
Electronic Notes in Theoretical Computer Science 57 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume57.html 8 pages

Reduction Strategies for Declarative
Programming

Michael Hanus 1

Institut für Informatik, Christian-Albrechts-Universität Kiel
D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract

This paper surveys reduction or evaluation strategies for functional and functional
logic programs. Reasonable reduction strategies for declarative languages must be
efficiently implementable to be useful in practice. On the other hand, they should
also support the programmers to write programs in a declarative way ignoring the
influence of the evaluation strategy to the success of a computation as good as
possible. We review existing reduction strategies along these lines and discuss some
aspects for further investigation.

1 Background

Although term and graph rewriting is a universal framework to investigate
operational principles for declarative (mainly functional) programming lan-
guages, research on particular reduction strategies is often done for general
rewrite systems, i.e., the special properties required for programming lan-
guages are not exploited. For instance, the usual restriction on rules found
in (functional as well as logic) programming languages is the requirement for
constructor-based rules, i.e., each left-hand side must contribute to the def-
inition of the function’s semantics in a constructive way. Syntactically, this
is ensured by allowing only constructor terms as arguments in each left-hand
side. It has been shown in [6] that this requirement alone is sufficient to pro-
vide (rewrite, model-theoretic, fixpoint) semantics for a rather general declar-
ative programming language. In particular, other conditions like confluence
or termination are not required (and also not desirable from a programming
language point of view, cf. [6]).

1 This research has been partially supported by the German Research Council (DFG) under
grant Ha 2457/1-2 and the DAAD/NSF under grant INT-9981317.

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume57.html


Hanus

On the other hand, techniques in term rewriting are often motivated by
problems in theorem proving or algebraic specifications where constructor-
based rules are considered as too restricted. Therefore, the reduction strategies
developed for general term rewriting systems had only a limited impact on the
operational semantics of programming languages. For instance, most of the
current functional languages are based either on a simple innermost strategy
(eager languages like Standard ML) or a simple left-to-right lazy strategy (like
in Haskell), although much more powerful reduction strategies are known. A
consequence of the use of such simple strategies is a more operational rather
than declarative view of programs. Since innermost rewriting is not normal-
izing, programmers of eager functional languages must carefully consider the
influence of the innermost evaluation strategy to the success of a computation
(e.g., introducing non-strict if-then-else expressions to avoid the evaluation of
some subterms). Unfortunately, lazy strategies do not help very much when
restricted to a simple left-to-right top-down pattern matching like in Haskell.
For instance, if one writes in a Haskell program the equation “f 1 = 1”, then
the expression “(f 1)” might reduce to “2”! 2 Furthermore, the standard re-
duction strategy might not terminate even for rewrite rules where a sequential
normalizing reduction strategy is known, as in this example:

g 0 [] = 0

g x (y:ys) = y

Consider a non-terminating function ⊥. Although the normal form of the
expression (g ⊥ [1]) is 1 (by the second rule for g), Haskell does not ter-
minate on this expression due to its strict left-to-right evaluation strategy
which causes the non-terminating evaluation of ⊥. As a consequence, rules in
Haskell cannot be interpreted as equations but all the rules defining a func-
tion in a Haskell program must be passed through a complex pattern-matching
compiler [17] in order to understand their meaning.

2 Improving Reduction Strategies to Support Declara-
tive Programming

The general objective of declarative programming is to support the develop-
ment of programs that are understandable without or with only a limited
consideration of the program’s execution. As shown above, the use of sim-
ple reduction strategies does not fully support this goal. Therefore, one has
to find reduction strategies that support a simple understanding as well as
an efficient execution of declarative programs. For the sake of a simple un-
derstanding, complex transformations to define the semantics of programs
should be avoided. Ideally, each component of a program should contribute

2 This strange behavior can happen if another equation like “f x = 2” occurs before the
equation “f 1 = 1” in the program text.

2



Hanus

to the semantics of the entire program in a compositional manner. Thus,
an equational reading of each program rule should be supported so that one
can check the validity of the program by checking its individual parts. As
a consequence, the textual order of program rules becomes less important.
The exact kind of “equational reading” might depend on the particular pro-
gramming language. For instance, a functional language based on confluent
(e.g., orthogonal) rewrite systems could interpret program rules as equations
in classical equational logic. However, a functional logic language allowing
non-deterministic functions defined by non-confluent rewrite systems could
be based on a rewrite logic where rewrite rules are only instantiated with
constructor terms [6].

Apart from these details, a reasonable reduction strategy to evaluate ex-
pressions should be normalizing, i.e., it should compute a normal form w.r.t.
the rewrite logic whenever it exists (without a termination requirement on
the set of rewrite rules). Such reduction strategies are known for a long time
in term rewriting (e.g., [12]) but have not been considered in realistic pro-
gramming languages (maybe due to the fact that they seem too complex in
the general case of term rewriting). For the reasons discussed above, it is
important to include more sophisticated reduction strategies in real program-
ming languages. A normalizing strategy supports the simple understanding of
programs. However, is it also possible to find an efficient strategy as well? For-
tunately, a lot of pieces of research are now available to base new declarative
programming languages on sophisticated efficient and normalizing reduction
strategies, but some substantial further research is still required as discussed
in the following.

One key idea to enable efficient evaluation strategies is the restriction to
constructor-based rules. As discussed above, this is not a real restriction for
programming languages but always satisfied if functions are defined in a con-
structive way. In the case of constructor-based rules, strongly sequential [12]
and inductively sequential [1] rewrite systems are identical [10]. Strongly se-
quential rewrite systems are those (orthogonal) systems for which a relative
efficient (i.e., sequential) reduction strategy exists. Since strongly sequen-
tial system are not necessarily constructor-based, the corresponding reduction
strategy is more complicated than those used in current implementations of
functional languages. However, for the interesting subclass of constructor-
based rewrite systems, an efficient reduction strategy can be defined by a
tree-like data structure, called definitional trees [1]. Reduction with defini-
tional trees is needed reduction, i.e., only those redexes are evaluated that need
to be evaluated in order to compute a normal form. Since definitional trees
can be translated into standard case expressions [11], this reduction strategy
can be implemented in any lazy functional language by replacing the standard
left-to-right pattern matching of [17] by a more sophisticated pattern matcher
[9]. For instance, the definition of function g in Section 1 can be translated
into

3



Hanus

g x1 x2 = case x2 of [] -> (case x1 of 0 -> 0)

(y:ys) -> y

so that the expression (g ⊥ [1]) reduces to 1 in one step. The same strategy
can also be used for functional logic languages where expressions might contain
free variables during evaluation. Such variables are (non-deterministically) in-
stantiated to constructor terms whenever this is necessary to proceed a com-
putation (i.e., they occur as the first argument of a case expression). This
evaluation strategy, called needed narrowing [4], is currently the best evalu-
ation strategy for functional logic languages since it computes the shortest
possible derivations and a minimal set of solutions (see [4] for details). More-
over, it reduces to a deterministic needed reduction strategy if free variables
do not occur and can be efficiently implemented, e.g., by a translation into
Prolog.

In inductively sequential systems, functions are inductively defined on the
data structures they are working on. Although this is a very natural require-
ment so that most functions have inductively sequential definitions, in some
applications (mainly applications written in a logic programming style) this is
too restrictive. In a functional logic language, which already provides a mech-
anism for don’t know non-determinism, there is one immediate extension of
inductively sequential programs: allow several right-hand sides for one left-
hand sides. This leads to the notion of non-deterministic functions which have
the property that calls to such functions might have several normal forms. For
instance, a call to the function coin defined by the rule

coin = 0 | 1

(where the vertical bar denotes an alternative between two expressions) re-
duces non-deterministically to the expression 0 or 1. A declarative semantics
for programs containing non-deterministic functions is defined in [6] and an
operational semantics can be based on an extension of needed reduction with
definitional trees [2].

Inductively sequential systems have the property that either a rule is ap-
plicable or there is a single argument position that must be reduced in order
to compute a normal form. However, sometimes it is very natural (from a
declarative point of view) to define functions in a form that does not satisfy
this property. For instance, if we represent sets as lists, the intersection of two
sets can be defined by the rules

intersection [] ys = []

intersection xs [] = []

intersection (x:xs) (y:ys) = · · ·

This natural definition does not contain a distinguished inductive argument
position since a rule for intersection is applicable if the first or the second
argument is reducible to []. Thus, a sequential needed reduction strategy is

4



Hanus

not applicable and current programming languages treat such definitions as
follows. Functional languages uses a kind of backtracking in pattern match-
ing, i.e., initially the first argument is evaluated and, if this is not successful
(i.e., not reducible to a demanded constructor), the second argument is eval-
uated. This has the drawback that a non-terminating evaluation of the first
argument inhibits the evaluation of the entire call. (Functional) logic lan-
guages evaluates both arguments in independent disjunctions which can cause
similar non-termination problems (when these disjunctions are implemented
by backtracking as in Prolog) or superfluous computations. One solution to
avoid these problems is the evaluation of both arguments in parallel, i.e., the
extension of a sequential reduction strategy (which always select a single re-
dex for the next reduction step) to a parallel reduction strategy which reduces
in each step a set of redexes. For instance, in a function call of the form
(intersection t1 t2), in each step both arguments t1 and t2 are stepwise
reduced towards a normal form (if possible). Although such parallel reduction
strategies have clear advantages and have been examined in [16] for functional
programming and [3] for functional logic programming, traditional abstract
machines for the efficient implementation of functional (logic) languages only
support sequential strategies so that the efficient implementation of parallel
reduction strategies needs some further investigation. Nevertheless, it is in-
teresting to note that parallel reduction or narrowing strategies may lead to
a more declarative programming style since the consequences of a particular
formulation of the program rules w.r.t. a sequential strategy do not need to be
considered. For instance, the textual ordering of rules is less important w.r.t.
a parallel strategy in contrast to a sequential strategy.

In the context of functional logic languages, the reduction of the search
space is similarly important as the requirement for a normalizing strategy
in purely functional languages. However, the techniques to achieve this are
still not sufficiently investigated. As shown in [3], there is a tradeoff between
the size of the search space and the length of the derivations. For instance,
one can reduce the number of different alternative substitutions computed
for the next narrowing step before actually performing the alternative (par-
allel) narrowing steps. This reduces the breadth of the search tree but possi-
bly increases the length of successful derivations. A technique to reduce the
number of narrowing steps in a derivation is the inclusion of a simplification
phase between narrowing steps: before a narrowing step is performed, the
expression is reduced w.r.t. a set of simplification rules. This idea has been
pioneered in the language SLOG [5] w.r.t. an innermost narrowing strategy
and terminating rewrite rules but its adaption to a lazy evaluation strategy,
where termination is not required, is less clear. One question is which kind
of simplification strategy should be used. Considering the discussion above,
a sophisticated reduction strategy (needed or parallel) is preferable. Another
question is the selection of appropriate simplification rules. For the complete-
ness of the narrowing strategy, it is important that the simplification phase

5



Hanus

is always terminating. This can be ensured by performing only a fixed finite
number of simplification steps (e.g., one parallel reduction step) or a compu-
tation of normal forms w.r.t. a set of simplification rules with a terminating
rewrite relation. Furthermore, one can also add inductive consequences to the
set of simplification rules which can further reduce the search space (see the
examples in [5] or [8]). Some of these options are discussed in [3], but the
influence of the different techniques to practical applications needs further re-
search. Furthermore, the efficient implementation of these techniques requires
a deeper investigation.

Apart from the design and implementation of evaluation strategies for
programs based on standard (constructor-based) rewrite rules, there are even
more questions when one takes extensions of these rewrite rules into account
that are desirable for application programming. These are (among others):

Higher-order features: From functional programming it is well known that
higher-order functions improve code reuse and compositionality. Functional
logic languages allow more possibilities to support higher-order features
than purely functional languages due to the fact that a free variable can
also denote a functional value. Moreover, it is also possible to allow lambda
abstractions as patterns, e.g., to specify scoping rules in programming lan-
guages [11]. In this general case, higher-order unification can be used to in-
stantiate free higher-order variables which is complete but computationally
expensive. If one does not allow lambda abstractions as patterns, general
higher-order unification is not needed but it is sufficient to instantiate free
higher-order variables to all partial applications of functions defined in the
program [7]. Although this reduces the complexity compared to higher-
order unification, the guessing steps for free higher-order variables are still
highly non-deterministic leading to huge search spaces. Another possibility
is the delay of these guessing steps—an approach used in the multi-paradigm
language Curry [9] (this requires an operational semantics supporting con-
current computations but has the risk of deadlocks, i.e., incomplete compu-
tations). Thus, there is a tradeoff between efficient handling, completeness
and expressiveness of higher-order features in functional logic languages and
the practical consequences of this tradeoff need some further research.

Default rules: The sequential top-to-bottom pattern matching strategy of
functional languages has the advantage that default rules, i.e., rules that are
applied when no other rule is applicable, can be easily defined by putting
them textually after all other rules. Although such default rules are only
an abbreviation for a set of rules with implicitly specified patterns and,
therefore, they are conceptually not needed, default rules are very useful for
application programming. Since in functional logic languages different rules
lead to different computations and solutions, the semantics of default rules is
less clear. Approaches to handle default rules are investigated, for instance,
in [13,14]. The operational techniques to handle default rules in functional
logic languages are much more involved than in purely functional languages

6



Hanus

so that their efficient treatment is less clear and needs further investigations.

Constraints: The advantages of using constraints is well known from many
areas, mainly logic programming. In particular, they improve the “declara-
tiveness” of programs by moving an explicit operational treatment of con-
straints into the constraint solver provided by the language’s implementa-
tion. Thus, functional logic languages should also offer these advantages by
including constraint structures into their computational domain. Although
all these languages offer equational constraints, the inclusion of other con-
straint domains is less clear. In particular, the interaction of lazy evaluation
with constraint solving is a new aspect w.r.t. purely (constraint) logic lan-
guages. [15] contains a recent proposal of functional logic programming
with constraints.

3 Conclusions

We have discussed some known reduction strategies for functional and func-
tional logic programs. Such declarative programs can be considered as
constructor-based rewrite systems. The restriction to constructor-based rules
enables the definition of efficient strategies for large classes of programs. We
have also discussed how sophisticated reduction strategies can lead to a more
declarative programming style since the programmer is less forced to consider
the influence of the reduction strategy on the success of a computation. How-
ever, there are many topics for further research that need to be investigated
before modern declarative languages can be fully based on such reduction
strategies.

References

[1] S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming, pp. 143–157. Springer LNCS 632, 1992.

[2] S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp.
16–30. Springer LNCS 1298, 1997.

[3] S. Antoy, R. Echahed, and M. Hanus. Parallel Evaluation Strategies
for Functional Logic Languages. In Proc. of the Fourteenth International
Conference on Logic Programming (ICLP’97), pp. 138–152. MIT Press, 1997.

[4] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal
of the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

[5] L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on
Clausal Superposition and Rewriting. In Proc. IEEE Internat. Symposium on
Logic Programming, pp. 172–184, Boston, 1985.

7



Hanus

[6] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, Vol. 40, pp. 47–87, 1999.

[7] J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. A
Higher Order Rewriting Logic for Functional Logic Programming. In Proc. of
the Fourteenth International Conference on Logic Programming (ICLP’97), pp.
153–167. MIT Press, 1997.

[8] M. Hanus. Lazy Narrowing with Simplification. Computer Languages, Vol. 23,
No. 2–4, pp. 61–85, 1997.

[9] M. Hanus. A Unified Computation Model for Functional and Logic
Programming. In Proc. of the 24th ACM Symposium on Principles of
Programming Languages (Paris), pp. 80–93, 1997.

[10] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential and inductively
sequential term rewriting systems. Information Processing Letters, Vol. 67,
No. 1, pp. 1–8, 1998.

[11] M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees.
Journal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

[12] G. Huet and J.-J. Levy. Call by need computations in non-ambiguous linear
term rewriting systems. Rapport de Recherche No. 359, INRIA, 1979.

[13] F.J. López-Fraguas and J. Sánchez-Hernández. Proving Failure in Functional
Logic Programs. In Proc. First International Conference on Computational
Logic (CL 2000), pp. 179–183. Springer LNAI 1861, 2000.

[14] J.J. Moreno-Navarro. Default Rules: An Extension of Constructive Negation
for Narrowing-based Languages. In Proc. Eleventh International Conference on
Logic Programming, pp. 535–549. MIT Press, 1994.

[15] M. Rodŕıguez-Artalejo. Functional and Cosntraint Logic Programming. In
CCL’99, pp. 202–270. Springer LNCS 2002, 2001.

[16] R.C. Sekar and I.V. Ramakrishnan. Programming in Equational Logic: Beyond
Strong Sequentiality. Information and Computation, Vol. 104, No. 1, pp. 78–
109, 1993.

[17] P. Wadler. Efficient Compilation of Pattern-Matching. In S.L. Peyton Jones,
editor, The Implementation of Functional Programming Languages, pp. 78–103.
Prentice Hall, 1987.

8


