
Demand-driven Search

in Functional Logic

Programs

Michael Hanus - Pierre Réty

RWTH Aachen - Université d’Orléans, LIFO

Rapport No 98-08

Demand-driven Search in Functional Logic Programs

Michael Hanus∗

RWTH Aachen

Pierre Réty†

Université d’Orléans

Abstract

In this paper we discuss the advantage of lazy functional logic languages to solve

search problems. We show that the lazy evaluation strategy of such languages can be

easily exploited to implement a solver that explores only the dynamically demanded

parts of the search space. In contrast to pure logic programming, the use of non-

deterministic functions enables a modular and simple implementation without the risk

of floundering. Furthermore, a local encapsulation of search is useful to avoid the com-

binatorial explosion of the demanded search space. The necessary features (laziness,

non-deterministic functions, encapsulated search) are available in Curry, a new declar-

ative language intended to combine functional and logic programming techniques.

We demonstrate the advantage of this approach with a musical application imple-

mented in Curry: the generation of appropriate chords for the accompaniment of a

given melody.

Keywords: functional logic programming, lazy evaluation, search, practical applica-

tion

1 Introduction

Declarative programming is motivated by the fact that a higher programming level using

powerful abstraction facilities leads to reliable and maintainable software. Thus, declarative

programming languages are based on mathematical formalisms and abstract from many

details of the concrete hardware and the implementation of the programs on this hardware.

For instance, pointers are avoided and replaced by the use of algebraic data types, and

complex procedures are split into easily comprehensible parts using pattern matching and

local definitions.

Unfortunately, this general view of declarative programming is not supported by an un-

derlying programming paradigm since declarative programming is currently split into the

∗Informatik II, RWTH Aachen, D-52056 Aachen, Germany, hanus@informatik.rwth-aachen.de. Mi-

chael Hanus was partially supported by the German Research Council (DFG) under grant Ha 2457/1-1 and

by a grant from the Université d’Orléans (invited professor position number 0542).
†LIFO - Université d’Orléans, B.P. 6759, F-45067 Orléans cedex 2, France, rety@lifo.univ-orleans.fr

2

areas of functional programming and logic programming. This situation has negative con-

sequences w.r.t. to teaching (usually, there are different courses on functional programming

and logic programming, and students do not see many similarities between them), research

(each field has its own community, conferences, and journals, and sometimes similar solu-

tions are developed twice), and applications (each field has its own application areas and

some effort has been done to show that one paradigm can cover applications of the other

paradigm [25] instead of showing the advantages of declarative programming in various ap-

plication fields, which might be also a reason for the quite limited influence of declarative

programming to “real world” computing).

Each paradigm has its advantages (functional programming: nested expressions, efficient

evaluation by deterministic (often lazy) evaluation, higher-order functions; logic program-

ming: existentially quantified variables, constraints, partial data structures, built-in search).

On the other hand, functional and logic languages have a common kernel and can be seen as

different facets of a single idea. For instance, the use of algebraic data types instead of point-

ers and the definition of local comprehensible cases by pattern matching and local definitions

instead of complex procedures are emphasized in functional as well as logic programming.

Therefore, many researchers proposed integrated functional logic languages which cover fea-

tures from functional as well as logic programming (see [10] for a survey). Most of the

recent proposals advocate lazy evaluation strategies (e.g., Babel [19], Curry [13], Escher [16],

K-LEAF [7]). More recently, a number of interesting techniques and extensions have been

developed in this area, like optimal evaluation strategies [2, 3], non-deterministic functions

[2, 8], or encapsulated search [12, 22]. This raises the question how these different features

can be exploited in practice. In the following we want to answer it.

For this purpose we consider the multi-paradigm language Curry [13], a new declarative

language intended to combine functional, logic and concurrent programming paradigms (we

ignore the concurrent aspects of Curry here since they are not important for the application

area considered in this paper). Since Curry contains the features mentioned above, it is

an appropriate basis to discuss the advantages of combining them in a single language.

We show that the lazy evaluation of non-deterministic functions can be easily exploited

to implement a solver that explores only the dynamically demanded parts of the search

space. In contrast to pure logic programming, the use of non-deterministic functions in an

integrated language provides for a modular implementation without the risk of floundering.

Furthermore, we can avoid the combinatorial explosion of the demanded search space by

the encapsulation of local search problems. The latter is also necessary to combine the non-

deterministic evaluation strategy from logic programming with the monadic I/O concept

[26] from functional programming. We demonstrate the advantages of these programming

techniques with a musical application implemented in Curry: a program for the generation

of appropriate chords for the accompaniment of a given melody.

In the next section, we introduce the basic features and computation model of Curry.

Section 3 discusses general methods to implement demand-driven search strategies. The

description of our musical application is contained in Section 4.

3

2 Basic Features of Curry

This section provides an informal introduction to the computation model and basic features

of Curry which are used in the subsequent sections. More details can be found in [11, 12]

and in the language definition [13].

A Curry program is a set of functions operating on values described as algebraic data

types. Predicates are nothing special as in logic programming but are represented as Boolean

functions. Thus, a Curry program looks very much like a functional program which is the

reason for using a Haskell-like syntax [15]. To be more precise, we consider values as data

terms constructed from constants and data constructors. These are introduced through data

type declarations like

data Bool = True | False

data Nat = Z | S Nat

data List a = [] | a : List a

True and False are the Boolean constants, Z and S are the zero value and the successor

function to construct natural numbers,1 and [] (empty list) and : (non-empty list) are the

constructors for polymorphic lists (a is a type variable ranging over all types).

A data term is a well-formed expression containing variables, constants and data con-

structors, e.g., (S Z) or [x,y] (the latter stands for x:y:[]). The meaning of functions

operating on data terms is specified by rules (or equations) of the form l | {c} = r where

l is a pattern, i.e., l has the form f t1 . . . tn with f being a function, t1, . . . , tn data terms

and each variable occurs only once, and r is a well-formed expression containing function

calls, constants, data constructors and variables from l and c. The condition c is a constraint

which consists of a conjunction of equations (or other expressions of type Constraint) and

optionally contains a list of locally declared variables (which are considered as existentially

quantified), i.e., a constraint can have the form let v1, . . . , vk free in {eq1, . . . , eqn} where

the variables vi are only visible in the equations eq1, . . . , eqn. If a local variable v of a condition

should be also visible in the right-hand side, the rule is written as l | {c} = r where v free.

A rule can be applied if its condition is satisfiable. An empty condition ({}) is always sat-

isfiable and can be omitted. A head normal form is a variable, a constant, or an expression

of the form C e1 . . . en where C is a data constructor. A Curry program is a set of data type

declarations and equations.

Example 1 Assume that the above data type declarations are given. Then the following

rules define the addition on natural numbers:

add Z n = n

add (S m) n = S(add m n)

Using this addition function, we can define the subtraction of natural numbers as follows:

1Curry has also built-in integer values and arithmetic functions. We use here the explicit definition of

naturals only to provide some simple and self-contained examples.

4

sub m n | {add n d = m} = d where d free

By solving the equation “add n d = m”, the difference d between m and n is computed. 2
To compute the value of an expression, i.e., a data term which is equivalent (w.r.t. the

program rules) to the initial expression, we apply the program rules from left to right to

(sub)expressions. For instance, we compute the value of add (S Z) (S Z) by applying the

rules for addition to this expression:

add (S Z) (S Z) → S(add Z (S Z)) → S(S Z)

To provide optimal evaluation strategies and to support demand-driven programming tech-

niques (e.g., infinite data structures or demand-driven search), Curry is based on a lazy

evaluation strategy, i.e., if more than one function call occurs in an expression, outer-

most expressions are evaluated first.2 For instance, in order to evaluate the expression

“add (add Z (S Z)) Z”, the first subterm (add Z (S Z)) is the leftmost outermost redu-

cible expression which must be evaluated to head normal form (in this case: (S Z)) since

its value is required by all rules defining add (such an argument is also called demanded).

Note that the definition of a “program” as a set of equations allows the definitions of

functions which could have more than one result value for a given input. Such functions are

called non-deterministic and their declarative meaning and use is justified by a framework

for non-deterministic rewriting [8].

Example 2 Consider the non-deterministic function choose which selects one of its argu-

ments:

choose x y = x

choose x y = y

The evaluation of the expression choose 1 2 has the result 1 or 2 which is written as

choose 1 2 → 1 | 2

(“|” denotes a disjunction). Based on this function, we can define a non-deterministic

function insert for inserting elements in a list and a non-deterministic function permute

for computing all permutations of a list:

insert x [] = [x]

insert x (y:ys) = choose (x:y:ys) (y:insert x ys)

permute [] = []

permute (x:xs) = insert x (permute xs)

Thus, permute [1,2,3] evaluates to all permutations of the list [1,2,3]:

2Usually, the leftmost outermost reducible expression is evaluated first, but there are also situations where

the evaluation of another outermost reducible expression is preferred, see [11] for details.

5

permute [1,2,3] →∗

[1,2,3] | [2,1,3] | [2,3,1] | [1,3,2] | [3,1,2] | [3,2,1] 2
Non-deterministic evaluation is one aspect of logic programming. The other, equally im-

portant aspect is the computation with partially instantiated structures and existentially

quantified variables. For this purpose, an expression may contain free variables (introduced

by a surrounding declaration of the form let. . .free or where. . .free). In this case the

expression may not be simply reducible but the free variables must be instantiated in order

to apply a reduction step. Fortunately, it requires only a slight extension of the reduction

strategy to deal with non-ground expressions and variable instantiation: if the value of a

free variable is demanded by the left-hand sides of program rules in order to proceed the

computation, the variable is non-deterministically bound to the different demanded values.

Example 3 Consider the function f defined by the rules

f 0 = 2

f 1 = 3

Then the expression “f x” with the free variable x is evaluated to 2 or 3 by binding x to 0

or 1, respectively. 2
To show the computed values (like in functional programming) as well as the different variable

bindings (answers, like in logic programming), we denote the result of a computation as a

disjunction of answer/expression pairs. For instance, the evaluation of “f x” in the previous

example is presented as

f x → {x 7→ 0} 2 | {x 7→ 1} 3

where {x 7→ 0} is a substitution (binding) and {x 7→ 0} 2 represents an answer/expression

pair (read as “the expression reduces to 2 under the substitution {x 7→ 0}”). In gen-

eral, a substitution is a mapping from variables into terms and we denote it by σ = {x1 7→

t1, . . . , xn 7→ tn}. A computation step is called non-deterministic if it reduces an expression to

a disjunction with more than one alternative, otherwise it is called deterministic. Functional

programming is the special case where all steps are deterministic and all computed substitu-

tions are the identity. For inductively sequential programs [1] (these are, roughly speaking,

function definitions without overlapping left-hand sides), the described evaluation method is

identical to needed narrowing [3] which enjoys several optimality properties. Needed narrow-

ing computes the shortest possible successful derivations (if common subterms are shared)

and a minimal set of solutions, and it is fully deterministic if free variables do not occur.

To solve equations between expressions containing defined functions, as required by the

application of conditional rules (see function sub in Example 1), both sides must be reduced

to unifiable data terms. For instance, to evaluate the expression “sub S(S Z) (S Z)” w.r.t.

Example 1, the equation “add (S Z) d = S(S Z)” is solved by evaluating the left-hand side

6

to S d and by unifying it with S(S Z) which yields the binding {d 7→ S Z}. In general, an

equation or equational constraint {e1=e2} is satisfied if both sides e1 and e2 are reducible to

a same data term. As a consequence, if both sides are undefined (non-terminating), then

the equality does not hold.3 Operationally, an equational constraint {e1=e2} is solved by

evaluating e1 and e2 to unifiable data terms where the lazy evaluation of the expressions

is interleaved with the binding of variables to constructor terms [17]. Constraints can also

be evaluated concurrently similarly to the framework of concurrent constraint programming

[21] but we omit the concurrency features of Curry here since they are not important for the

application area considered in this paper.

The final feature of Curry which is important in this paper is the encapsulation of search

[12, 22]. As shown above, the evaluation of expressions might produce non-deterministic

steps due to non-deterministic functions or non-deterministic variable bindings. Instead of

fixing a particular strategy to explore all alternatives of non-deterministic computation steps,

like backtracking in Prolog, Curry is based on a more flexible approach: the programmer can

decide how the search space is traversed. For this purpose, Curry has a primitive function

try with type

try :: (a->Constraint) -> [a->Constraint]

Thus, try takes a search goal as input and produces a list of search goals as output. A

search goal is a constraint together with an abstracted search variable for which we want

to compute values, i.e., if we are interested in solutions for the variable x such that the

constraint c is satisfied, then the search goal has the form \x->c (this is the notation for the

lambda abstraction λx.c). try evaluates the constraint of the argument search goal until

the computation finishes or does a non-deterministic step. In the latter case, the different

alternatives of the disjunction are returned as a list of search goals so that the programmer

can decide which search goal is evaluated next. Based on try, one can define various search

strategies, like depth-first search, breadth-first search, iterative deepening, or best solution

search with branch and bound (see [12, 22]), as ordinary Curry programs. For instance, all

is a search operator which returns a list of all solutions found by a depth-first search strategy.

Thus, the expression “all \x->{add (S Z) x = S(S Z)}” returns the singleton solution list

[\x->{x=(S Z)}]. The concrete value for the search variable can be accessed by applying

the solved search goal to an unbound variable. This is done in the search operator findall

[12] which behaves like all but yields a list of values (bindings for the search variable) instead

of a list of solved search goals, i.e., “findall \x->{add (S Z) x = S(S Z)}” evaluates to

[(S Z)].

The important aspect of the search operator is not only its possibility to implement easily

different search strategies but also its ability to encapsulate non-deterministic computations.

On the one hand, this is advantageous to combine non-deterministic evaluations with a main

program doing monadic I/O [12]. On the other hand, this can also avoid the combinatorial

3This notion of equality is also known as strict equality [7, 19] and is the only reasonable notion of equality

in the presence of non-terminating functions.

7

explosion of the search space in case of independent subgoals. For instance, consider the

predicates p(x) with solutions {x 7→ 0}, {x 7→ 1}, {x 7→ 2} and q(y) with solutions {y 7→

2}, {y 7→ 3}, {y 7→ 4}. The combined goal p(x) ∧ q(y) has the 9 solutions

{x 7→ 0, y 7→ 2} {x 7→ 0, y 7→ 3} {x 7→ 0, y 7→ 4}

{x 7→ 1, y 7→ 2} {x 7→ 1, y 7→ 3} {x 7→ 1, y 7→ 4}

{x 7→ 2, y 7→ 2} {x 7→ 2, y 7→ 3} {x 7→ 2, y 7→ 4}

This explosion can be avoided by representing the solutions as independent disjunctions,

e.g., by evaluating the expression [all \x->{p(x)=True}, all \y->{q(y)=True}] to

[[\x->{x=0},\x->{x=1},\x->{x=2}], [\y->{y=2},\y->{y=3},\y->{y=4}]]

Such a “disjunctive” representation of solutions is useful in applications where several good

solutions exist for independent subproblems. An example for such an application will be

shown in Section 4.

3 Programming Demand-driven Search

One of the distinguishing ideas of declarative programming is to describe problems by (ex-

ecutable) specifications instead of (low-level) imperative programs. Therefore, declarative

programming, in particular (constraint) logic programming, is often applied in areas where

non-deterministic search is used instead of applying exact algorithms to solve the problem

(which are often unknown). The problem of programming with search is to formulate the

program in such a way that the explored search space is not too large in order to compute

a solution. In this section we discuss various known methods to implement search problems

before we describe a demand-driven method which can be easily implemented in a functional

logic language like Curry.

Since the theory of logic programming is based on the non-deterministic resolution prin-

ciple (which is implemented in Prolog by backtracking), logic programming is often con-

sidered as an appropriate language to implement search problems. The simplest search

method well known in algorithm design is generate-and-test. The idea is to provide a non-

deterministic generator which generates candidate solutions to the problem and a tester

which checks whether a candidate solution is an actual solution to the problem. In Pro-

log [23], one can express the combination of the generator and the tester to solve a search

problem by the clause

solve(X) :- generate(X), test(X).

Due to the left-to-right selection strategy of Prolog, the generator generate binds X to a first

candidate solution which is then checked by test(X). If this test fails, the next candidate

solution is computed by backtracking, tested and so on. For instance, a naive program to

sort a list Xs by enumerating and testing all permutations of Xs is expressed as follows (see

[23, Program 3.20] for the concrete definition of permute and ordered):

8

psort(Xs,Ys) :- permute(Xs,Ys), ordered(Ys).

Generate-and-test programs in this naive form are often highly inefficient since all candidate

solutions are completely generated by backtracking before each of them is tested (the above

program has a complexity of O(n!) for an input list of length n).

The techniques to implement backtracking in a lazy functional language [25] are not

very helpful to avoid the complete exploration of the search space. Backtracking can be

programmed in a functional language by implementing the non-deterministic generator as

a function which returns the list of all candidate solutions and the tester as a filter on this

list. For instance, if the function perms returns the list of all permutations of its argument

list and the Boolean function sorted is true if its argument is a sorted list, then we can

compute the sorted lists by the following list comprehension in Haskell [15]:

psort xs = [ys | ys<-perms xs, sorted ys]

The lazy evaluation strategy of Haskell has the effect that some parts of the permutations

are not considered if they already start in a wrong order (e.g., [4,3,...]). However, the

entire list of all permutations is generated since sorted acts as a filter on all list elements,

i.e., the complexity is still O(n!).

The efficiency of generate-and-test can be improved by intertwining the tester with the

generator by “pushing” the tester inside the generator. This is possible by changing the

program code for each individual generate-and-test program, but it is not satisfying since

it requires a lot of effort for each program and it decreases the modularity of the original

generate-and-test formulation. In Prolog systems with coroutining, one can intertwine the

tester and generator without loosing modularity by transforming generate-and-test into test-

and-generate [20], i.e., the general scheme is changed to

solve(X) :- test(X), generate(X).

where the predicate test is delayed until its argument is sufficiently instantiated to check

the solution in a deterministic way. This is possible by adding a “wait” declaration (or when,

freeze, block etc. in other Prolog systems) to the predicate test. For instance, we can

rewrite the clause for psort above as

psort(Xs,Ys) :- ordered(Ys), permute(Xs,Ys).

and add a wait declaration to ordered. Then the goal ?- psort([4,3,2,1],S) is executed

in the following way: After applying the above clause to this goal, the literal ordered(S)

is delayed and the literal permute([4,3,2,1],S) will be evaluated. If S is bound to the

first part of a permutation of [4,3,2,1] (i.e., a list with two elements and a variable at the

tail), then ordered(S) is activated. If the first two elements of S are in the wrong order,

then the computation fails and another permutation is tried, otherwise ordered is delayed

again until the next part of the permutation is generated. Hence, not all permutations are

completely computed and therefore the execution time is better than in the generate-and-

9

test approach. Naish [20] presented an algorithm which generates the wait declarations from

a given program and transforms the program by reordering the goals in a clause. Although

this approach seems to be attractive, it has some problems. For instance, the generation of

wait declarations is based on heuristics and therefore it is unclear whether these heuristics

are generally successful. Moreover, it is possible that the annotated program flounders, i.e.,

all subgoals are delayed which is considered as a run-time error. Hence completeness of

SLD-resolution can be lost when transforming a logic program into a program with wait

declarations (see [9, 24] for some examples). Other interesting approaches to decrease the

search space of logic programs by improving the control behavior are presented in [5, 24] but

they are also based on heuristics and complex program analysis techniques.

We argue that the use of functional logic languages provides much simpler and modular

methods to reduce the search space. This was discussed for the first time in [6] and con-

firmed by results from a practical implementation in [9]. These improvements were based

on functional logic languages (ALF [9], SLOG [6]) that combine an overall eager evaluation

strategy with a simplification of goals between non-deterministic evaluation steps. This

allows to keep the general generate-and-test formulation of the programs, but the simplific-

ation has the effect that partially instantiated test expressions like ordered([4,3|Xs]) are

reduced to false which causes the failure of that computation branch. Due to the exist-

ing completeness results for this strategy, the incompleteness (floundering) problems of the

“test-and-generate” technique above are avoided. The remaining problem of this technique

is the generation of appropriate rules for simplification ([9] discusses methods for this).

If we use a functional logic language with a lazy evaluation strategy, we can easily im-

plement a demand-driven search strategy without complicated simplification rules. The idea

is to implement the generator as a non-deterministic function which computes all candidate

solutions and the tester as a function taking a candidate solution and yielding an appropriate

result if its argument is an actual solution to the problem. Thus, the problem is solved by

evaluating the expression

test(generate)

Due to lazy evaluation, the argument generate is only evaluated as requested by the tester,

i.e., only those parts of the search space are explored that are necessary to compute the actual

solutions to the problem. Thus, we obtain a demand-driven search strategy in a modular way

(i.e., without intertwining the actual code for the generator and tester).

Example 4 Consider the non-deterministic function permute defined in Example 2 which

is a generator for permutations. The following function sorted, which is the identity on

ascending sorted lists, acts as a tester:

sorted [] = []

sorted [x] = [x]

sorted (x:y:ys) | {x<=y = True} = x : sorted (y:ys)

Thus, we obtain the entire solution to the sorting problem by:

10

psort xs = sorted (permute xs)

The operational behavior of this implementation is as follows. Consider the evaluation of

psort [n,n−1,. . .,2,1]. By definition of sorted, at least the first two elements of the list

permute [n,. . .,2,1] must be computed in order to apply a rule to the call for sorted.

Thus, one alternative evaluates permute [n,. . .,2,1] to n:n−1:permute [n−2,. . .,2,1].

This alternative is immediately discarded, since sorted is not defined on such a list, which

completely avoids the enumeration of the permutations of [n−2,. . .,2,1] (i.e., (n − 2)!

alternatives). The following table contains the number of alternatives in the search space

for the generate-and-test implementation and this demand-driven implementation “test-of-

generate” (the initial list has always the form [n,n−1,. . .,2,1]).

Length of the list: 4 5 6 7 8 9 10

generate-and-test 24 120 720 5040 40320 362880 3628800

test-of-generate 19 59 180 544 1637 4917 14758

Thus, the “test-of-generate” approach yields the same size of the search space as in the

“test-and-generate” approach in Prolog with coroutining, as described above, but without

the risk of floundering. 2
Note that the demand-driven generation of the search space is independent of the actual

strategy to traverse the search space like depth-first or breadth-first search. Therefore, we

will combine the demand-driven search technique with the encapsulation of search to avoid

a combinatorial explosion caused by combining the results of independent subproblems (as

discussed in the previous section) in our application which will be presented in the next

section.

4 A Musical Application

4.1 The Problem

The problem to be solved by our application is easily stated: For a given melody of a piece

of music, which is provided by the user, an appropriate accompaniment composed of chords

should be computed. For instance, these chords can be used to accompany the melody with

a guitar. For each bar of the melody, the program should propose one or several choices for

the chords (frequently, one major chord and one minor chord), among which the musician

can choose according to his/her sensibility. Nevertheless, all proposed chords should be in

harmony with given melody, i.e., big dissonances should be avoided. A change of a chord is

allowed at the beginning of each half bar, if useful from a musical point of view. Otherwise,

the same chord may cover a whole bar or even several consecutive bars.

The input to the program is the melody represented as a list of bars. A bar is a list of

pairs of the form (note,dur) where dur is the duration of the note, i.e., an integer in the

interval [1..8]. The duration 1 denotes a eighth note, so the duration 8 denotes a whole note,

11

i.e., a note that fills an entire 4/4 bar. Thus, the sum of all durations in each bar must be 8

where rests can be included like notes.

The output of the program is a list of accompaniment choices for each bar of the input.

Each accompaniment choice contains one or several choices for the chords which are repres-

ented similarly as the input melody. The different choices are separated by the symbol “||”

on the printed output and each accompaniment choice is printed in one line. For instance,

the output line

F_maj/8 || A_min/4 D_min/4

means that the F major chord suits for the whole bar but also A minor for the first half bar

and D minor for the second one.

Restrictions. Our current program is a first prototypical solution to this problem. It only

deals with melodies written in the C major scale (or A minor) without accidentals, using 4/4

bars. It could easily be extended to any tonality by performing a translation on the notes

and to other kinds of bars by a few modifications. Moreover, other kinds of rhythms can be

integrated by allowing chord changes not only at the beginning of half bars.

4.2 Musical Rules Used in our Solution

The musical harmonization rules depend on the style of music. We only consider the style of

traditional songs. Each bar is considered independently of the other since only the melody

inside a bar is relevant for the chords in that bar (with a possible exception for the first or

final bar of a song). The general idea is to compute the chords with a minimal dissonance

between the notes in the chord and the notes in the melody while playing this chord. For

this purpose, we use a local criterion for each chord and a global criterion for each bar.

The local criterion. A chord C fits to a melody bar or half-bar M , if every note included

in C belongs to the scale of M4 and the dissonance between the notes of C and those of M

is not greater than some bound.

When two notes are sounding at the same time, there is a dissonance5 if the distance

between them is 1/2 or 1 tone. In other words, the unison as well as a bigger distance causes

no dissonance. The dissonance between a given note n and a chord C is the dissonance of

the smallest distance between n and the notes of C. The dissonance value between n and C

is 1 in case of a dissonance and otherwise 0. The dissonance value is also 0 if n is a rest.

Since both M and C may contain several notes, there is necessarily some quantity of

dissonance when C is sounding while M is being played. However, to be pleasant, this

quantity must not be too large. Formally, if M is [(n1,d1),...,(np,dp)] (d1, . . . , dp are

4With our current restrictions, this means that C contains neither flat nor sharp notes.
5This causes an unpleasant effect for the listener.

12

the durations of the notes n1, . . . , np) and dissi denotes the dissonance value between ni and

C, we define the dissonance value dv(C, M) between chord C and melody M by

dv(C, M) = 3(
p∑

i=1

dissi ∗ di) + diss1or2

where diss1or2 is diss1, if n1 is not a rest, and diss2 otherwise. By adding diss1or2, the first

non-silence note has a slightly stronger weight.

The bound (the maximal allowed dissonance value for a chord) is d′

1
+ · · · + d′

p, where

d′

i = di if ni is not a rest, otherwise d′

i = 0. Since we defined that there is no dissonance

between a chord and a rest, we must not take into account rests when computing the bound.

Note that if there is no rest, the bound is equal to the duration of M .

Example 5 Consider the melody half bar [(C,2),(A,1),(G,1)]. The C major chord con-

tains the notes C, E, G. Thus, the only dissonance between it and the melody comes from

the note (A,1) which yields the dissonance value 3. The bound for this half-bar is 4 since it

does not include any rests. Therefore, the C major chord satisfies the local criterion. 2
The global criterion. This criterion becomes relevant if there is more than one chord in

a bar in order to obtain a nice accompaniment. Therefore, the global criterion is identical

to the local if M is an entire melody bar with a single chord of the duration of the bar.

On the other hand, if no single chord satisfies the local criterion, it is necessary to split the

melody bar M into two halves M1 and M2 and to compute two chords C1 and C2 that fit to

M1 and M2, respectively. From a musical point of view, we cannot deduce immediately that

the composition C1 · C2 fits to the entire bar M . We require that the use of two chords C1

and C2 for covering a bar should produce a global dissonance less than if using one chord,

since the possibility of changing chords at the middle of the bar allows to get chords that

fit better. If M does not contain any rest, the local criterion forces both dissonance values

dv(C1, M1) and dv(M2, C2) to be less or equal to 4. Our global criterion defines that the

sum dv(C1, M1) + dv(M2, C2) must be less or equal to 6.

As a consequence, C1 and C2 cannot be considered independently. For instance, if C ′

1

also fits to M1, then [(C1,4),(C2,4)] may be a solution whereas [(C ′

1
,4),(C2,4)] may

be not due to the global criterion.

Example 6 Consider the melody bar [(C,2),(A,1),(G,1),(B,1),(F,1),(D,2)] and the

chord bar [(C_maj,4), (D_min,4)]. For the chord C_maj, the local dissonance is 3, as

already seen in Example 5. The chord D_min contains the notes D, F, A. The dissonance

between it and the second half bar comes from the note (B,1), which yields the dissonance

value 3+1 since (B,1) is the first note of this half bar. Both chords satisfy the local criterion,

but the chord bar does not satisfy the global criterion since the global dissonance value is 7.2
13

4.3 The Implementation

In this section we sketch our implementation and explain how it profits from the described

features of the functional logic language Curry: non-deterministic functions, laziness, and

encapsulated search.

The data types Note and Chord define the possible notes (R denotes a rest) and chords

occurring in the program:

data Note = C | D | E | F | G | A | B | R

data Chord = C_maj | D_maj | E_maj | F_maj | G_maj | G_maj7 |

A_maj | B_maj |

C_min | D_min | E_min | F_min | G_min | A_min | B_min

Thus, the melody is a list of bars where each bar is a list of note/duration pairs, i.e., the

main program takes an argument of type [[(Note,Int)]].

As already mentioned, our program deals with each bar independently of the others.

For each bar, it behaves as a generate-and-test solver. The generation function non-

deterministically produces all chords that belong to the C major scale, and the test function

filters the chords that fit to the melody bar, i.e., it is a partial identity function defined

for convenient accompaniments, similarly to the function sorted in Example 4. Thus, the

generators are defined as

aChord = C_maj

aChord = F_maj

aChord = G_maj

aChord = G_maj7

aChord = D_min

aChord = E_min

aChord = A_min

one_chord_bar = [(aChord, 8)]

two_chord_bar = [(aChord, 4), (aChord, 4)]

Using a non-deterministic function for generating candidate solutions becomes relevant for

bars with more than one chord (i.e., two_chord_bar here and in possible extensions for

other rhythms) since the second and further chords are only generated if the previous chords

satisfy the local criterion.

From a musical point of view, it is useless to change the chord at the middle of a bar if

there exists a chord that can fit the whole bar. In other words, we look for solutions of the

type “one chord per half bar” only if there is no solution of the type “one chord per bar”.

This requirement can be easily implemented by the encapsulation of the local search. Thus,

the main function to compute all appropriate chords for a melody bar is defined as follows:

14

compute_bar :: [(Note, Int)] -> [([(Chord, Int)],Int)]

compute_bar mbar =

if one_chord_solutions == []

then bestOf (findall \x -> {checkBarDiss two_chord_bar mbar = x})

else bestOf one_chord_solutions

where one_chord_solutions =

findall \x -> {checkBarDiss one_chord_bar mbar = x}

The tester checkBarDiss takes a chord bar and a melody bar as input and yields the input

chord bar as output together with the overall dissonance value if the chord bar satisfies the

local and global criteria presented in Section 4.2. The dissonance value is used to filter the

best solutions with the smallest dissonance values (up to a variance of 1), which is done by

the function bestOf. Due to this implementation, the “two chords per bar” alternative is

only computed if the list of solutions w.r.t. “one chord per bar” is empty.

The encapsulation of search is also necessary to avoid the combinatorial explosion of

solutions by combining all solutions for each bar. The function compute_bar computes a

list of the best solutions for each bar (usually 2 or 3 different solutions). Combining these

solutions for a complete melody with n bars, as done in a simple Prolog implementation,

would result in approximately 2n different solutions. Instead of this naive approach, we

present the alternative solutions for each single bar, as explained in Section 4.1, so that the

output size is linear in the input size. Thus, the main program applies compute_bar to each

bar of the given melody and prints the result in a readable way.6 The main function run of

our implementation is defined as

run melody = foldr (>>) done (map (print_chord_alts . compute_bar) melody)

where print_chord_alts maps the alternative chords for a bar (computed by compute_bar)

into an appropriate print action to produce the output shown in Section 4.1 (see [26] for a

description of the monadic I/O technique).

This implementation can be extended in various ways. For instance, one could include

other tonalities, rhythms or beats. Another interesting extension is the connection of our

system with the Haskore libraries [14] in order to play the solutions computed by our system.

5 Conclusions

We have discussed the advantages of functional logic languages with a lazy evaluation

strategy to solve search problems. By the use of generators implemented as non-deterministic

functions, one can implement a demand-driven generation of the search space in a simple and

modular way. Moreover, the local encapsulation of search avoids the combinatorial explosion

caused by the combination of independent subproblems and is an appropriate programming

6The use of the monadic I/O technique [26] to print the final results is another argument for the necessity

of encapsulating the local search performed for each bar.

15

technique to combine non-deterministic logic-based computations with the functional concept

of doing input/output. Furthermore, we have shown how these programming techniques can

be fruitfully used in a musical application, namely the generation of appropriate chords for

the accompaniment of a given melody.

Since we are not aware of precise musical rules to compute good accompaniments for

songs, we have developed the criteria presented in Section 4.2 by our own. The use of a high-

level declarative language like Curry was very useful to find these criteria since it supported

the straightforward implementation and test of different criteria and measurements. We

have tested our criteria with existing songs and the results indicate that the criteria are

appropriate (see examples in the appendix).

For future work we plan to integrate further constraint systems than the current equations

between data terms into Curry, following the proposals [4, 18]. This opens the possibility

to exploit lazy evaluation and demand-driven search strategies also in applications from

constraint logic programming.

Acknowledgements. The authors are grateful to Frank Steiner for his comments on this

paper and for providing the implementation of encapsulated search.

References

[1] S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on Algebraic

and Logic Programming, pp. 143–157. Springer LNCS 632, 1992.

[2] S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc. Interna-

tional Conference on Algebraic and Logic Programming (ALP’97), pp. 16–30. Springer

LNCS 1298, 1997.

[3] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACM

Symposium on Principles of Programming Languages, pp. 268–279, Portland, 1994.

[4] P. Arenas-Sánchez, T. Hortalá-González, F.J. López-Fraguas, and E. Ullán-Hernández.

Functional Logic Programming with Real Numbers. In Proc. JICSLP’96 Workshop on

Multi-Paradigm Logic Programming, pp. 47–57. TU Berlin, Technical Report No. 96-28,

1996.

[5] M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling Control. Journal of Logic

Programming (6), pp. 135–162, 1989.

[6] L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Su-

perposition and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming,

pp. 172–184, Boston, 1985.

16

[7] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus

Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp.

139–185, 1991.

[8] J.C. Gonzáles-Moreno, M.T. Hortalá-Gonzáles, F.J. López-Fraguas, and M. Rodŕıguez-

Artalejo. A Rewriting Logic for Declarative Programming. In Proc. ESOP’96, pp.

156–172. Springer LNCS 1058, 1996.

[9] M. Hanus. Improving Control of Logic Programs by Using Functional Logic Languages.

In Proc. of the 4th International Symposium on Programming Language Implementation

and Logic Programming, pp. 1–23. Springer LNCS 631, 1992.

[10] M. Hanus. The Integration of Functions into Logic Programming: From Theory to

Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

[11] M. Hanus. A Unified Computation Model for Functional and Logic Programming. In

Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris),

pp. 80–93, 1997.

[12] M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In Proc. Joint

International Symposium PLILP/ALP’98. To appear in Springer LNCS, 1998.

[13] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at

http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1998.

[14] P. Hudak. Haskore Music Tutorial. Technical Report, Yale University, 1997.

[15] P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming Language

Haskell (Version 1.2). SIGPLAN Notices, Vol. 27, No. 5, 1992.

[16] J.W. Lloyd. Combining Functional and Logic Programming Languages. In Proc. of the

International Logic Programming Symposium, pp. 43–57, 1994.

[17] R. Loogen, F. Lopez Fraguas, and M. Rodŕıguez Artalejo. A Demand Driven Compu-

tation Strategy for Lazy Narrowing. In Proc. of the 5th International Symposium on

Programming Language Implementation and Logic Programming, pp. 184–200. Springer

LNCS 714, 1993.

[18] F.J. López Fraguas. A General Scheme for Constraint Functional Logic Programming.

In Proc. of the 3rd International Conference on Algebraic and Logic Programming, pp.

213–227. Springer LNCS 632, 1992.

[19] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions

and Predicates: The Language BABEL. Journal of Logic Programming, Vol. 12, pp.

191–223, 1992.

[20] L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

17

[21] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[22] C. Schulte and G. Smolka. Encapsulated Search for Higher-Order Concurrent Constraint

Programming. In Proc. of the 1994 International Logic Programming Symposium, pp.

505–520. MIT Press, 1994.

[23] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Massachusetts,

2nd edition, 1994.

[24] K. Verschaetse, D. De Schreye, and M. Bruynooghe. Generation And Compilation

of Efficient Computation Rules. In Proc. Seventh International Conference on Logic

Programming, pp. 700–714. MIT Press, 1990.

[25] P. Wadler. How to Replace Failure by a List of Successes. In Functional Programming

and Computer Architecture, pp. 113–128. Springer LNCS 201, 1985.

[26] P. Wadler. How to Declare an Imperative. In Proc. of the 1995 International Logic

Programming Symposium, pp. 18–32. MIT Press, 1995.

18

A Examples

To evaluate our implementation and our criteria for good accompaniments in songs (compare

Section 4.2), we have applied our program to some existing songs. The results for two songs

are presented in the following. Both example melodies are written in the tonality of C major

(or A minor), which is not necessarily the one used in the actual records.

Example 7 “Sounds of Silence” (by Simon and Garfunkel):

The melody written as a list of melody bars is as follows:

[[(R,2),(A,1),(A,1),(C,1),(C,1),(E,1),(E,1)], [(D,8)],

[(R,2),(G,1),(G,1),(B,1),(B,1),(D,1),(D,1)], [(C,8)],

[(R,2),(C,1),(C,1),(E,1),(E,1),(G,1),(G,1)], [(A,2),(A,1),(G,5)],

[(R,2),(C,1),(C,1),(E,1),(E,1),(G,1),(G,1)], [(A,2),(A,1),(G,5)],

[(R,2),(C,1),(C,1),(A,3),(A,1)], [(A,2),(A,1),(B,1),(C,3),(C,1)],

[(C,1),(B,1),(A,2),(G,4)], [(R,2),(A,1),(G,1),(E,4)],

[(R,1),(A,1),(A,1),(C,1),(G,4)], [(R,1),(B,3),(C,1),(A,3)]]

The chords chosen by Paul Simon are (written as a list of chord bars):

[[(A_min,8)], [(G_maj,8)], [(G_maj,8)],

[(A_min,8)], [(A_min,4),(C_maj,4)], [(F_maj,4),(C_maj,4)],

[(C_maj,8)], [(F_maj,4),(C_maj,4)], [(C_maj,4),(F_maj,4)],

[(F_maj,8)], [(F_maj,4),(C_maj,4)], [(C_maj,8)],

[(A_min,4),(C_maj,4)], [(G_maj,4),(A_min,4)]]

Our program finds this solution, up to a few slight differences. The output of our program

is:

Amin/8

Gmaj/8 || Dmin/8

Gmaj/8 || Gmaj7/8

Cmaj/8 || Amin/8

Cmaj/8

Fmaj/4 Cmaj/4 || Fmaj/4 Emin/4 || Amin/4 Cmaj/4 || Amin/4 Emin/4

Cmaj/8

Fmaj/4 Cmaj/4 || Fmaj/4 Emin/4 || Amin/4 Cmaj/4 || Amin/4 Emin/4

Fmaj/8 || Amin/8

Fmaj/8 || Amin/8

Fmaj/4 Cmaj/4 || Fmaj/4 Emin/4 || Amin/4 Cmaj/4 || Amin/4 Emin/4

Cmaj/8 || Emin/8 || Amin/8

Cmaj/8

Gmaj/4 Fmaj/4 || Gmaj/4 Amin/4 || Emin/4 Fmaj/4 || Emin/4 Amin/4

19

Note that without this “disjunctive” representation by the use of encapsulated search, 24576

different accompaniments would be computed for this melody. 2
Example 8 “Nicolas and Bart” (by J. Baez):

The melody written as a list of melody bars is as follows:

[[(E,6),(C,2)], [(D,6),(B,2)], [(C,2),(B,2),(A,4)], [(B,6),(R,2)],

[(E,6),(C,2)], [(D,6),(B,2)], [(C,2),(B,2),(A,4)], [(D,6),(R,2)],

[(G,6),(E,2)], [(F,6),(D,2)], [(D,2),(E,2),(F,4)], [(E,6),(R,2)],

[(E,6),(C,2)], [(D,6),(B,2)], [(C,4),(B,4)], [(A,8)]];

The chords chosen by J. Baez are (written as a list of chord bars):

[[(C_maj,8)], [(G_maj,8)], [(A_min,8)], [(G_maj,8)],

[(C_maj,8)], [(G_maj,8)], [(A_min,8)], [(G_maj,8)],

[(C_maj,8)], [(D_min,8)], [(G_maj,8)], [(C_maj,8)],

[(C_maj,8)], [(D_min,8)], [(A_min,4),(E_maj,4)], [(A_min,8)]]

Our program finds this solution, up to one difference:

Cmaj/8 || Emin/8

Gmaj/8 || Dmin/8

Fmaj/8 || Amin/8

Gmaj/8 || Emin/8

Cmaj/8 || Emin/8

Gmaj/8 || Dmin/8

Fmaj/8 || Amin/8

Gmaj/8 || Dmin/8

Cmaj/8 || Emin/8

Fmaj/8 || Dmin/8

Gmaj7/8 || Dmin/8

Cmaj/8 || Emin/8

Cmaj/8 || Emin/8

Gmaj/8 || Dmin/8

Cmaj/4 Gmaj/4 || Cmaj/4 Emin/4 || Amin/4 Gmaj/4 || Amin/4 Emin/4

Fmaj/8 || Amin/8

The last but one chord E_maj includes the foreign note G sharp. Replacing E_min by E_maj

is frequent, though not systematic. This scenario is not included in our program which yields

E_min for this half bar. 2
20

