as a natural extension to overlapping TRSs of needed
narrowing [3].

In order to define the narrowing steps starting from a term, we use the sequential components of a
parallel definitional tree. Loosely speaking, we apply the function A defined in [3, Def. 6] to all the
sequential components of a prdt and combine the results together. Since the function A computes
optimal narrowing derivations for inductively sequential programs (these are programs where each
parallel definitional tree has exactly one sequential component), our strategy is a conservative
extension of an optimal strategy.

Similar to rewriting, we establish first that the elimination of useless rules from a weakly orthogonal
TRS does not change the solutions of equations.

Lemma 4 If R is a weakly orthogonal rewrite system and R’ is obtained from R by removing any
useless rule, then, for every equation e, o is a solution of € in R if and only if o is a solution of e

in R

Proof Since any rewrite relation is closed under substitution, removing useless rules from R does
not change the rewrite relation as well as the congruence it generates. So, the congruences &g
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and <ps are the same. Therefore, a substitution o is a solution of an equation e w.r.t. R if and
only if & is a solution of e w.r.t. R’. a

Before defining our sequential narrowing strategy, we recall the definition of the function A (in
contrast to [3], here we omit the failure elements with the symbol “?”). A takes two arguments, an
operation-rooted term ¢ and a partial definitional tree 7 of the root of ¢, and non-deterministically
returns a triple, (p,{ — r,0), where pis a position of ¢,/ — r is a rule of R and o is a substitution.
If (p,l = r,0) € A(t,T), then t ~, 1_, , o(t[r],) is a narrowing step.

Definition 17 The function A takes two arguments, an operation-rooted term t and a partial
definitional tree 7 such that pattern(7) and t unify. The function A yields a set of triples of the
form (p, R, o), where p is a position of ¢, R is a rewrite rule and o is a unifier of pattern(7) and ¢.
Thus, let ¢ be a term and 7 a partial definitional tree in the domain of A. The function A is defined
to yield least sets of triples satisfying the following conditions (note that we use an induction on <
similarly to Definition 13).

{(A L= rymgu(t, )} if T = rule(l — r);

AL, T;) if 7 = branch(r,0,Th,...,7;),
t and pattern(7;) unify, for some ¢;

At,T) D {(o-p,R,007)} if 7 = branch(r,0,Th,...,7;),

{|, is operation-rooted,
T = mgu(t, ),
7' is a definitional tree of the root of 7(¢,) , and
(pv R, U) € )‘(T(t|o)7 T/)

As in proof procedures for logic programming, we have to apply variants of the rewrite rules with
fresh variables to the current term. Therefore, we assume in the following that the (parallel)
definitional trees always contain new variables if they are used in a narrowing step.

Now we are ready to define our sequential narrowing strategy A.

Definition 18 The function A takes two arguments, an operation-rooted term ¢ and a ppdt T such
that pattern(7 ) and ¢ unify. Let 7q,...,7, be the sequential components of the ppdt 7. Then, the
function A yields a set of triples of the form (p, R, o) where p is a position, R is a rewrite rule and
o is a substitution, defined by

A, T) = Ul A, Th)
We call weakly needed step any narrowing step computed by A.

Example 7 We compute the set of weakly needed narrowing steps of the term ¢ = X VY. Let T
denote the parallel definitional tree of “V” pictorially represented in Fig. 1. Let 7; and 7. be the
sequential components of 7 pictorially represented in the left and right sides respectively of Fig. 2.
Using Definition 17 we obtain

At, 7)) = {(A, Re, {X — true}), (A, Rs, {Y — false, X — false})}
At, 7)) = {(A, Ry, {Y — true}), (A, Rs, {Y — false, X — false})}
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According to the previous definition, A(t,7) is the following set:
{(A, R, { X — true}), (A, Ry, {Y — true}), (A, Rs, {Y — false, X — false})}
The resulting weakly needed narrowing steps are:

l A, Ro, { X —true} true
th,Rl,{Yb—w‘rue} true
l ~ A, Ra, { X —false,Y —false} false

Now consider the additional rule
fla) — true R4

and the term ¢/ = f(X)V f(X). Then the results w.r.t. the sequential components 7; and 7, are

{(1, R, {X = a})}
{(2,Ra, {X = a})}

(', 71)

A
At T,)

According to the previous definition, A(#',7) is
{(17 Ra, {X = a})v (27 Ry, {X = a})}

which specifies the following narrowing steps

t ~*1, Ry, {Xea) tTUE V fla)
' ~9 Ry, (X ea) fl@) V true

Theorem 3 (Soundness of weakly needed narrowing) Let R be a CAT extended by the equality
rules. If t = t' <5, true is a narrowing derivation computed by X, then o is a solution for t ~ t'.

Proof The claim can be proved as usual (see, e.g., [2, Theorem 2]). a

Next we prove the completeness of narrowing with A. For this purpose, we will show a strong
relation between the functions ¢ and A. First, we show a relationship between these functions
w.r.t. the sequential components of the parallel definitional trees.

Lemma 5 Let R be a CAT. Let t be an operation-rooted term, T be a sequential component of a
parallel definitional tree of the root of t and o be a constructor substitution. If ¢(o(t),7) = (p, R),
then there exists a substitution 8 such that

1. (p,R,0) € Xt,T)
2. 0 < o[Var(t)]

Proof The proof is by Noetherian induction on <. We consider the cases of the definition of ¢.

Base case: consider (¢,7) where t is an operation-rooted term and 7 = rule(l — r), for some rule
I — r. Hence (p,R) = (A,l — r) and [ < o(t). This implies the existence of a substitution
¢ with ¢(I) = o(t). Hence [ and t are unifiable (we assume that [ and ¢ are variable disjoint,
otherwise take a new variant of the parallel definitional tree) and there exists a most general

unifier § of [ and ¢ with § < o[Var(t)]. By the definition of A, (p, R,0) € A(t,7T).
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Induction step: consider (¢,7) where ¢ is an operation-rooted
term and 7 = branch(w, 0,71, ...,7}), for some pattern «, position o, and pdts T1,..., 7, for
some k > 0. We consider the three subcases of the definition of ¢ for branch nodes.

a(t)|, is constructor-rooted.

By the definition of ¢ and pdt, there exists some 7 in {1,...k} such that pattern(7;) < o(t)
and p(o(t),T) = p(o(t),T;). Since p(o(t),T) = (p, R), by the induction hypothesis, there
exists a substitution @ such that (p, R,8) € A(t,7;) and § < o[Var(t)]. By the definition
of A (note that pattern(7;) and t unify), (p, R,8) € A\(t, 7).
a(t)|, is operation-rooted.
By the definition of ¢, 7 < o(t). o(t) and pattern(Z;) do not unify for each ¢ in {1,...k}
since (1)), is operation-rooted but pattern(7;) has a constructor symbol at position o.
Let 7' be a definitional tree of the root of o(t), and @(o(t),,7") = (p', k). By the
definition of ¢, (p, R) = (o-p/, R'). Since m < o(t), there exists a most general unifier 7
of m and o(t) with 7 < o[Var(t)] (we assume that 7 and ¢ are variable disjoint, otherwise
take a new variant of the definitional tree). Tlvar(t) 18 @ constructor substitution since
7 is a linear pattern and ¢ is operation-rooted. Let ¢’ be a constructor substitution
such that o’ o 7 = o[Var(t)]. Since o is a constructor substitution, o is a position of ¢,
and 7, is operation-rooted. Since o is different from the root position, ¢ is operation-
rooted, and 7T)y,,(y) is a constructor substitution, 7(t),) has fewer occurrences of defined
operation symbols than ¢. Hence we can apply the induction hypothesis to (7(¢,),7")
and o'. If o(a'(7(1),)), 7") = (p', k'), there exists a substitution 6 such that (p', R',8') €
M7(t),),7") and 0 < o'[Var(7(t|,))]. By the definition of A, (o-p/, R/, 8'o7) € A(¢,7), i.e.,
(p, R, 0 07) € A(t,T). 0" < o'[Var(r(t),))] implies 8 < o'[Var(7(t))] since 8 instantiates
only variables from 7(#|,) and new variables of the definitional tree. Hence # o1 <
o' o T[Var(t)] which is equivalent to §' o 7 < o[Var(t)].
a(t)|, is a variable z.

This case cannot occur since ¢(o(t),7) is supposed to be defined. 0

The following lemma, shows how to lift a single reduction step using @ to a narrowing step using A.

Lemma 6 Let R be a CAT. Let 0 be a constructor substitution, V be a finite set of variables, t
be an operation-rooted term with Var(t) C V', and T be a parallel definitional tree of the root of
t. If o(t) —, r s with (p,R) € @(o(t),T), then there exist a narrowing step t ~, p g t' and a
constructor substitution o' such that (p, R,0) € A(t,T), o'(t') = s and o' 0 6 = o[V].

Proof Let R bel — r. Since o(t) —, g s, there exists a substitution p such that p(l) = o(t),
= o(t,). Let ¢ = poo (we assume Dom(p) C Var(R) and R is a rule with new variables not
occurring in V' and the image of o, otherwise take an appropriate variant of R). By definition
of ¢, there exists a sequential component 7’ of 7 with (p, R) = ¢(o(t), 7). By Lemma 5, there
is a triple (p,R,0) € A(t,7') with 8 < ¢[Var(t)]. Hence (p,R,0) € At,7) and there exists
o’ such that ¢’/ 0 0 = ¢[V] (wl.o.g. we assume that 6(z) = z for all 2 € V — Var(t)). This

implies 0’ 0 § = o[V] by definition of ¢. o is a constructor substitution since ¢y is. Finally,

o'(t') = '(0(1[r],)) = o(t[rly) = a(D)]p(r)], = s. O

The following lemma shows that for each term ¢ which has a normal form, there exists a reduction
sequence that normalizes ¢ by reducing at each step one position computed by .
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Lemma 7 Let R be a CAT extended by the equality rules and t an equation t' ~ 1" that is reducible
to the constant ‘true’. Then, there exists a derivation

t=lo —(p,R1) 11 " “(pn,Ra) ln

such that Vi € {1,...,n}, (pi, R;) € @(t;i—1,Ti—1) where T,_1 is a parallel definitional tree of the root
of ti_1, and t, is the constant ‘true’.

Proof  The proof is based on a setup identical to that of Theorem 2. Let tg9 = t, let
Ao1; Aoz .. .5 Aon be a derivation normalizing ¢, and, for all ¢, let A; denote the derivation
Airs Aig; .. .5 Ajn. By point 1 of Theorem 2, there exists a minimum index j such that {o; —(, g
to,;j+1 where (p, R) is computed by ¢ on tgo and p’ is a descendant of p. We define Byg as the
step too —(p,r) t10 and likewise Bag, B3, ... Observe that cost(Bio; A1) — cost(Big) < cost(Ag),
since Ay does not reduce any descendant of p in . Similar to Theorem 2, for all ¢ > 0,
cost(Bio;. . .; Bio; A;) — cost(Bio;...; Bio) < cost(A;_1). If Bio; Bzo;... were infinite, one would
obtain an infinite sequence of strictly decreasing non-negative integers, which is impossible. a

Now we can prove the completeness of weakly needed narrowing. In fact we show the completeness
w.r.t. constructor substitutions as solutions of equations. This is not a limitation in practice,
since more general solutions would contain unevaluated or undefined expressions. This is not a
limitation with respect to related work, since most general narrowing is known to be complete only
for irreducible solutions [21], and lazy narrowing is complete only for constructor substitutions
[14, 28]. The following theorem states the completeness of our strategy A.

Theorem 4 (Completeness of weakly needed narrowing) Let R be a CAT extended by the equality
rules. Let o be a constructor substitution that is a solution of an equation t =~ t' and V be a finite set
of variables containing Var(t) U Var(t'). Then there exists a narrowing derivation t ~ t' ~,1 true
computed by A such that o' < o[V].

Proof By Definition 8 and Proposition 1, o(t ~ t') is reducible to true. By Lemma 7, there exists
a derivation

ot 1) =50 = R) 51 —(p2Ry) " (pn.Rn) Sn (3)

such that (p;, R;) € @(si—1,7;-1), where 7;_1 is a parallel definitional tree of the root of ;_1,
for i € {1,...,n}, and s, is the constant true. By Proposition 2, s; is operation-rooted, for
i€{l,...,n—1}. We prove by induction on n, the length of the derivation (3), the existence of a
corresponding narrowing derivation

1~ t/ = to M(p1,R1,91) tl oo v(pn,Rnﬁn) true (4)
such that for i € {1,...,n},(p;, R, 0;) € Mti—1,T—1) and 6, 0 ---06; < a[V].

Base case: Consider n = 1. In this case, derivation (3) is reduced to one step rewriting sq —(p1,R1)
true. By Lemma 6, there exists a narrowing step to ~+(,, R, ¢,) true with (p1, R1,601) € A(to, 7o)
and 6 < o[V].

Induction step: Consider n > 1. By Lemma 6 applied to the first reduction step, there exists a
narrowing step to ~,, g, ¢,) t1 and a constructor substitution o’ with (p1, R1,61) € A(to, 7o),
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o'oby =o[V] and o'(t1) = s1. Let Vi = (V — Dom(6,)) UZm(6y). By induction hypothesis
applied to Vi, o’ and the derivation

S1 7 (p2,Rz) "7 T(pn,Rn) Sn oo

there exists a narrowing derivation

1~ (2, Rasb) 1277~ (pp R ) TTUE 5)

such that (p;, R;,0;) € A(t;_1,T;_1) fori € {2,...,n}and 8, 0---06; < o’[V;]. Combining the
first narrowing step o ~+(,, g, ¢,) {1 With derivation (5), we obtain the required derivation (4)
with 6, 0---06; < o[V]since 0’ 0 6y = o[V]. 0

If we consider again the term ¢’ in Example 7, we can observe that, to narrow ¢’ to true, the strategy
A computes four distinct derivations with the same substitution {X — a}, i.e.,

t ~1 Ry, {Xroa)} LTUE V fla) ~A Ry, id LTue
t ~1 Ry, {Xra)} lTUEV f(a) ~>g Ry, id true V true ~p g, 4 true
t ~+2. Ry, {Xioa} fla)V true ~FA Ry, id LTuE
t ~+9 Ry, { X —a) fla) V true ~1 R, i true V true ~+p g, ;q true

In order to avoid such redundant computations we propose a parallel narrowing strategy for weakly
orthogonal, constructor-based TRSs in the next section.

5 Parallel Narrowing

Classic narrowing may be defined in two steps as follows: ¢ narrows to ¢’ iff there exists a substitution
o such that the term o(t) rewrites to t’ using some rewrite rule [ — r. It is clear from this informal
definition that the substitution ¢ is a unifier of the left-hand side [ and the subterm of ¢ that
has been narrowed. From this informal definition, narrowing differs from rewriting only by the
instantiation step. Now, if we generalize this idea to parallel rewriting, i.e., if we replace the
rewriting step, in the narrowing relation, by a parallel rewriting step, we obtain a new relation
that we call parallel narrowing. The definition below formalizes the idea that we just sketched and
defines a parallel narrowing step as an instantiation followed by a parallel rewriting step.

Definition 19 Let R be a term rewriting system, S a parallel rewriting strategy, ¢ a term and o
a substitution such that o(t) is reducible. We define parallel narrowing as a binary relation over

S S
terms, denoted by t Az, t/, and defined as follows: t ~=, ' iff (%) Sy

Given a parallel rewriting strategy, the definition of the induced parallel narrowing relation does
not specify how narrowing substitutions are computed. This is the réle of a parallel narrowing
strateqy.

Definition 20 Let R be a term rewriting system, S a parallel rewriting strategy. A parallel
narrowing strateqy Ns is a function from terms to sets of substitutions, N5 : 7(X, X) — 25, A

. - . . S
substitution o is in Ng(?) only if there exists a term t' such that ¢ A=, /. We denote the parallel

N,
narrowing relation w.r.t. strategy Ns by A3
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Throughout this section parallel narrowing is defined upon the parallel rewriting strategy ¢. Below
we define the parallel narrowing strategy A. There are two main differences w.r.t. weakly needed
narrowing: parallel narrowing may disregard some unifiers computed by weakly needed narrowing,
and at every narrowing step a necessary set of redexes of the instantiated term is reduced in parallel.

Definition 21 Let R be a CAT, ¢t an operation-rooted term, 7 a parallel definitional tree of the
root of . We define the parallel narrowing strategy A as follows?

)‘(th) = {U|Var(t) modulo renaming | 3 (pv R,O’) S 5‘(th)7 v (qulve) € E‘(th)v
(0 < oVar(t)] and 8 # id[Var(t)] = o = 0[Var(t)]) and
(0 = id[Var(t)] and ¢ < p = Opyer() = 1d}-

Intuitively, a substitution ¢ belongs to A(t,7T) iff o is either the identity or a minimal substitution
(w.r.t. <) among the non-identity substitutions computed by A(¢,7). Furthermore, whenever two
triples (p, R,id) and (g, R', ) belong to A(t, T) with p being a prefix of ¢ (p < ¢), the substitution
6 is not considered by the strategy A. Note that instantiations and positions eliminated by A will
eventually come back later in a derivation, if they are necessary for computing the constructor
normal form of a term.

Example 8 Consider the following rewrite rules:

J(X,5(Y)) — 5(0) Ry
f(O,Y) — 8(0) R2
h(s(s(X))) — s(0) Rs
9(X) — s(g(X)) Ry

and the term ¢ = f(g(X), f(MY), f(0,h(s(Y))))). One can easily verify that for some parallel
definitional tree 7°

Mt T) = {(1, Ry, id), (21, Ry, {Y — s(s(¥1))}), (22, R, id), (22:2, R3, {V = s(¥3)})}

N1, T) = {id}

The unifier {Y — s(s(Y1))} is discarded since it is an instance of {Y — s(Y2)}. The unifier
{Y + s(Y2)} is discarded since its application would create a non-outermost redex.

Proposition 3 (Soundness of the strategy j\) Let R be a CAT extended by the equality rules. The
substitution 8, o - -- 0 01 deduced from a derivation computed by A

;A b
t~t Az -+ Azg, true
is a solution of the equation t ~ t'.

Proof LetT; be the ¢-th term in the considered parallel narrowing derivation. Let P; be the set of
positions of subterms that have been reduced at the i-th step in the considered parallel narrowing
derivation, i.e., P, = {p| 3(p, R) € ¢(0;(T;-1),7;—1)} where 7;_1 is a prdt of the root of T;_1. Then
it is easy to see that we obtain the following parallel rewrite derivation

0,000 (t=t)—p - —p, true

*The set notation {0var(ry modulo renaming | - --} means that this set must not contain two substitutions o1, o2
with o1 = o2[Var(t)].
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where the relation ¢ —p ¢’ means that the term ¢’ is obtained from ¢ by rewriting in parallel the
subterms of ¢ at the positions in P. a

In order to prove the completeness of the strategy j\, we need some technical results that we
formulate below.

Proposition 4 Let R be a CAT, t an operation-rooted term, p a position of t, R a rewrite rule in
R, 0 a constructor substitution and T a sequential component of a prdt of the root of t such that

o(t,T)= (p,R). Then p(o(t),7) = (p, R).
Proof The proof is by Noetherian induction on <. We consider the cases of the definition of ¢.

Base case: consider (t,7) where ¢ is an operation-rooted term and 7 = rule(w, R') for some pattern
7 and rule R'. In this case ¢(t,7) = (p, R) = (A, R') and @ <t. As 7w < o(t) we deduce that

plo(1),T) = (p, R) = (A, R).

Induction step: consider (¢,7) where ¢ is an operation-rooted
term and 7 = branch(w, 0,71, ...,7}), for some pattern «, position o, and pdts T1,..., 7, for
some k > 0. We consider the two subcases of the definition of ¢ for branch nodes.

o is constructor-rooted.
By the definition of pdt, there exists some 7 in {1,...,k} such that pattern(7;) < t.
By transitivity of <, we also have pattern(7;) < o(t). Then, ¢(t,7) = ¢(t,7;) and
p(o(t),T) = ¢(o(t),7;). By induction hypothesis, ¢(t,7;) = ¢(o(t),7;) and thus
p(t,T) = ¢(a(t), 7).

{|, is operation-rooted.
Let 77 be a definitional tree of the root of #|,, p(t,,7") = (p1, R1) and @(a(t),,T') =
(p2, R2). By the definition of ¢, ¢(t,7) = (0 - p1, R1) and ¢(c(t),7) = (0 - p2, R2). By
induction hypothesis, @(o(),,7") = @(t}5,T'), i-e., (p1, R1) = (p2, Ra). Thus, ¢(t,7) =
pla(t), 7). 0

Proposition 5 Let R be a CAT, t an operation-rooted term, o a constructor substitution and T
a parallel definitional tree of the root of t such that for all (p, R,0) € A(t,7T), either O\var(ty = id or
8 £ o[Var(t)]. Then, ¢(t,T) = @(o(t),T).

Proof Let 7’ be a sequential component of 7. We show that ¢(t,7") = ¢(o(t),7"). For that
we use the following two implications: (p,R) = @(t,7') = (p,R) = ¢(o(t),7") and (p,R) =
w(o(t),T") = (p, R) = ¢(t,T"). The first implication has been proven in Proposition 4. To prove
the second implication, let us assume that (p, R) = ¢(o(t),7"). Then, by Lemma 5, there exists
a triple (p, R,0) in A(t,7") such that § < o[Var(t)]. Thus, from the hypothesis, we infer that
Ovar(r) = id. Therefore, 8(1) = ¢ and consequently ¢(t,7") = ¢(o(t),7") = (p, R). ]

Proposition 6 Let R be a CAT, t an operation-rooted term in normal form, T a parallel defini-
tional tree of the root of , o a constructor substitution and (p, R) a pair in ¢(o(t),T). Then, there
exists a substitution 8 such that (p, R,0) € \(1,7T), 0 < o[Var(t)] and size(Ojya,()) # 0.

Proof (p,R) € ¢(o(t),T) implies the existence of a sequential component of 7, say 77, such that
(p, R) = ¢(0(1),7"). From Lemma 5, there exists a substitution € such that
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1. (p,R,0) € \M(t,T') and thus (p, R,0) € A(t,7) and
2. 0 < o[Var(t)].

To complete the proof, we show by contradiction that 5226(0|VM ) # 0. Assume that
5226(0|Vw( )) = 0. Then, the substitution 6y,,;) maps variables to Varlables Since the left-
hand sides of R are linear, we deduce that o(t,7") = ¢(6(t),7"). Thus, ¢(t,7") = (p, R) since
©(0(t),T") = (p, R). This contradicts the assumption that ¢ is in normal form, i.e., p(¢,7") is not
defined. a

Lemma 8 Let R be a CAT extended by the equality rules, to a term® headed either by the operation
r or A and Ty a parallel definitional tree of the root of tg. Let 0g be a ground constructor substitution

such that size(og) # 0 and oo(ty) reduces to the constructor term ‘true’. Then, there exists a 4.
deriwation

7 7 7
o =t — -+ — 1,

such that n > 0 and either:

e i, is the constructor term true’, or

o {(p,R,0)C Nt,,T,) | 0 < oo[Var(t,)] and 5226(0|VM (tn) ) #£0} # .

Proof Let us consider the Z-derivation issued from to.
to Lty Lol (6)
This derivation is either finite or not.

Case where derivation (6) is finite: Let ¢, be the last element of derivation (6). ¢, is the normal
form of ¢y since ¢ is normalizing. As og(fp) reduces to true and R is confluent, we deduce
that either ¢, is the constant true or og(t,,) reduces to true. In the last case, by Proposition
6, there exists a triple (p, R, 6) in A(t,,7,) such that 8 < op[Var(t,)] and 5226(0|VM (tn)) 7 0.

Case where derivation (6) is infinite: Assume that there is no term ¢, in derivation (6) such that

AMt,,T,) includes a triple (p, R,60) with 6 < ag[Var(t,)] and size(Ovar(t,)) # 0. Then, by

Proposition 5, @(t,,7,) = @¢(00(ty,),7,). Therefore, the Zderivation issued from oo(to) is
infinite. Thus, og(#p) has no normal form which contradicts the hypothesis. O

Lemma 9 Let R be a CAT extended by the equality rules, tg a term headed either by the operation
~ or A and og a constructor substitution such that oo(to) reduces to the constructor term ‘true’.

. A . . .
Then, there exists a ~z -derivation issued from tg

A A A
tg Rz, 11 Azg, 1o -+ A3y, true

such that n > 1 and 8, o ...0 601 < ao[Var(tp)].

®In fact, this result holds for any operation-rooted term.
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Proof The proofis by induction on the size of og

Base case: Assume that the size of the substitution oy is 0. That is to say, oo maps variables to
variables. Since ¢ is normalizing (see Theorem 2), the left-hand sides of the rules in R are

left-linear and by hypothesis og(tg) reduces to ‘true’, we have the following “._derivation:

to 2t L0 2 true (7)

From Lemma 5, we deduce that for each term ¢; in derivation (7) but the last one (¢rue), there
exists at least a position p;41, a rule R;41, and a substitution 6,11 with 0i+1|VaT(ti) = ¢d such
that (pit1, Riz1,0i01) € A(t;, T;) with 7; a parallel definitional tree of the root of ¢;. Thus,

. . A .
derivation (7) is also a A= -derivation

A A A
to Azg, 11 Az, -+ Ay, true
such that 6, o ---06; = id[Var(ty)]. Hence, 8, 0 ---068; < gp[Var(ty)].
Induction step: Assume that the size of the substitution og is not 0. From Lemma 8, there exists
a Z-derivation

o2t 2 .02, (8)

such that n > 0 and either:

t,, is the constructor term ‘true’.
As in the base case, from the —>-derivation we deduce that for each term ¢; but the
last one, there exists at least a position p;41, a rule R;y1 and a substitution #;41 with
0i+1|VaT(ti) = 4d such that (p;y1, Riy1,0i01) € A(t;, T;) with 7; a parallel definitional tree

.
of the root of ¢;. Thus we obtain the following A= -derivation

Pl

lo éﬁel a1 %AMQ o A2, I
such that 6, o --- 060 = id[Var(ty)]. Hence, 8, 0 --- 068y < ap[Var(to)].
or:
The set A = {oyar(1,) | 3 (p, R,0) € Mtn, Tp), 0 < ag[Var(t,,)] and si2e(T|var(t,)) 7 0} is not
empty.

Since the set A is finite, we can define 6,1 as a minimal substitution in A. By definition

of the strategy j\, 0,41 € j\(tn, 7,.). By Lemma 5, derivation (8) is also a %Aﬁ)—derivation.

b b b
to Axg, b Azg, -+ Ry, In (9)

\
In this case, we have t, Azg, ., tny1. Let us consider the set P = ¢(0,11(%,),7,). From
Lemma 1 in [21], we deduce the existence of a constructor substitution oy such that
oo(tn) —p 01(tnt1) and o1 0 0,41 = og[Var(t,)]. Since size(0,41) # 0, we deduce from
010 80,41 = op[Var(t,)] that size(oy1) < size(og). Since R is confluent, oq(¢,41) reduces

. . . . A ..
also to true. Then, by the induction hypothesis, there exists a Az -derivation

>l

)
bnt1 RE g, - Ry, lrue (10)
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such that m > n+2 and 6, 0---00,42 < 01[Var(t,4+1)]. Combining derivations (9) and

(10), we obtain the required &Aﬁ) -derivation with 8, o ---0 6y < og[Var(tp)]. 0

From Lemma 9 we can easily infer the completeness of the strategy A.

Theorem 5 (Completeness of the strategy j\) Let R be a CAT extended by the equality rules. Let
o be a constructor substitution that is a solution of an equation t ~ t' and V a set of variables
containing Var(t) U Var(t'). Then there exists a derivation computed by A

;A B
t~t Az -+ Azg, true
such that 6, 0---06y < o[V].

The strategy A may perform some redundant computations when the considered term rewriting
system is terminating, as shown in the following example:

Example 9 Consider the rewrite rules Ry, Ry and Rs of Example 8. Let t = f(h(s(s(Y))),
F(R(Y),h(s(Y)))). Then, for an appropriate prdt 7, A(t,T) = {id,{Y + s(Y3)}}. If we develop
the search space of ¢, we will compute twice the substitution {Y — s(Y3)}. However, if we consider
only minimal substitutions (including identity) in the sets computed by A, we will compute only
once the substitution {Y ~ s(Yz)} for the considered term ¢.

Next we improve the strategy A and define a new parallel narrowing strategy, denoted by j\l, which
avoids some redundant computations performed by A for terminating TRSs.

Definition 22 Let R be a terminating CAT, ¢ an operation-rooted term, 7 a parallel definitional
tree of the root of ¢{. The parallel narrowing strategy A| is defined by

j\l(t,’f) = {o modulo renaming | 3 (p, R,o) € A(t,7) and V (¢, R',8) € A\(t,7),
(0 < o[Var(t)] = o = 0[Var(t)])} .

Notice that j\l(t, T) is always included in A(¢,7).

Example 10 Let us consider the term ¢ given in Example 9. There is only one narrowing deriva-
tion developed by the strategy A|, starting from ¢. This derivation, given below, computes the
substitution {Y — s(Y7)}.

id F(s(0), F(A(Y), h(s(Y))))
f

S(R(s(s(Y))), F(R(Y ), h(s(Y)))) 22 (
A (yesr)y J(5(0), F(R(s(Y1)), 5(0))
~ (
= )

&
~

(5(0), 5(0))
(0

.
u
»

The completeness of the strategy j‘l is based on the following lemma.



Lemma 10 Let R be a terminating CAT, ty a term headed either by the operation = or A and
o¢ a constructor substitution such that oo(to) reduces to the constructor term ‘true’. Then, there

: AL T
exists a = -derivation issued from tg

M Ay Ay
to Rz, 11 A=y, '+ A3y, true

such that n > 1 and ,, 0 - - -0 0y < og[Var(tp)].

Proof The proofis by induction on the size of og

Base case: The base case, i.e. size(og) = 0, is the same as in Lemma 9.

Induction step: Assume that the size of the substitution o is not 0. Since ¢ is normalizing and R

is terminating, the normal form of ¢, exists and can be obtained by the following ~-derivation

o2t L0 2y, (11)
It is clear that derivation (11) is also a j\l—derivation. Now if ¢,, is the constructor term ‘true’,
the claim is obvious. Otherwise, o¢(¢,,) reduces to ‘true’. Define the set S as

{(p,R,0) | (p,R,0) € Atn,T,) and 6 < ao[Var(t,)] and size(O)ya,(tn)) # 0} .

Since t, is in normal form, S is not empty by Proposition 6. Then we can choose 6,11 so
that there exists a triple (pn41, Rut1,0n41) in S and 6,41 is minimal among the substitu-
tions occurring in 5, ie., V (¢, R,3) € 5,8 £ 6,41. Then 6,41 € A|(¢,). Thus we obtain

t, 22% 6,41 tnt1- Let us consider the set of positions P = @(0,41(t,), 7). From Lemma 1 in [21],
we deduce the existence of a constructor substitution oy such that oo(t,) —p 01(¢t,41) and
010 80,41 = og[Var(t,)]. Thus, since size(0,41) # 0, we deduce from oy 0 8,41 = og[Var(t,)]
that size(oy) < size(og). Since R is confluent, oy(t,41) reduces also to true. Then, by
induction hypothesis, there exists a a=-derivation.

Ay Ay
bnt1 RZ g, 0 A3y, true (12)

such that m > n + 2 and 6,, 0 ---0 8,42 < o1[Var(t,41)]. Combining derivations (11) and
(12), we obtain the required Az -derivation with 8, o ---0 68y < oo[Var(to)]. 0

From Lemma 10 we can easily infer the completeness of the strategy j‘l-

Theorem 6 (Completeness of the strategy j‘l) Let R be a terminating CAT extended by the equality
rules. Let o be a constructor substitution that is a solution of an equation t = t’:and V a set of
variables containing Var(t) U Var(t'). Then there exists a derivation computed by X}

=

1
t =t 6, ' A=y, true

such that 6, 0---06y < o[V].
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Notice that the parallel narrowing strategy j‘l is not complete for non-terminating TRSs, as shown
in the following example.

Example 11 Consider the following non-terminating TRS:

f(X,O) — 0 R4
f(O,X) —0 R
9(X) — g(s(X)) Ry

Let u be the term f(g(X),h(Y)). The strategy j‘l computes only one derivation starting from u
which is

F(X) (YY) R2ia fg(s(X),h(Y))
i flg(s(s(X))),h(Y))
g flg(s(s(s(X)))), h(Y))
Sy e

However, the term u can be narrowed, using the strategy j\, to the constructor term 0 as shown
below.

F9(X)h(Y)) >ty F(g(s(X)),0) 1 0

6 Optimality

In this section we discuss two optimality results of our narrowing strategies. Inductively sequential
systems are a subclass of weakly orthogonal, constructor-based systems. Within our framework
it is convenient to look at the differences between these two classes in terms of definitional trees.
An inductively sequential operation f has a parallel definitional tree 7 with exactly one sequential
component, i.e., 7 itself is a (sequential) definitional tree. Both weakly needed narrowing and
parallel narrowing behave as needed narrowing when they operate on such a tree.

Theorem 7 Let R be a CAT, t an operation-rooted term whose defined operations symbols are all
inductively sequential. Then, for appropriate definitional trees for the operations int, the narrowing
steps of t computed by both weakly needed narrowing and parallel narrowing are the same as the
narrowing steps of t computed by needed narrowing.

Proof Fach operation in ¢ has a sequential definitional tree. Suppose that these trees are used to
compute weakly needed or parallel narrowing steps. Let S, S, and S be the set of steps computed
on t by needed narrowing, weakly needed narrowing and parallel narrowing respectively. It is easy
to verify from the definitions of A and A that § and § differ at most for triples in S of the form
(p,?,0) which are absent from 5. These triples do not denote a narrowing step, rather, they are
used in needed narrowing to detect exceptional computations [3, p. 273]. Since needed narrowing
computes only independent substitutions, from the definition of A we obtain that § = §, too. O
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We now turn our attention to the behavior of parallel narrowing on ground equations.

Theorem 8 The parallel narrowing strategy is (deterministically) normalizing on ground equa-
tions.

Proof Lett be a ground equation. Weakly needed narrowing applied to ¢t computes a substitution
that is the identity on the variables of t. Hence, by Definition 19 a parallel narrowing step of ¢ is a
rewriting step of ¢ according to ¢. The claim is thus a direct consequence of Theorem 2. a

The above results show that parallel narrowing is a conservative extension of two optimal strategies,
needed narrowing on inductively sequential systems and rewriting necessary sets on ground terms.

The strong optimality results of needed narrowing do not hold for weakly needed and parallel
narrowing. In particular, we recall that rewriting and/or narrowing needed positions is not always
possible in almost orthogonal TRSs, since such positions generally do not exist [34]. Furthermore,
computing only independent unifiers seems unlikely, too, without look-ahead.

Example 12 Consider the parallel-or of Example 2 together with the following operations

f0,X)— X
h(0) — true

and the equation true =~ f(X,h(Y))V f(Y,h(X)). Parallel narrowing computes two derivations of
t beginning with different unifiers, eventually to discover that they yield the same substitution.

7 Related work

In this section we compare our parallel narrowing strategy with other narrowing strategies pro-
posed for constructor-based weakly orthogonal rewrite systems. There are also many narrowing
strategies for rewrite systems which are not necessarily constructor-based and weakly orthogonal,
like innermost [12], outermost [9, 10], basic [21], or LSE narrowing [6]. However, all these strate-
gies require the termination of the rewrite relation which is difficult to check® and immediately
excludes typical functional programming techniques like infinite data structures. Therefore, we
are interested in narrowing strategies for rewrite systems which permit non-terminating rules. In
order to ensure the confluence of the rewrite relation, constructor-based and weakly orthogonal
rules are a natural requirement. For this class of rewrite systems, lazy narrowing has been pro-
posed in [7, 14, 28, 27, 33]. Similarly to lazy evaluation in functional languages, lazy narrowing
evaluates an inner term only when its value is demanded to narrow an outer term. In contrast to
functional languages, a naive version of lazy narrowing may evaluate the same argument several
times due to the non-deterministic choice of a function’s rewrite rules. Therefore, several methods
have been proposed aiming at evaluating arguments commonly demanded by all rules before the
non-deterministic choice [3, 15, 25, 29]. The currently best strategy is needed narrowing [3] since
it is the only one which is shown to be optimal w.r.t. the length of derivations and the number of
computed solutions. Needed narrowing is defined for inductively sequential systems, where in every
term that, roughly speaking, is not fully evaluated there always exists a needed position. We have
shown in Theorem 7 that parallel narrowing is a conservative extension of an optimal narrowing
strategy.

Since the termination property of a rewrite system is undecidable, there are only sufficient criteria for it.

27



In case of overlapping rules,” the situation is more difficult since an argument may be demanded
by some rule but not demanded by another rule for the same function. Naive lazy narrowing is a
complete but often ineflicient strategy for overlapping rules as the following example shows.

Example 13 Consider the following term rewriting system:

one(0) — s(0) R4 F(0,X)—0 Rs
one(s(X)) — one(X) Ry f(X,0)—0 R4

In order to solve the goal f(0,0ne( X)) = 0, lazy narrowing selects a rule and evaluates the demanded
arguments to head normal form (i.e., constructor-rooted term or variable) before the rule is applied.
If rule Rs is selected, the first argument of f(0,one(X)) is demanded, and the second argument
is demanded if rule Ry is selected. Unfortunately, there are infinitely many narrowing derivations
of one(X) to a head normal form—for every n > 0, one(X) '\*»{XHSn(O)} 5(0). Therefore, lazy
narrowing has an infinite search space since both rules Rz and R4 are tried.

In order to avoid this drawback of lazy narrowing, there are at least three methods aiming to
improve lazy narrowing for overlapping rewrite rules:

1. Dynamic cut [26]
2. Lazy narrowing with simplification [18]

3. Parallel narrowing

Loogen and Winkler [26] propose the dynamic cut which ignores subsequent alternative rules for
narrowing if a rule is applicable without binding of goal variables (note that the dynamic cut has
been developed in the context of a sequential implementation of narrowing by backtracking). In
the previous example, rule Rs is the first rule which is used to narrow the left-hand side of the goal
f(0,0ne(X)) = 0. Since the argument 0 is already in head normal form, narrowing produces the
trivial goal 0 &~ 0 without binding the goal variable X. Therefore, the alternative rule Ry is ignored
which avoids the infinite search space.

The effect of the dynamic cut is subsumed by our parallel narrowing strategy since parallel nar-
rowing prefers deterministic reductions at the root of a function call. This is made precise by the
following proposition.

Proposition 7 Let R be a CAT, t an operation-rooted term and | — r € R a rule with o(l) = ¢

for some substitution o. Then t =4 o(r) is the only parallel narrowing step starting at t.

Proof Let 7 be a parallel definitional tree of the root of ¢. Since all rules of the root of ¢
are contained in 7, there is a sequential component 7’ of 7 containing the rule [ — r. W.lo.g.
we assume that | — r and ¢ have no variables in common, otherwise take a variant of [ — r.
Since o(l) = t and ¢ computes outermost redexes [2, Theorem 3], p(¢,7") = (A,0) (w.lo.g. we
assume that Dom(c) C Var(l)). Moreover, (A,l — r,0) € M(1,7') C A(t,T). Since oy = id,

A(t, T) = {id} by definition of A By definition of %A:%, there exists exactly one parallel narrowing

A
step for ¢, namely ¢ A= ;4 o(7). O

"There exist also non-overlapping rewrite systems which are not inductively sequential, but they seem to be not
relevant for application programs.

28



This proposition also shows another advantage of our parallel narrowing strategy in comparison to
the dynamic cut: parallel narrowing is independent of the order of rewrite rules. If there is a rewrite
rule applicable to the root without instantiating goal variables, parallel narrowing performs exactly
one step which is indeed a reduction step. However, the dynamic cut only discards alternative rules
after the current rule. For instance, the dynamic cut has no effect for the goal f(one(X),0) = 0
w.r.t. Example 13. This disadvantage is omitted in [18] where the combination of lazy narrowing
with possible reduction steps between narrowing steps is proposed. For instance, a reduction step
applied to the left-hand side of the goal f(one(X),0) ~ 0 reduces it to the trivial goal 0 ~ 0 and
avoids the infinite search space. Attempts for reduction steps are also made at inner positions if
they are demanded. For instance, the goal f(f(one(X),0),X )~ 0 is also reduced to 0 ~ 0 before
a non-deterministic narrowing step can take place. In order to ensure the completeness of this lazy
narrowing with simplification strategy, a terminating subset of all rewrite rules is used for reduction.
For a terminating CAT, lazy narrowing with simplification is subsumed by parallel narrowing: if
a simplification step is applicable at some demanded subterm of ¢, the identity substitution «d
is contained in the set A(t,7) (similarly to Proposition 7) and thus A|(t,7) = {id}, i.e., the
parallel narrowing strategy 5\1 also performs a deterministic reduction step. In the presence of
non-terminating rules, parallel narrowing does not subsume lazy narrowing with simplification as
the following example shows.

Example 14 Consider the following non-terminating CAT:

f0,X,Y)—0 Ry
f(X,0,Y)—=0 Ro
fX,Y,0)—=0 Rs

9(X) — g(s(X)) Ry

Let ¢ be the term f(g(X),(Y),h(0)) and T be a parallel definitional tree of f. Then A(t,7T) =

{id,{Y — 0}}, i.e., there are two parallel narrowing steps:

Thus, parallel narrowing reduces ¢ to 0 in two different ways. Lazy narrowing with simplification
has a fully deterministic behavior and performs the following reduction steps:

J(g(X), M(Y),h(0)) — f(g(X),h(Y),0) — 0

On the other hand, lazy narrowing with simplification has the same behavior as lazy narrowing if
simplification is not applicable. For instance, consider the rules of Example 2 and the term X Vv X.
Since no simplification rules are applicable, there are three possible lazy narrowing steps. However,
parallel narrowing allows only two possible narrowing steps.

Although lazy narrowing with simplification and parallel narrowing are not directly comparable
in the presence of non-terminating rules, parallel narrowing has an important advantage over all
classic lazy narrowing strategies. Since the parallel narrowing strategy A computes only the identity
substitution on ground terms, parallel narrowing evaluates ground goals in a fully deterministic way.
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Moreover, it always computes the normal form of a ground term if it exists (see Theorem 8). On the
other hand, lazy narrowing strategies perform non-deterministic steps even for ground goals. As
a consequence, lazy narrowing may fail to compute normal forms in a sequential implementation.
Thus, parallel narrowing is an ideal strategy for functional logic languages.

Parallel narrowing is not intended as a strategy to implement functional logic languages on paral-
lel architectures. Although there is some potential for parallel implementation, the parallelism of
this strategy is too fine-grained since the parallel reduction processes must be synchronized after
each parallel narrowing step. This is in contrast to the AND-parallel narrowing implementation
presented in [24] where independent subterms are evaluated in parallel. However, due to the fact
that parallel narrowing reduces the number of non-deterministic choices in narrowing steps (com-
pared to classic narrowing), parallel narrowing is useful to improve OR-parallel implementations of
narrowing [16].

8 Conclusions

We have presented a new narrowing strategy for constructor-based weakly orthogonal rewrite sys-
tems. Since this class includes non-terminating systems, it is the basis of the functional component
of many integrated functional logic languages. The main idea of our narrowing strategy is the
parallel evaluation of necessary sets of redexes. This leads to a generalization of Sekar and Ra-
makrishnan’s work on rewriting to narrowing. Parallel narrowing is a conservative extension of
an optimal narrowing strategy, needed narrowing [3], to weakly orthogonal rewrite systems. Fur-
thermore, parallel narrowing is the only known narrowing strategy for possibly non-terminating
and overlapping rewrite rules which evaluates ground terms without any non-deterministic choice.
This strategy can be implemented relatively efficiently, since narrowing steps are computed by local
computations based on unification.® Therefore, this strategy is ideal for functional logic languages.
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