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Abstract
Functional logic languages combine lazy (demand-driven) evaluation strategies

from functional programming with non-deterministic computations from logic pro-
gramming. The lazy evaluation of non-deterministic subexpressions results in a
demand-driven exploration of the search space: if the value of some subexpression
is not required, the complete search space connected to it is not explored. On the
other hand, this improvement could cause efficiency problems if unevaluated subex-
pressions are duplicated and later evaluated in different parts of a program. In order
to improve the execution behavior in such situations, we propose a program analysis
that guides a program transformation to avoid such inefficiencies. We demonstrate
the positive effects of this program transformation with KiCS2, a recent highly
efficient implementation of the functional logic programming language Curry.

1 Motivation

Functional logic languages support the most important features of functional and logic
programming in a single language (see [11, 33] for recent surveys). They provide higher-
order functions and demand-driven evaluation from functional programming as well as
logic programming features like non-deterministic search and computing with partial in-
formation (logic variables). This combination led to new design patterns [8, 12], better
abstractions for application programming (e.g., programming with databases [19, 27],
GUI programming [30], web programming [31, 32, 35], string parsing [23]), and new tech-
niques to implement programming tools, like partial evaluators [3] or test case generators
[28, 50].

The implementation of functional logic languages is challenging due to the combination
of the various language features. For instance, one can

• design new abstract machines appropriately supporting these operational features
and implementing them in some (typically, imperative) language, like C [43] or Java
[13, 37],
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• compile into logic languages like Prolog and reuse the existing backtracking imple-
mentation for non-deterministic search as well as logic variables and unification for
computing with partial information [7, 41], or

• compile into non-strict functional languages like Haskell and reuse the implementa-
tion of lazy evaluation and higher-order functions [21, 22].

The latter approach requires the implementation of non-deterministic computations in
a deterministic language but has the advantage that the explicit handling of non-
determinism allows for various search strategies, like depth-first, breadth-first, parallel,
or iterative deepening, instead of committing to a fixed (incomplete) strategy like back-
tracking [21].

In this paper we consider KiCS2 [20], a new system that compiles functional logic pro-
grams of the source language Curry [38] into purely functional Haskell programs. However,
the techniques presented in this paper can also be applied to similar implementations, like
KiCS [22] or ViaLOIS [14]. KiCS2 can compete with or outperform other existing imple-
mentations of Curry [20]. In particular, deterministic parts of a program are much faster
executed than in Prolog-based Curry implementations. Non-determinism is implemented
in KiCS2 by representing all non-deterministic results of a computation as a data struc-
ture. This structure is traversed by operations implementing the search for solutions.
Thus, different search strategies are supported by KiCS2. This flexibility might cause ef-
ficiency problems in some situations due to the duplication of unevaluated subexpressions
(see below for a more detailed explanation). Therefore, we propose a new technique to
improve such problematic situations based on the following steps:

1. The run-time behavior of the program is analyzed. In particular, information about
demanded arguments and the non-determinism behavior is approximated.

2. The information obtained from this analysis is used to transform the source program.
In particular, the computation of a non-deterministic subexpression is enforced ear-
lier when its value is definitely demanded.

In the next section, we review the source language Curry and the features considered in
this paper. Section 3 sketches the basic implementation scheme of KiCS2. Section 4 dis-
cusses the potential problems of non-deterministic computations and presents a technique
to analyze the demand information that is used in the program transformation presented
in Section 5. Some practical results of this transformation are shown in Section 6 before
we conclude in Section 7.

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry [38] combines features from functional
programming (demand-driven evaluation, parametric polymorphism, higher-order func-
tions) and logic programming (computing with partial information, unification, con-
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straints). The syntax of Curry is close to Haskell1 [47]. In addition, Curry allows free
(logic) variables in conditions and right-hand sides of defining rules. The operational se-
mantics is based on an optimal evaluation strategy [6] which is a conservative extension
of lazy functional programming and logic programming.

A Curry program consists of the definition of data types (introducing constructors
for the data types) and operations on these types. A value is an expression without de-
fined operations. Note that, in a functional logic language like Curry, not all definable
operations are functions in the classical mathematical sense. There are also operations,
sometimes called “non-deterministic functions” [29], which might yield more than one
result on the same input. Nevertheless, a Curry program has a purely declarative seman-
tics where non-deterministic operations are modeled as set-valued functions (to be more
precise, down-closed partially ordered sets are used as target domains in order to cover
non-strictness, see [29] for a detailed account of this model-theoretic semantics).

For instance, Curry contains a choice operation defined by:

x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, one wants to select intended values according to some constraints, typically
in conditions of program rules. A rule has the form “f t1 . . . tn | c = e” where the
(optional) condition c is a constraint, i.e., an expression of the built-in type Success. For
instance, the trivial constraint success is a value of type Success that denotes the always
satisfiable constraint. Thus, we say that a constraint c is satisfied if it can be evaluated
to success. An equational constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are
reducible to unifiable values. Furthermore, if c1 and c2 are constraints, c1 & c2 denotes
their concurrent conjunction (i.e., both argument constraints are concurrently evaluated).

As a simple example, consider the following Curry program which defines a data type
for Boolean values, a polymorphic data type for lists, and operations to compute the
concatenation of lists and the last element of a list:2

data Bool = False | True

data List a = [] | a : List a -- [a] denotes "List a"

-- "++" is a right-associative infix operator

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a

last xs | (ys ++ [z]) =:= xs

= z where ys,z free

1Variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).

2Note that lists are a built-in data type with a more convenient syntax, e.g., one can write [x,y,z]

instead of x:y:z:[] and [a] instead of the list type “List a”.
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Logic programming is supported by admitting function calls with free variables (e.g.,
(ys++[z]) in the rule defining last) and constraints in the condition of a defining rule.
In contrast to Prolog, free variables need to be declared explicitly to make their scopes
clear (e.g., “where ys,z free” in the example). A conditional rule is applicable if its
condition is satisfiable. Thus, the rule defining last states in its condition that z is the
last element of a given list xs if there exists a list ys such that the concatenation of ys

and the one-element list [z] is equal to the given list xs.
As mentioned above, operations can be non-deterministic:

aBool = True ? False

Using such non-deterministic operations as arguments might cause a semantical ambiguity
which has to be fixed. Consider the operations

not True = False

not False = True

xor True x = not x

xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting
system, we could have the derivation

xorSelf aBool → xor aBool aBool → xor True aBool

→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated prior to the function calls. In order
to avoid dependencies on the evaluation strategies and exclude such unintended results,
González-Moreno et al. [29] proposed the rewriting logic CRWL as a logical (execution-
and strategy-independent) foundation for declarative programming with non-strict and
non-deterministic operations. CRWL specifies the call-time choice semantics [40], where
values of the arguments of an operation are determined before the operation is evaluated.
This can be enforced in a lazy strategy by sharing actual arguments. For instance, the
expression above can be lazily evaluated provided that all occurrences of aBool are shared
so that all of them reduce either to True or to False consistently

In order to provide a precise definition of the semantics of non-deterministic and non-
strict operations, we assume a given program P and extend standard expressions so that
they can also contain the special symbol ⊥ to represent undefined or unevaluated values.
A partial value is a value containing occurrences of ⊥. A partial constructor substitution
is a substitution that replaces variables by partial values. Then we denote by

[P ]⊥ = {σ(l) = σ(r) | l = r ∈ P , σ partial constructor substitution}

the set of all partial constructor instances of the program rules. A context C[·] is an
expression with some “hole”. Then the reduction relation used in this paper is defined as
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follows:3

C[f t1 . . . tn] � C[r] if f t1 . . . tn = r ∈ [P ]⊥
C[f e1 . . . en] � C[⊥] if f is a defined operation

The first rule models the call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models non-
strictness where unevaluated operations are replaced by an undefined value (which is

intended if the value of this subexpression is not demanded). As usual,
∗
� denotes the

reflexive and transitive closure of this reduction relation. A partial value t is called a

normal form of e if e
∗
� t. Note that the derivation for “xorSelf aBool” shown above

is not possible w.r.t. �. The equivalence of this rewrite relation and CRWL is shown in
[42, 34].

Although the combination of non-deterministic operations and lazy evaluation requires
more efforts on the implementation side (see below), it might lead to search space reduc-
tions as the following example shows. An operation that non-deterministically inserts an
element at an arbitrary position into a list can be defined by

insert x [] = [x]

insert x (y:ys) = (x:y:ys) ? (y:insert x ys)

Based on this operation, we can define a permutation of a list by

perm [] = []

perm (x:xs) = insert x (perm xs)

Thus, we can define list sorting by selecting a sorted permutation by (“<=:” denotes the
less-than-or-equal-to constraint):

psort xs = checkSorted (perm xs)

checkSorted ys | sorted ys = ys

sorted [] = success

sorted [_] = success

sorted (x:y:ys) = x<=:y & sorted (y:ys)

Although this definition seems quite similar to the classical generate-and-test solution
where all permutations are enumerated and tested, it has a much more efficient behavior
in Curry. Since the non-deterministic expression (perm xs) is evaluated by the demand
of the operation sorted, many permutations are not generated. For instance, if perm xs

is evaluated to 9:8:perm . . ., the constraint 9<=:8 fails so that the computation of the
remaining part of the permutation (which can result in (n− 2)! different permutations if
n is the length of the list xs) is discarded. Thus, this “test-of-generate” definition has a
substantially lower complexity than the traditional generate-and-test solution.

3Conditional rules are not considered in the reduction relation since they can be eliminated [4] by
transforming each conditional rule “l | c = e” into “l = cond c e” where the operation cond is defined
by “cond success x = x”.
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We do not discuss the implementation of free (logic) variables in the following. This is
justified by the fact that logic variables, denoting arbitrary but unknown values, can be
replaced by generators, i.e., operations that non-deterministically evaluate to all possible
ground values of the type of the free variable. For instance, the operation aBool is a
generator for Boolean values so that one can transform the expression “not x”, where x

is a free variable, into “not aBool”. It has been shown [9, 26] that computing with logic
variables by narrowing [48, 51] and computing with generators by rewriting are equivalent,
i.e., compute the same values. Since such generators are standard non-deterministic
operations, they are translated like any other operation.

We have seen that the demand-driven evaluation of non-deterministic arguments can
have a positive impact on the overall complexity. However, there are also situations where
the complexity might increase. Since this depends on the implementation, we discuss some
recent implementation techniques in the following.

3 Compiling Non-Deterministic Programs

In this section, we sketch the implementation of non-deterministic programs in a purely
functional language. This translation scheme is used by KiCS2 to compile Curry programs
into Haskell programs. More details can be found in [17, 18, 20].

As mentioned in the introduction, we are interested in an implementation supporting
different, in particular, complete search strategies. Thus, implementations based on a
particular search strategy, like backtracking, which can also be found in approaches to
support non-deterministic computations in functional programs [24, 39], are too limited.
To provide various, also user-definable, search strategies, we explicitly represent all non-
deterministic results of a computation in a data structure. This is achieved by extending
each data type of the source program by constructors to represent a choice between two
values and a failure, respectively. For instance, the data type for Boolean values as defined
above is translated into the Haskell data type4

data Bool = False | True | Choice ID Bool Bool | Fail

In order to implement the call-time choice semantics discussed in Sect. 2, each Choice

constructor has an additional argument. For instance, the evaluation of xorSelf aBool

duplicates the argument operation aBool. Thus, we have to ensure that both duplicates,
which later evaluate to a non-deterministic choice between two values, yield either True

or False. This is obtained by assigning a unique identifier (of type ID) to each Choice.
In order to get unique identifiers on demand, we pass a (conceptually infinite) set of
identifiers, also called identifier supply, to each operation.5 Hence, each Choice created
during run time can pick its unique identifier from this set. For this purpose, we assume

4Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell entities
and introduces type classes to resolve overloaded symbols like Choice and Fail.

5Note that the target program should be free of side effects in order to enable various search strategies,
including parallel ones.
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a type IDSupply, representing an infinite set of identifiers, with operations

initSupply :: IO IDSupply

thisID :: IDSupply → ID

leftSupply :: IDSupply → IDSupply

rightSupply :: IDSupply → IDSupply

initSupply creates such a set (at the beginning of an execution), thisID takes some
identifier from this set, and leftSupply and rightSupply split this set into two disjoint
subsets without the identifier obtained by thisID. There are different implementations
available [15] so that KiCS2 is parametric over concrete implementations of IDSupply. A
simple one can be based on unbounded integers, see [20].

Now, the correct handling of the call-time choice semantics can be obtained by adding
an additional argument of type IDSupply to each operation. For instance, the operation
aBool defined above is translated into:

aBool :: IDSupply → Bool

aBool s = Choice (thisID s) True False

Similarly, the operation

main :: Bool

main = xorSelf aBool

is translated into

main :: IDSupply → Bool

main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the evaluation
of aBool and a set (rightSupply s) containing identifiers for the evaluation of the
operation xorSelf.

Since all data types are extended by additional constructors, we must also extend the
definition of operations performing pattern matching.6 For instance, the operation xor is
extended by an identifier supply and further matching rules:

xor :: Bool → Bool → IDSupply → Bool

xor True x s = not x s

xor False x s = x

xor (Choice i x1 x2) x s = Choice i (xor x1 x s) (xor x2 x s)

xor Fail x s = Fail

The third rule transforms a non-deterministic argument into a non-deterministic result,
i.e., a non-deterministic choice is moved one level up. This is also called a “pull-tab” step

6To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform programs
[20] where pattern matching is restricted to a single argument. This is always possible by introducing
auxiliary operations.
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[5]. The final rule returns Fail if the matching argument is already a failed computation
(failure propagation).

In our concrete example, we assume that choice identifiers are implemented as integers
[20]. Thus, if we evaluate the expression (main 1) w.r.t. the transformed rules defining
xor, we obtain the result

Choice 2 (Choice 2 False True) (Choice 2 True False)

Hence, the result is non-deterministic and contains three choices with identical identifiers.
To extract all values from such a Choice structure, we have to traverse it and compute all
possible choices but consider the choice identifiers to make consistent (left/right) decisions.
Thus, if we select the left branch as the value of the outermost Choice, we also have to
select the left branch in the selected argument (Choice 2 False True) so that False

is the only value possible for this branch. Similarly, if we select the right branch as the
value of the outermost Choice, we also have to select the right branch in its selected
argument (Choice 2 True False), which again yields False as the only possible value.
In consequence, the unintended value True cannot be extracted.

As one can see, the implementation is modularized in two phases that are interleaved
by the lazy evaluation strategy of the target language: any expression is evaluated to a
tree representation of all its values and the main user interface (responsible for printing
all results) extracts the correct values from this tree structure. As a consequence, one
can easily implement various search strategies to extract these values as different tree
traversal strategies. Due to the overall lazy evaluation strategy, infinite search spaces
does not cause a complication. For instance, if one is interested only in a single solution,
one can extract some value even if the computed choice structure is conceptually infinite.

This implementation also provides many opportunities for optimizations. For instance,
if operations are deterministic, i.e., cannot introduce Choice constructors, it is not neces-
sary to pass an identifier supply to the operation. The benchmarks presented in [20] show
that this implementation outperforms all other Curry implementations for deterministic
operations, and, for non-deterministic operations, outperforms Prolog-based implementa-
tions of Curry and can compete with MCC [43], a Curry implementation that compiles
to C.

4 Demand Analysis

The translation scheme presented in the previous section leads to an implementation
with a good efficiency (e.g., KiCS2 is used for larger applications in the area of web
programming). It is also used in a slightly modified form in another recent compact
compiler for functional logic languages [14]. However, there are situations where this
scheme cause efficiency problems. For instance, consider the evaluation of the expression
(main 1) (for simplicity, we do not show the sharing of subexpressions done by the lazy
evaluation strategy):

main 1 →∗ xorSelf (aBool 2) 3
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→∗ xor (aBool 2) (aBool 2) 3

→∗ xor (Choice 2 True False) (Choice 2 True False) 3

→∗ Choice 2 (Choice 2 False True) (Choice 2 True False)

As one can see, the (initially) single occurrence of the non-deterministic operation aBool,
whose evaluation introduces a Choice constructor, is duplicated so that it results (in com-
bination with the pull-tab step) in three Choice constructors. Since the overall strategy
to extract values from choice structures has to traverse this choice structure, this might
lead to an explosion of the search space in some cases (see benchmarks in Section 6).

A careful analysis shows that this problem stems from the lazy evaluation strategy.
Hence, an improvement might be possible by changing the evaluation strategy. The
operation xorSelf always demands the value of its argument in order to apply some
reduction rule. Thus, one can also try to evaluate the argument before an attempt to
evaluate xorSelf. Such a kind of call-by-value or strict evaluation can be achieved by
introducing a strict application operation “sApply” implemented in the target code as
follows:

sApply f (Choice i x1 x2) s = Choice i (sApply f x1 s) (sApply f x2 s)

sApply f Fail s = Fail

sApply f x s = f x s

Hence, sApply enforces the evaluation of the argument (to an expression without a de-
fined operation at the top, also called head normal form) before the operation is applied.
In particular, if the argument is a non-deterministic choice, it is moved outside the ap-
plication. This operation is available as a predefined infix operation “$!” in Curry. Now
consider what happens if we redefine main by

main = xorSelf $! aBool

and evaluate the translated main expression:

main 1 →∗ sApply xorSelf (aBool 2) 3

→∗ sApply xorSelf (Choice 2 True False) 3

→∗ Choice 2 (xorSelf True 3) (xorSelf False 3)

→∗ Choice 2 (xor True True 3) (xor False False 3)

→∗ Choice 2 False False

Hence, the computed choice structure does not contain duplicated Choice constructors,
as desired. Similarly, one can also define a normal form application operation “$!!”
which applies an operation to the completely evaluated argument. Thus, a call like “f
$!! e” would completely evaluate e so that all choices made in the evaluation of e are
moved outside the application of f to e. Although this seems reasonable, it destroys one
advantage of combining lazy and non-deterministic computations. For instance, reconsider
permutation sort as defined above. If we change the definition of psort to

psort xs = checkSorted $!! (perm xs)
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the complete evaluation of the argument (perm xs) results in the enumeration of all
permutations so that we obtain the complexity of the simple generate-and-test solution.

Even worse, we might loose completeness by an unrestricted use of “$!” or “$!!”.
For instance, consider the definition

ok x = True

loop = loop

Then “ok loop” has the value True but the evaluation of “ok $! loop” does not ter-
minate.

As a consequence, we need some information about the demand of operations in order
to insert strict applications only for demanded arguments. This seems quite similar to
strictness information in purely functional programming [46]. However, the techniques
developed there cannot be applied to functional logic programs. For instance, consider
the operation f defined by

f 0 = 0

f x = 1

As a functional program, f is strict since the first rule demands its argument. As a
functional logic program, f does not strictly demand its argument: due to the non-
deterministic semantics, all rules can be used to compute a result so that we can apply
the second rule to evaluate (f loop) to the value 1.

These considerations show that we need a notion of demand specific for functional
logic programs. Using the rewrite relation � introduced above, we say that a unary
operation7 f demands its argument if ⊥ is the only normal form of (f ⊥). Thus, if a
demanded argument is not reducible to some expression with a constructor at the root, the
application is always undefined. This justifies the use of the strict application operation
“$!” to demanded arguments.

Hence, we are left with the problem of detecting demanded arguments in a program.
Since this property is undecidable in general, we can try to approximate it by some
program analysis. Early work on analyzing the behavior of functional logic programs
[36, 45, 53] tried to approximate narrowing derivations for confluent term rewriting sys-
tems so that it is not applicable in our more general framework of non-deterministic
operations. A more appropriate analysis can be based on a fixpoint characterization of
CRWL rewriting [1, 44]. An analysis to approximate call patterns w.r.t. CRWL rewriting
has been presented in [34]. Since the undefined value ⊥ is a specific pattern, we can use
a variant of this analysis to approximate demanded arguments. Thus, we summarize the
main techniques and results of this analysis in the following.

Since we want to approximate the input/output relation of operations, an interpreta-
tion I is some set of equations

I = {f t1 . . . tn)
.
= t | f n-ary operation, t1, . . . , tn, t are partial values}

7The extension to operations with more than one argument is straightforward.
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The evaluation of an expression e w.r.t. I is a mapping evalI from expressions into sets of
partial values defined by (where C and f denotes a constructor and an operation symbol,
respectively):

evalI(x) = {x}
evalI(C e1 . . . en) = {C t1 . . . tn | ti ∈ evalI(ei), i = 1, . . . , n}
evalI(f e1 . . . en) = {⊥} ∪ {t | ti ∈ evalI(ei), i = 1, . . . , n, f t1 . . . tn

.
= t ∈ I}

Hence, an operation is approximated as undefined or evaluated with the information
provided by the interpretation.

For the demand analysis, we are interested in the behavior of operations when they
are called with undefined arguments. Thus, it is not necessary to compute the complete
semantics of a program but it is sufficient to compute the behavior w.r.t. a given set of
initial calls M containing elements of the form f t1 . . . tn where f is an operation and
t1, . . . , tn are partial values. Then we define the transformation TM on interpretations I
by

TM(I) = {s .
= ⊥ | s ∈M} ∪ {s .

= r′ | s .
= t ∈ I, s = r ∈ [P ]⊥, r

′ ∈ evalI(r)}
∪ {f t1 . . . tn

.
= ⊥ | s .

= t ∈ I, s = r ∈ [P ]⊥, f e1 . . . en is a subterm of r,
ti ∈ evalI(ei), i = 1, . . . , n}

Intuitively, the transformation TM adds to the set of initial calls in each iteration

1. better approximations of the rules’ right-hand sides (s
.
= r′) and

2. new function calls occurring in right-hand sides (f t1 . . . tn
.
= ⊥).

Here, “better” should be interpreted w.r.t. the usual approximation ordering v where ⊥
is the minimal element. As usual, we define

TM ↑ 0 = ∅
TM ↑ k = TM(TM ↑ (k − 1)) (for k > 0)

Since the mapping TM is continuous on the set of all interpretations, the least fixpoint
CM = TM ↑ ω exists. The following theorem states the correctness of this fixpoint
semantics w.r.t. CRWL rewriting.

Theorem 1 ([34]) 1. If s
.
= t ∈ CM, then s

∗
� t.

2. If s ∈M and t is a partial value with s
∗
� t, then s

.
= t ∈ CM.

We call an equation s
.
= t ∈ I maximal in I if there is no s

.
= t′ ∈ I with t′ 6= t and t v t′.

The set of all maximal elements of an interpretation I is denoted by max(I). Maximal
elements can be used to characterize a demanded argument, as the following result shows.
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Proposition 2 Let f be a unary operation and f ⊥ ∈ M. If f ⊥ .
= ⊥ ∈ max(CM),

then f demands its argument.

Proof: Assume f ⊥ .
= ⊥ ∈ max(CM) and f does not demand its argument. Hence, by

definition of a demanded argument, there is a normal form t of (f ⊥) with t 6= ⊥. Since

f ⊥
∗
� t and t is a partial value, Theorem 1 implies f ⊥ .

= t ∈ CM. This contradicts the
assumption that f ⊥ .

= ⊥ is maximal in CM.

The proposition suggests that one should analyze the least fixpoint w.r.t. a set of ini-
tial calls having ⊥ at argument positions. In order to obtain a computable approximation
of the least fixpoint, we use the theory of abstract interpretation [25] and define appropri-
ate abstract domains and abstract operations (like abstract constructor application and
abstract matching) to compute an abstract fixpoint.

Interesting finite abstractions of partial values are sets of terms up to a particular depth
k, e.g., as already used in the abstract diagnosis of functional programs [2], abstraction of
term rewriting systems [16], or call pattern analysis of functional logic programs [34]. Due
to its quickly growing size, this domain is mainly useful in practice for depth k = 1. In
the domain of depth-bounded terms, subterms that exceed the given depth k are replaced
by the specific constant > that represents any term, i.e., the abstract domain of depth-k
terms consists of partial values up to a depth k extended by the constant >. For instance,
False:> is a depth-2 term. If one defines abstract constructor applications (by applying
the constructor and cutting subterms deeper than k) and an abstract matching of linear
constructor terms against depth-k terms (see [34] for details), one can compute an abstract
least fixpoint which approximates the least fixpoint of concrete computations.

For instance, consider the operations “?”, not, xor, and xorSelf defined above. In
order to approximate their demanded arguments, we define a set of initial calls where one
argument is ⊥ and all other arguments are >:

M = {⊥?>, >?⊥, not ⊥, xor ⊥ >, xor > ⊥, xorSelf ⊥}

Then the abstract least fixpoint w.r.t. M (note that the depth k is not relevant in this
example) contains the following abstract equations:

⊥?> .
= >, >?⊥ .

= >, not ⊥ .
= ⊥, xor ⊥ ⊥ .

= ⊥, xor ⊥ > .
= ⊥, xor > ⊥ .

= ⊥,
xorSelf ⊥ .

= ⊥

Since all these elements are also maximal, we can deduce by Proposition 2 that all argu-
ments of not, xor, and xorSelf are demanded whereas “?” has no demanded argument.
Of course, the analysis becomes more interesting in the case of recursive functions. We
omit further examples here but refer to Section 6 for some benchmarks.

Our demand analysis can be extended in various ways. For instance, higher-order
features can be covered by transforming higher-order applications into calls to an “ap-
ply” operation that implements the application of an arbitrary function occurring in the
program to an expression [52]. This technique is also known as “defunctionalization”
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[49]. Primitive operations, like arithmetic functions, usually demand all their arguments.
Thus, their behavior can be approximated by returning the result ⊥ if some argument is
⊥, and otherwise > is returned.

5 Program Transformation

We want to improve the non-determinism behavior of functional logic programs by trans-
forming them according to the ideas sketched in the previous section. As already dis-
cussed, this can be done by adding strict applications to demanded arguments that are
non-deterministic. A method to approximate demanded arguments has already been
shown. The approximation of non-deterministic expressions is much simpler. For this
purpose, we define an operation as non-deterministic if it contains a call to “?” or a free
variable in some of its defining rules, or if it depends directly or indirectly on some non-
deterministic operation. Thus, this property can be computed using the defining rules
and their program dependency graph.

Based on this information, we can classify expressions: an expression is non-
deterministic if it contains some non-deterministic operation. Now we perform the follow-
ing transformation of the source program: if there is some application (f e) in some rule,
where e is non-deterministic and the argument of f is demanded, replace this application
by (f $! e). For instance, the program rule

main = xorSelf aBool

will be transformed into

main = xorSelf $! aBool

since the argument of xorSelf is demanded (as approximated above) and the argument
aBool is non-deterministic. The extension of this transformation to operations with more
than one argument is straightforward.

The effect of this transformation will be shown in the next section by some benchmarks.

6 Benchmarks

We have implemented (in Curry) the program transformation shown above in a first
prototype in order to get some ideas about its effectiveness. The program analyzer uses
the depth-k domain to approximate demanded arguments. In order to provide an efficient
analysis, only maximal abstract elements are stored in the current interpretation and
the fixpoint iteration is done by an iteration using working lists. The non-determinism
information is approximated in a separate analysis. The analysis results are used to guide
the program transformation sketched above which produces the optimized Curry program.

Since our prototype does not support all features of Curry (e.g., no I/O), we have
tested it only on smaller benchmark programs. Since our transformation is intended to
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Benchmark ViaLOIS KiCS2 KiCS2
(original) (original) (optimized)

last2 n/a 1.34 0.94
last6 n/a 2.72 0.94
addNum2 1.25 1.54 0.01
addNum5 22.08 8.58 0.01
addPair 1.36 1.54 0.01
addTriple 4.45 3.65 0.01
half2 2.18 3.78 1.44
half5 4.97 6.37 1.44
dupList2 n/a 3.34 0.11
dupList5 n/a 52.49 0.11
select 22.51 6.37 0.01
queens n/a 36.62 1.26
psort 4.08 4.98 4.78

Table 1: Benchmarks comparing original and optimized programs

improve non-deterministic programs, we have selected programs where non-deterministic
operations occur as arguments.

The benchmarks were executed on a Linux machine running Linux (Ubuntu 11.10)
with an Intel Core i5 (2.53GHz) processor. We omit the analysis times since they are
less than 10 milliseconds for all presented examples. We tested two recent Curry im-
plementations that are based on the idea to present non-deterministic values in a data
structure: KiCS2 [20] with the Glasgow Haskell Compiler (GHC 7.0.3, option -O2) as
its back end, and ViaLOIS [14] with the OCaml native-code compiler (version 3.12.0)
as its back end. Table 1 shows the run times (in seconds) of a compiled executable
for different programs. The programs last2 and last6 compute the last element of a
list (of 10,000 elements) and add it two and six times to itself, respectively. addNum2

and addNum5 non-deterministically choose a number (out of 2000) and add it two and five
times, respectively. Similarly, addPair and addTriple non-deterministically create a pair
and triple of the same elements and add the components. half2 and half5 compute the
half of a number n (here: 2000) by solving the equation x+x=:=n and add the result two
and five times, respectively. dupList2 and dupList5 check a list xs (of 2000 elements)
whether it is a duplicated list by solving the equation ys+ys=:=xs and concatenating ys

two and five times, respectively. select non-deterministically selects an element in a list
and returns the element and a list computed by deleting the selected element. queens

computes all safe placements of eight queens on a chessboard by enumerating all place-
ments and non-deterministically checking whether two queens can attack each other. In
this example, the duplication of choices stems from lazy pattern matching, as pointed out
in [17, Sect. 6.9]. Finally, psort is the permutation sort example shown above applied to
a list of 14 elements. The appendix contains the complete code of all benchmarks.

Since ViaLOIS is in an experimental state, it does not support all features of Curry
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(in particular, free variables of type integer are not supported) so that some benchmarks
are not executable with ViaLOIS (marked by “n/a”). For the same reason, ViaLOIS does
not support the primitive operation “$!” necessary for the optimization presented in this
paper. Thus, the optimized programs are only executed with KiCS2. As one can see, the
improvements obtained by our optimization are quite relevant for the considered class of
programs. Only the improvement for psort is small since we cannot strictly evaluate the
complete permutation, as discussed in Section 4.

7 Conclusions

We have shown a program transformation to improve the efficiency of non-deterministic
computations in implementations of functional logic languages with a demand-driven
strategy. If such implementations support a variety of search strategies, in particular,
complete strategies, they often present the computation space in some tree structure which
is explored by the search strategy [14, 20, 21]. This has the risk that non-deterministic
structures are duplicated which increases the complexity of traversing the resulting struc-
tures. In order to overcome this disadvantage, we presented an analysis to approximate
demanded arguments and use this information to evaluate non-deterministic arguments
in a strict manner. We have also shown results from a prototypical implementation of
this approach.

Since this work is based on techniques from various domains ranging from implemen-
tations of declarative languages to program analysis frameworks for such languages, there
is a lot of related work. Since we already discussed related approaches throughout this
paper, we omit a further discussion here. For future work, our demand analysis should be
extended to enable the analysis of complete applications. This requires the appropriate
approximation of all primitive operations, including I/O operations, and a modular anal-
ysis to be applied to larger programs. Furthermore, the use of other abstract domains,
like rational trees, that can also approximate the demand of arbitrary large structures
(e.g., lists) is another interesting topic fur future work. However, the permutation sort
example shows that the presence of failures in non-deterministic computations need a
careful treatment to avoid an increase of the search space.
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A Benchmark Code

In the following we show the source code of all benchmarks used in Section 6.

A.1 Benchmark last

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

last xs | ys++[x]=:=xs = x where x,ys free

last2 xs = let x = last xs in x+x

last6 xs = let x = last xs in x+x+x+x+x+x

A.2 Benchmark add. . .

-- an arbitrary number between 1 and n:

ndnum n = if (n==1) then 1 else (n ? ndnum (n-1))

addNum2 n = let x = ndnum n in x+x

addNum5 n = let x = ndnum n in x+x+x+x+x

-- arbitrary tuples between 1 and n:

ndpair n = if (n==1) then (1,1) else ((n,n) ? ndpair (n-1))

ndtriple n = if (n==1) then (1,1,1) else ((n,n,n) ? ndtriple (n-1))

addPair n = x+y where (x,y) = ndpair n

addTriple n = x+y+z where (x,y,z) = ndtriple n

A.3 Benchmark half

data Peano = O | S Peano

toPeano :: Int → Peano
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toPeano n = if n==0 then O else S (toPeano (n-1))

fromPeano :: Peano → Int

fromPeano O = 0

fromPeano (S x) = fromPeano x + 1

equal :: Peano → Peano → Bool

equal O O = True

equal (S p) (S q) = equal p q

equal (S _) O = False

equal O (S _) = False

add :: Peano → Peano → Peano

add O p = p

add (S p) q = S (add p q)

half y | equal (add x x) (toPeano y) = fromPeano x where x free

half2 n = let x = half n in x+x

half5 n = let x = half n in x+x+x+x+x

A.4 Benchmark dupList

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

length [] = 0

length (_:xs) = 1 + length xs

findDuplicate s | x++x =:= s = x where x free

dupList2 n = let x = findDuplicate n in length (x++x)

dupList5 n = let x = findDuplicate n in length (x++x++x++x++x)

A.5 Benchmark select

someOf (x:xs) = x ? someOf xs

del x (y:ys) = if x==y then ys

else y : del x ys
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sum [] = 0

sum (x:xs) = x + sum xs

sumUp xs m = m + sum (del m xs)

select xs = sumUp xs (someOf xs)

main = select [1..100]

A.6 Benchmark queens

import SetFunctions

insert x [] = [x]

insert x (y:ys) = x:y:ys ? y:insert x ys

perm [] = []

perm (x:xs) = insert x (perm xs)

list n m = if n==m then [m]

else n : list (n+1) m

-- a placement is safe if it is a permutation without a capture:

queens n = safe (perm (list 1 n))

-- we use set functions [10] to check whether that there is no capture

-- for the given placement:

safe p | isEmpty (set1 unsafe p) = p

-- a position is unsafe if there is a diagonal capture:

unsafe xs = capture (membersWithDelta xs)

capture (i,lenZ,j) | abs (i-j)-1 == lenZ = success

abs i = if i<0 then 0-i else i

-- compute some element of a list with its position:

memberWithIndex :: [a] → (a,Int)

memberWithIndex xs = memberWithIndex’ 0 xs

memberWithIndex’ i (x:xs) = (x,i) ? memberWithIndex’ (i+1) xs

-- compute some element of a list with the list of subsequent elements:

memberWithRest :: [a] → (a,[a])
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memberWithRest (x:xs) = (x,xs) ? memberWithRest xs

-- compute two elements of a list together with their distance

-- (the assertion x+i+y>0 is added for more demand since the

-- current demand analysis is not general enough for lets)

membersWithDelta l | x+i+y>0 = (x,i,y)

where (x,xs) = memberWithRest l

(y,i) = memberWithIndex xs

main = queens 8

A.7 Benchmark psort

import Constraint

insert x [] = [x]

insert x (y:ys) = (x:y:ys) ? (y:insert x ys)

perm [] = []

perm (x:xs) = insert x (perm xs)

psort xs = checkSorted (perm xs)

checkSorted ys | sorted ys = ys

sorted [] = success

sorted [_] = success

sorted (x:y:ys) = x<=:y & sorted (y:ys)

main = psort [14,13..1]
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