
Memoized Pull-Tabbing for
Functional Logic Programming

Michael Hanus Finn Teegen

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
{mh,fte}@informatik.uni-kiel.de

Abstract. Pull-tabbing is an evaluation technique for functional logic
programs which computes all non-deterministic results in a single graph
structure. Pull-tab steps are local graph transformations to move non-
deterministic choices towards the root of an expression. Pull-tabbing is
independent of a search strategy so that different strategies (depth-first,
breadth-first, parallel) can be used to extract the results of a computa-
tion. It has been used to compile functional logic languages into impera-
tive or purely functional target languages. Pull-tab steps might duplicate
choices in case of shared subexpressions. This could result in a dramatic
increase of execution time compared to a backtracking implementation.
In this paper we propose a refinement which avoids this efficiency prob-
lem while keeping all the good properties of pull-tabbing. We evaluate
a first implementation of this improved technique in the Julia program-
ming language.

1 Introduction

Functional logic languages [7] combine the main features of functional and logic
languages in a single programming model. In particular, demand-driven eval-
uation of expressions is amalgamated with non-deterministic search for values.
This is the basis of optimal evaluation strategies [4] and yields a tight integration
between specifications and code [8]. However, it also demands for advanced im-
plementation techniques—an active research area in declarative programming.
This paper proposes a new implementation model which combines advantages
of existing models in a novel way.

The main challenge in the implementation of functional logic languages is the
handling of non-determinism. For instance, consider the following operations (in
example programs we use Curry syntax [21] which is close to Haskell):

flip 0 = 1 coin = 0

flip 1 = 0 coin = 1

flip is a conventional function whereas coin is a non-deterministic operation
[17], an important concept of contemporary functional logic languages. A non-
deterministic operation might yield more than one result on the same input, e.g.,
coin has values 0 and 1 (see [7,17] for discussions of this concept). Due to the
importance of non-deterministic operations, Curry defines an archetypal choice
operation “?” by



x ? _ = x

_ ? y = y

so that one can define coin also by “coin = 0 ? 1”. In functional logic languages,
non-deterministic operations can be used as any other operation, in particular,
as arguments to other (deterministic) operations, e.g., as in “flip coin”. It is
important to keep in mind that any evaluation of an expression might lead to a
non-deterministic choice. We review some existing approaches to deal with such
choices during program execution.

Backtracking implements a choice by selecting one alternative to proceed the
computation. If a computation comes to an end (failure or success), the state
before the choice is restored and the next alternative is taken. Backtracking is
the traditional approach of Prolog systems so that it is used in implementations
that compile functional logic languages into Prolog, like PAKCS [5,19] or TOY
[25]. The major disadvantage of backtracking is its operational incompleteness:
if the first alternative does not terminate, no result will be computed.

Copying or cloning avoids this disadvantage by copying the context of a
choice and proceed with both alternatives in parallel or by interleaving steps.
Due to the cost of copying when a choice occurs deeply in an expression, it has
been used only in experimental implementations, e.g., [10].

Pull-tabbing is another approach to avoid the incompleteness of backtracking
by keeping all alternatives in one computation structure, typically, a graph. It
was first sketched in [2] and formally explored in [3]. In contrast to copying,
a pull-tab step is a local transformation which moves a choice occurring in an
argument of an operation outside this operation. For instance,

flip (0 ? 1) → (flip 0) ? (flip 1)

is a pull-tab step. Pull-tabbing is used in implementations targeting complete
search strategies, e.g., KiCS [15], KiCS2 [13], or Sprite [11]. Although pull-tab
steps have local effects only, iterated pull-tab steps move choices to the root of
an expression. If expressions with choices are shared (e.g., by let expressions or
multiple occurrences of argument variables in rule bodies), pull-tab steps pro-
duce multiple copies of the same choice. This could lead to unsoundness, which
can be fixed by attaching identifiers to choices [3], and to duplication of compu-
tations. The latter is a serious problem of pull-tabbing implementations [18]. In
this paper, we propose a working solution to this problem by adding a kind of
memoization to pull-tabbing. With this extension, pull-tabbing becomes faster
than backtracking and at the same time flexible and operationally complete
search strategies can be used.

This paper is structured as follows. After reviewing some details of functional
logic programming and the pull-tab strategy along with its performance issues in
the following two sections, we present our solution to these problems in Sect. 4. A
prototypical implementation of our improved strategy is sketched in Sect. 5 and
evaluated by some benchmarks in Sect. 6. Related work is discussed in Sect. 7
before we conclude.

2



2 Functional Logic Programming with Curry

The declarative multi-paradigm language Curry [21], considered in this paper for
concrete examples, combines features from functional programming (demand-
driven evaluation, parametric polymorphism, higher-order functions) and logic
programming (computing with partial information, unification, constraints). The
syntax of Curry is close to Haskell1 [27]. In addition, Curry allows free (logic)
variables in conditions and right-hand sides of defining rules. The operational se-
mantics is based on an optimal evaluation strategy [4]—a conservative extension
of lazy functional programming and logic programming.

A Curry program consists of the definition of data types (introducing con-
structors for the data types) and functions or operations on these types. For
instance, the data types for Boolean values and polymorphic lists are as follows:

data Bool = False | True

data List a = [] | a : List a -- [a] denotes "List a"

A value is an expression without defined operations. As mentioned in Sect. 1,
Curry allows the definition of non-deterministic operations with the choice op-
erator “?” so that the expression “True ? False” has two values: True and False.
Using non-deterministic operations as arguments might cause a semantical am-
biguity which has to be fixed. For instance, consider the operations

xor True x = not x not True = False

xor False x = x not False = True

xorSelf x = xor x x aBool = True ? False

and the expression “xorSelf aBool”. If we interpret this program as a term rewrit-
ing system, we could have the derivation

xorSelf aBool → xor aBool aBool → xor True aBool

→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if
we use a strict strategy where arguments are evaluated prior to the function calls.
In order to avoid dependencies on the evaluation strategies and exclude such un-
intended results, González-Moreno et al. [17] proposed the rewriting logic CRWL
as a logical (execution- and strategy-independent) foundation for declarative pro-
gramming with non-strict and non-deterministic operations. CRWL specifies the
call-time choice semantics [22], where values of the arguments of an operation
are determined before the operation is evaluated. This can be enforced in a lazy
strategy by sharing actual arguments. For instance, the expression above can
be lazily evaluated provided that all occurrences of aBool are shared so that
all of them reduce either to True or to False consistently. Thus, sharing is not
an option to support an efficient evaluation, but it is required for semantical
reasons.

1 Variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of f to e
is denoted by juxtaposition (“f e”).

3



Fortunately, sharing is not an extra burden but already provided by im-
plementations of lazy languages in order to avoid duplication of work. To
avoid re-evaluations of identical subexpressions, e.g., the subexpression f e in
xorSelf (f e) where f might cause an expensive computation, the two occur-
rences of x in the right-hand side of the xorSelf rule are shared. This can be
achieved by a graph represention of expressions so that all occurrences of x refer
to the same graph node. Hence, if f e is evaluated as the first argument of xor

to some value v, the node containing f is replaced by v so that the second argu-
ment of xor also refers to v. This “update-in-place” of evaluated function calls
is essential for lazy languages and also required to ensure the optimality of lazy
strategies for functional logic languages [4].

Formally, we can consider programs as graph rewriting systems [28] so that
rewrite steps are graph replacements. In order to simplify our presentation, we
use the idea to represent sharing by let expressions, similarly to Lauchbury’s
natural semantics for lazy evaluation [23]. This is also used to specify the oper-
ational semantics of functional logic languages [1]. Bindings of let expressions
are stored in a heap so that updates of function nodes are represented as heap
updates. Instead of repeating the details of [1], we show the possible evaluations
of xorSelf aBool in this heap model. Here, the heap is shown on the left, evalua-
tions with the same heap are written in the same line, and new evaluation tasks
caused by non-deterministic choices are indented:

[] let x = aBool in xorSelf x (1)
[x 7→ aBool] → xorSelf x → xor x x (2)
[x 7→ True ? False] → xor x x (3)

[x 7→ True] xor x x → not x → False (4)

[x 7→ False] xor x x → x → False (5)

In line (2), the let binding is moved into the heap. The function call in this
binding is evaluated and updated in (3). Since this is a choice, a new evaluation
task is established for each alternative. Thanks to the sharing of the value of
x, the unintended value True is not computed as a result. Since a heap can be
considered as another representation of a graph structure, we use heaps and
graphs interchangeably.

3 Pull-Tabbing

If non-deterministic choices are implemented by backtracking, as in Prolog, one
has to reason about the influence of the search strategy to the success of an
evaluation—a non-trivial task in the presence of a lazy evaluation strategy. To
support better search strategies, like breadth-first or parallel search, all non-
deterministic choices should be represented in a single (graph) structure so that
one can easily switch between different computation branches. As discussed in
Sect. 1, pull-tabbing [2,3] has been used in implementations supporting advanced
search strategies. A pull-tab step moves a choice occurring in a demanded argu-

4



ment of an operation outside this operation: if f demands the value of its single
argument, then

f (e1 ? e2) → (f e1) ? (f e2)

is a pull-tab step.
The nice aspects of pull-tabbing are its operational completeness [3] and the

locality of steps. Iterated pull-tab steps move choices towards the root:

not (not (True ? False)) → not ((not True) ? (not False))

→ (not (not True)) ? (not (not False))

A choice at the root of an expression leads to two new expressions that must
be evaluated and might lead to two result values. Since pull-tabbing does not
fix some search strategy, it is assumed that these alternative expressions are
evaluated by different computation tasks. Conceptually, an entire computation
consists of a set of tasks where each task evaluates some node of a graph.
In this example, the new tasks evaluate the expressions not (not True) and
not (not False), respectively.

Pull-tab steps as described so far are not sufficient to correctly implement a
non-strict functional logic language like Curry. As discussed in Sect. 2, the call-
time choice semantics requires to share the values of non-deterministic arguments
in a computation. We can implement this requirement by adding identifiers to
choices and associating a “fingerprint” [11] to each task. A fingerprint is a (par-
tial) mapping from choice identifiers to choice alternatives (Left or Right). When
a task reaches a choice at the root, it proceeds as follows:

– If the fingerprint of the task contains a selection for this choice, select the
corresponding branch of this choice.

– Otherwise, create two new tasks for the left and right alternative where the
fingerprint is extended for this choice with L and R, respectively.

With this refinement of pull-tabbing, we obtain the following evaluation of a
variation of “xorSelf aBool” (where the fingerprint of the task is written on the
left and the heap, which is always [x 7→ True ?1 False], is omitted):

[] xor x x → (xor True x) ?1 (xor False x)

[1/L] xor True x → not x → (not True) ?1 (not False)

[1/L] → not True → False

[1/R] xor False x → x → True ?1 False

[1/R] → False

Thanks to fingerprints, only values which are correct w.r.t. the call-time choice
semantics are produced [3].

Unfortunately, pull-tabbing has some performance problems. In contrast to
backtracking, where a non-deterministic choice is implemented by selecting one
branch and proceed with this selection until failure or success, pull-tabbing moves
each non-deterministic choice up to the root of the expression under evaluation.
Hence, the consistency of choices is checked only for choices at the root, i.e.,
outside function calls. This has the operational consequence that each access to

5



a non-deterministic expression leads to a stepwise shifting of choices towards the
root. Thus, multiple accesses to a same non-deterministic expression multiplies
the execution time. For instance, consider a function

f x = C[x, . . . , x] (1)

where the right-hand side is (or evaluates to) an expression containing n oc-
currences of the argument x (represented by the context C). Now consider the
evaluation of f (e1 ? e2). Whenever some occurrence of x in C is demanded in
this evaluation, the choice occurring in the actual argument is moved up to the
root by pull-tabbing. Hence, if all n occurrences of x in C are demanded at depth
d, approximately n · d pull-tab steps are performed (and most of the resulting
choice nodes are omitted at the end due to fingerprinting). In contrast, back-
tracking is more efficient since it selects one alternative for the first occurrence
of x and then simply uses this alternative for all subsequent occurrences of x.

4 Memoized Pull-Tabbing

In this section we present an improvement of pull-tabbing which avoids the
performance problems discussed above.

4.1 The Basic Scheme

In principle, the duplication of choices is necessary due to shared subexpres-
sions which are evaluated by different tasks. In contrast to purely functional
programming, it would be wrong to update graph nodes of such expressions by
their results if they occur in a non-deterministic context (this is discussed in
more detail in Appendix A). As a solution to this problem, we propose to store
“task-specific” updates in the graph, i.e., instead of updating graph nodes by
their computed results, we keep the graph nodes but memorize results already
computed by some task for a function node. When a task has to evaluate a
function node again due to sharing, it directly uses an already computed result.

In order to implement this idea, each task evaluating some expression (sub-
graph) has a unique identifier (e.g., a number), also called task identifier. To
store task-specific updates, each graph node representing a function call con-
tains a (partial) map tr, called task result map, from task identifiers to graph
nodes.

To avoid repeated pull-tab steps, pull-tab steps are not performed for choices
that already contain a selection in the fingerprint of the task. In this case, we
proceed with the selected branch but have to remember, by using the task result
map, that computed results are valid only for this branch. To be more precise,
consider a node n representing some function call f (e1 ?c e2), where f demands
its argument. This node is evaluated by the task with identifier i as follows:

– If task i contains no selection for c in its fingerprint, a standard pull-tab step
is performed, i.e., two new nodes n1 = f e1 and n2 = f e2 are created and
n is updated to n1 ?c n2.

6



– If task i contains a selection for c, say L, it would be wrong to update node n
to f e1 due to possible sharing of n (see Appendix A for an example). Instead,
a new node n′ = f e1 is created and n.tr is updated with n.tr(i) = n′.

This strategy has the consequence that only the first occurrence of a choice in
a computation is moved to the root by iterated pull-tab steps. Since a choice at
the root causes a splitting of the current task into two new tasks evaluating the
left and right alternative, respectively, this choice, when evaluated again due to
sharing, has a selection in the fingerprint so that this selection is immediately
taken and stored in the task result map.

Since function calls can be nested, the task result map must be considered for
any function call, i.e., also those without a choice in an argument. Thus, when a
task with identifier i evaluates some function node n, it checks whether n.tr(i)
is defined:

– If n.tr(i) = n′, then n′ is evaluated instead of n.
– If n.tr(i) is undefined, n is evaluated to some node n′ and n.tr is updated

with n.tr(i) = n′.

Hence, if node n is shared so that task i has to evaluate n again, the already
evaluated result is taken.

This evaluation scheme requires a bit more time when function nodes are
accessed but avoids the expensive duplication of non-deterministic computations
with pure pull-tabbing. We call this improved strategy memoized pull-tabbing
(MPT ).

Memoized pull-tabbing can reduce the complexity of non-deterministic com-
putations. For instance, consider again function f defined by rule (1) in Sect. 3.
When the expression let x = e1 ?1 e2 in f x is evaluated, rule (1) is applied and
eventually the first occurrence of x is evaluated by a pull-tab step. This leads
(by iterated pull-tab steps) to the expression

let x = e1 ?1 e2 in C[e1,x, . . . ,x] ?1 C[e2,x, . . . ,x]

The left and right alternative are further evaluated by two tasks T1 and T2

having an L and R selection for choice 1, respectively. Task T1 evaluates all
further occurrences of x by selecting e1 and setting the task result maps of the
parent nodes to the results computed with this selection. Hence, instead of n · d
pull-tab steps with pure pull-tabbing, MPT performs only d pull-tab steps and
n−1 “selection” steps for each task T1 and T2 to evaluate the initial expression.

Before presenting and evaluating an implementation of MPT, we propose
some refinements which will lead to our final MPT strategy.

4.2 Refinements for Deterministic Computations

In typical application programs, large parts of an evaluation are deterministic
computations, i.e., computations where choice nodes do not occur. Similarly, a
deterministic expression is an expression whose evaluation does not demand the
evaluation of a choice. Since a reasonable implementation of a functional logic

7



language should support efficient deterministic computations, we present two
improvements of our basic MPT strategy for this purpose.

Our first refinement tries to avoid the use of the task result map tr in nodes
whenever it is not necessary, in particular, for deterministic computations. For
this purpose, each graph node n has an owner task (ot), i.e., n.ot is the identifier
of the task that created this node. For the initial expression, the owner task of
all nodes is the identifier of the main task. When a rule is applied, i.e., a function
call is replaced by the right-hand side of a program rule, the owner task of the
nodes created for the right-hand side is identical to the owner task of the root
of the left-hand side. In case of a pull-tab step

f (e1 ? e2) → (f e1) ? (f e2)

the owner tasks of the new function calls f e1 and f e2 are the identifiers of the
new tasks that will evaluate the left and right alternative, respectively.

In order to compare the owner tasks of nodes, we assume a partial ordering
on task identifiers. Note that new tasks are created when a choice appears at
the root. In this case the current task t is split into two new tasks t1, t2 which
evaluate the left and right alternative of the choice, respectively. We call t parent
of t1 and t2. If i, i1, i2 are the identifiers of t, t1, t2, respectively, then we assume
that i < i1 and i < i2. We call node n1 younger than n2 if n1.ot > n2.ot.

If the current task evaluates some choice n = e1 ?c e2 and the fingerprint
of the task already contains a decision for this choice, we follow this decision
instead of pushing the choice towards the root by a pull-tab step, as described
above. Now we refine the basic scheme by considering the owner tasks. Assume
that i is the identifier of the current task, its fingerprint selects e1 for choice c,
and there is the parent node n′ = f n (for simplicity, we consider only unary
functions in this discussion). We distinguish the following cases:

1. If i > n′.ot, then n′.tr(i) is set to a new node n′′ = f e1 with n′′.ot = i and
the evaluation proceeds with node n′′.

2. Otherwise (i = n′.ot), node n′ is updated in place such that n′ = f e1.

Next consider the situation that there is some function node n = f a and the
argument a has been evaluated to a′.

1. If a′ is younger than n, the argument has been evaluated to some value
which is valid only in the new task which created a′. Instead of updating n
in place, n.tr(a′.ot) is set to a new node n′ = f a′ with n′.ot = a′.ot and the
evaluation proceeds with node n′ instead of n.

2. Otherwise (a′ is not younger than n), the value computed for a is valid for
n so that n is updated in place such that n = f a′.

Thus, for deterministic computations, which are performed in a single task (tasks
are created only for non-deterministic steps), the task result maps are not used
at all.

A further refinement exploits the tree structure of tasks. An ancestor of a
task is either its parent or the parent of some ancestor of the task. Consider the
case that we have to evaluate some function node n in a task identified by i:

8



1. If n.tr(i) is defined, then task i already evaluated node n so that we can
proceed with n.tr(i) instead of n.

2. If n.tr(i) is not defined and j is a parent of i so that n.tr(j) = n′, then n′ is
also a valid result of n so that we can proceed with n′. Hence, we follow the
ancestor chain of i to find the first ancestor k such that n.tr(k) is defined.

3. Otherwise (there is no ancestor j of i with n.tr(j) defined), we evaluate n.

Note that the owner task of nodes changes in a computation only if some choice
node is evaluated. In case of a pull-tab step, the new nodes are younger than the
choice node. If there is some decision for the choice w.r.t. the fingerprint of the
current task, we commit to the selected branch and set the owner task of this
selection to the current task. An interesting consequence of this strategy is that
the owner tasks of nodes in a computation are not changed when choice nodes do
not occur in this computation. In particular, deterministic computations without
occurrences of choice nodes are always evaluated in place—independently of the
task which evaluated them. This has the effect that deterministic expressions
are evaluated at most once, even if they are shared among non-deterministic
branches. This property, also called sharing across non-determinism [15], is an
important feature of the pull-tab strategy. Consider an expression

let x = e in C1[x] ? C2[x]

where e is a deterministic expression and the value of x is demanded in both C1[x]
and C2[x]. Then e will be evaluated only once since the task evaluating C1[x]
will replace e by its result so that this result is available for the task evaluating
C2[x]. In contrast, an implementation based on backtracking would evaluate e
two times since the evaluation of e by the task evaluating C1[x] will be undone
before evaluating C2[x]. Note that this is not only a problem of backtracking.
For instance, the approach to implement call-time choice with purely functional
programming features presented in [16] also reports the lack of sharing across
non-determinism.

5 Implementation

In order to evaluate our ideas, we implemented MPT in Julia2, a high-level dy-
namic programming language. We used Julia due to its direct support of dynamic
data structures, garbage collection, and higher-order features. By exploiting the
intermediate language ICurry [9], the compiler from ICurry to Julia is approxi-
mately 300 lines of Curry code. Furthermore, the run-time system, responsible to
implement the computation graph, pull-tab steps, computation tasks with vari-
ous search strategies, and some more aspects, consists of approximately 300 lines
of Julia code. Thus, this implementation, called “JuCS” (Julia Curry System3),
is a proof of concept which could also be implemented, with more effort and
probably more efficiently, in other imperative languages, like C. In the following,
we sketch some aspects of this implementation.

2 https://julialang.org/
3 Available at https://github.com/cau-placc/julia-curry

9

https://julialang.org/
https://github.com/cau-placc/julia-curry


Apart from the memoized pull-tabbing strategy, the implementation has
many similarities to Sprite [11]. Expressions are represented as a graph struc-
ture. To distinguish different kinds of graph nodes (function, constructor, choice,
failure, etc), each node has a tag. Furthermore, a node contains an integer value
(choice identifier, constructor index, etc), the identifier of the owner task, an ar-
ray of references to argument nodes, a code reference in case of function nodes,
and a task result map (a Julia dictionary with task identifiers as keys and node
references as values). The run-time system works on a queue of tasks where each
task contains a unique number, the root node evaluated by this task, the fin-
gerprint, and the identifiers of the parent tasks. With these data structures, the
run-time system evaluates expressions, as described above, by computing the
head normal form of the root node of the current task. If this yields a choice
node, two new tasks are created with extended fingerprints. In case of depth-first
search, these tasks are added at the front of the task queue, while they are added
at the back in case of breadth-first search.

Free variables and their bindings require a non-trivial implementation with
non-deterministic value generator operations in a pure pull-tabbing implemen-
tation [14]. Our MPT strategy allows a much simpler implementation. Instead
of representing free variables as value generators (as in [6]), JuCS has a “free”
tag for nodes where the task result map is used to store task-specific bindings
for free variables. Hence, free variables are handled as efficient as in Prolog im-
plementations while still allowing more flexible search strategies.

In order to compare the different run-time models (MPT, pull-tabbing, back-
tracking) inside our implementation, JuCS contains also two alternative run-time
systems implementing pure pull-tabbing and backtracking. The pull-tabbing sys-
tem is a reduced variant of the standard run-time system. The backtracking sys-
tem uses ideas from Prolog implementations, in particular, the improved back-
tracking and trailing mechanism of Warren’s Abstract Machine [29] to reduce
the amount of stored backtrack information.

6 Benchmarks

Memoized pull-tabbing requires more effort at run time than pure pull-tabbing
due to the tests when evaluating or updating a function node in the compu-
tation graph. Thus, it is interesting to see whether this pays off in practice.
Therefore, we executed a set of benchmarks with our new implementation and
compared the execution times4 of the different run-time systems provided with
this implementation. The results are summarized in Table 1.

The first two examples5 are purely deterministic programs: nrev is the
quadratic naive reverse algorithm on a list with 4096 elements and takPeano

is a highly recursive function on naturals [26] applied to arguments (24,16,8),
where numbers and arithmetic operations are in Peano representation. addNum2

4 All benchmarks were executed on a Linux machine running Ubuntu 18.04 with an
Intel Core i7-85550U (1.8GHz) processor.

5 The actual programs are available with the implementation described in Sect. 5.

10



Program MPT pull-tab backtrack

nrev 2.37 s 2.29 s 7.09 s
takPeano 12.04 s 11.84 s 31.78 s
addNum2 0.46 s 6.21 s 0.39 s
addNum5 1.61 s 47.69 s 1.26 s
select50 0.05 s 4.18 s 0.14 s
select75 0.10 s 24.10 s 0.31 s

select100 0.18 s 111.47 s 0.55 s

Table 1. Evaluating different run-time systems of JuCS

Program MPT pull-tab backtrack

sort1 9.83 s 9.96 s 15.47 s
sort2 9.84 s 9.73 s 155.64 s

Table 2. Effect of sharing across non-determinism

and addNum5 non-deterministically choose a number (out of 2000) and add it two
and five times, respectively. selectn non-deterministically selects an element in
a list of length n and sums up the element and the list without the the selected
element.

As one can see from the direct comparison to pure pull-tabbing, the overhead
caused by the additional checks required for memoization is limited and imme-
diately pays off when non-deterministic expressions are shared, which is often
the case in applications involving non-determinism.

It is interesting to note that the backtracking strategy is less efficient than
MPT, although MPT supports more flexible search strategies. This might be
due to the fact that backtracking has to check, for each reduction step, whether
this step has to be remembered in order to undo it in case of backtracking.

As already discussed, backtracking has another disadvantage: deterministic
computations are not shared across non-deterministic computations. This has
the unfortunate consequence that a client using some algorithm of a library has
to know whether this algorithm is implemented with non-deterministic features,
since arguments might be evaluated multiple times with backtracking. To show
this effect, consider the deterministic insertion sort operation isort, the non-
deterministic permutation sort operation psort, and the infinite list of all prime
numbers primes together with the following definitions (this example is inspired
from [13]):

sort1 = isort [primes!!303, primes!!302, primes!!301, primes!!300]

sort2 = psort [primes!!303, primes!!302, primes!!301, primes!!300]

In principle, one would expect that the execution time of sort1 is almost equal to
the time to execute sort2 since the time to sort a four-element list is neglectable.
However, implementations based on backtracking evaluate the primes occurring
in sort2 multiple times, as can be seen by the run times shown in Table 2.

11



Example KiCS2 (BFS/DFS) JuCS (BFS/DFS)

addNum2 2.18 1.02
addNum5 1.58 1.00
select50 1.03 1.00

select100 1.28 1.04
permsort 4.46 1.11

Table 3. Relative execution times of BFS vs. DFS

We already emphasized the fact that pull-tabbing supports flexible search
strategies. Since all non-deterministic values of an expression are represented in
one structure, different search strategies can be implemented as traversals on
this structure. For instance, KiCS2 evaluates each expression to a tree of its
values so that the top-level computation collecting all values can be defined as
a traversal on this tree [13]. Our implementation uses a queue of tasks so that
search strategies can be implemented as specific strategies to put and get tasks to
and from the queue, respectively (as sketched above). The practical behavior of
search strategies in KiCS2 was analyzed in [20] (since then, breadth-first search
became the default strategy for KiCS2). Table 3 shows that MPT has an even
better behavior since, in contrast to pure pull-tabbing, it is not necessary to
move all choices to the root in order to build a tree of all values. Here, we also
added the classical permutation sort example since it showed a larger slowdown
of breadth-first search in [20].

7 Related Work

In this section we review other approaches to implement functional logic lan-
guages and relate our proposal to them.

Early approaches to implement functional logic languages exploited Prolog’s
backtracking strategy for non-deterministic computations [5,24]. By adding a
mechanism to implement demand-driven evaluation, one can use Prolog as a
target language, as done in PAKCS [19] and TOY [25]. The usage of Prolog
yields also a direct support for free variables. However, such implementations
suffer from the operational incompleteness of the backtracking strategy.

Pull-tabbing supports more flexible search strategies by representing choices
as data. The theoretical properties are investigated in [3]. On the practical side,
pull-tabbing is useful to implement non-determinism in a deterministic target
language. For instance, ViaLOIS [12] uses pull-tabbing to translate Curry pro-
grams into Haskell and OCaml programs, respectively. ICurry [9] is an inter-
mediate language intended to translate Curry programs into imperative target
languages. It has been used to translate Curry to LLVM code [11] and to C or
Python programs [30]. The operational semantics of ICurry is specified in [9] by
an abstract machine which performs pull-tab steps and uses a graph structure
to represent expressions with sharing and a queue of tasks, where each task has
its own fingerprint to implement the selection of consistent choices.

12



The Curry compiler KiCS2 [13] is based on pull-tabbing and compiles Curry
programs into a purely functional Haskell programs. Non-determinism is im-
plemented by representing choices as data terms so that Curry expressions are
evaluated to choice trees. Pull-tab steps are encoded as rules for choice terms.
Values are extracted from choice trees by traversing them with fingerprints.
Hence, KiCS2 implements non-determinism in a modular way: any expression is
evaluated to a choice tree representation of all its values, and there is a separate
operation which extracts correct values from the choice tree structure. Therefore,
KiCS2 implements various search strategies as different tree traversal strategies,
and infinite search spaces (choice trees) do not cause problems due to Haskell’s
lazy evaluation strategy.

Since KiCS2 suffers from the performance problems of pure pull-tabbing
(see Appendix B for some benchmarks), an eager evaluation of demanded non-
deterministic subexpressions is proposed in [18]. An automatic program transfor-
mation implementing this optimization is based on a demand analysis. However,
this approach does not work for arbitrary programs since a precise demand anal-
ysis for complex data structures is non-trivial and not yet available for functional
logic programs. Therefore, it is an interesting question for future work whether
our MPT scheme can be combined with the purely functional implementation
approach of KiCS2.

Sharing across non-determinism describes the property that deterministic
subexpressions shared in different non-deterministic branches are evaluated at
most once. This is usually not the case in implementations based on backtrack-
ing. As emphasized in [15], pull-tabbing easily ensures this property if the target
language implements sharing for common subexpressions, as in our implemen-
tation or in lazy functional target languages [13,15].

An approach to support functional logic programming features as in Curry
in a purely functional language is a library for non-deterministic computations
with (explicit) sharing [16]. The key idea of this library is to translate non-
deterministic computations into monadic computations that manipulate a thunk
store. The thunk store holds either unevaluated computations or their results,
which may again contain unevaluated arguments, and is closely related to the
heap described in Sect. 2. The library provides an explicit share operation to
allow the sharing of computations. Shared computations are initially entered
unevaluated into the thunk store and only the demand for a computation trig-
gers its evaluation. If a computation is non-deterministic, the thunk store is
updated with the corresponding result independently in each branch. All subse-
quent uses of the shared computation within one computation branch then reuse
the updated result in the thunk store. Although shared results are reused in one
computation branch if demanded more than once, the library does not support
sharing across non-determinism because shared computations are evaluated in-
dependently in different branches. Due to the fact that the implementation relies
on the type class MonadPlus, different search strategies can be exploited depend-
ing on the concrete instance of MonadPlus. Furthermore, the library has no direct

13



Back-
tracking

Explicit
Sharing

Pull
Tabbing

MPT

Flexible search strategies − + + +
Free variables + − − +
Sharing across non-determinism − − + +
Sharing non-determinism + + − +

Table 4. Comparing properties of implementation strategies

support of free variables and can only emulate them by using non-deterministic
generators [6].

Table 4 compares the properties of the various approaches to imple-
ment demand-driven non-deterministic computations discussed above. “Flexi-
ble search strategies” means whether only one or a number of different search
strategies are supported. “Free variables” denotes a direct support of free vari-
ables. This is not the case for explicit sharing and pull-tabbing, since they re-
quire a simulation of free variables by non-deterministic generator operations
and non-trivial techniques to obtain the effect of binding free variables through
unification [14]. “Sharing across non-determinism” describes the aforementioned
ability to reuse already computed results of deterministic subexpressions in dif-
ferent branches of non-deterministic computations. “Sharing non-determinism”
means that the results of already evaluated non-deterministic subexpressions
are re-used when these subexpressions are shared. As one can see, our new MPT
strategy is the only implementation which combines all these properties. As
shown by our benchmarks, this has a positive effect on the efficiency of MPT on
a range of different application scenarios.

8 Conclusions

The efficient implementation of functional logic programming languages is still a
challenge due to the combination of advanced declarative programming concepts.
In order to free the programmer from considering details about the concrete eval-
uation strategy, it is desirable to support operationally complete strategies which
ensure that values are computed whenever they exist. This can be obtained by
representing the complete state with all branches of a non-deterministic compu-
tation in one data structure. Pull-tabbing is a simple and local transformation
to deal with non-deterministic choices. However, pull-tabbing has the risk to
duplicate work during evaluation. In this paper we proposed a significant im-
provement by adding a kind of memoization to pull-tabbing. As we demonstrated
by our benchmarks, this improved evaluation mechanism does not cause much
overhead, is often faster than backtracking, and can dramatically improve pure
pull-tabbing. Morever, it keeps all the positive properties of pull-tabbing: appli-
cation of various search strategies and sharing across non-determinism. Our pro-
totypical implementation showed that it can also be implemented with modest

14



efforts: Curry programs can be compiled by using the already existing interme-
diate language ICurry in a straightforward manner, and the run-time system is
quite compact. Thus, it is an ideal model to implement multi-paradigm declar-
ative languages also with other target languages, e.g., to integrate declarative
programming in applications written in other imperative languages.

Nevertheless, there is room for future work. For instance, one could try to
identify non-shared subexpressions, e.g., by some sharing or linearity analysis,
to avoid run-time checking of memoized data. Another interesting question is
whether it is possible to implement the presented ideas in a purely functional
manner so that one can use them to improve existing approaches like KiCS2 [14]
or the library for explicit sharing [16].

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. A. Alqaddoumi, S. Antoy, S. Fischer, and F. Reck. The pull-tab transfor-
mation. In Proc. of the Third International Workshop on Graph Computa-
tion Models, pages 127–132. Enschede, The Netherlands, 2010. Available at
http://gcm2010.imag.fr/pages/gcm2010-preproceedings.pdf.

3. S. Antoy. On the correctness of pull-tabbing. Theory and Practice of Logic Pro-
gramming, 11(4-5):713–730, 2011.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

5. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pages 171–185. Springer LNCS 1794, 2000.

6. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP 2006), pages 87–101. Springer LNCS 4079, 2006.

7. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

8. S. Antoy and M. Hanus. Contracts and specifications for functional logic pro-
gramming. In Proc. of the 14th International Symposium on Practical Aspects of
Declarative Languages (PADL 2012), pages 33–47. Springer LNCS 7149, 2012.

9. S. Antoy, M. Hanus, A. Jost, and S. Libby. ICurry. In Declarative Programming and
Knowledge Management - Conference on Declarative Programming (DECLARE
2019), pages 286–307. Springer LNCS 12057, 2020.

10. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic
computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108–125. Springer LNCS
3474, 2005.

11. S. Antoy and A. Jost. A new functional-logic compiler for curry: Sprite. In Pro-
ceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016), pages 97–113. Springer LNCS 10184, 2016.

12. S. Antoy and A. Peters. Compiling a functional logic language: The basic scheme.
In Proc. of the Eleventh International Symposium on Functional and Logic Pro-
gramming, pages 17–31. Springer LNCS 7294, 2012.

15



13. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816,
2011.

14. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. Implementing equational con-
straints in a functional language. In Proc. of the 15th International Symposium on
Practical Aspects of Declarative Languages (PADL 2013), pages 125–140. Springer
LNCS 7752, 2013.

15. B. Braßel and F. Huch. On a tighter integration of functional and logic program-
ming. In Proc. APLAS 2007, pages 122–138. Springer LNCS 4807, 2007.

16. S. Fischer, O. Kiselyov, and C. Shan. Purely functional lazy nondeterministic
programming. Journal of Functional programming, 21(4&5):413–465, 2011.

17. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

18. M. Hanus. Improving lazy non-deterministic computations by demand analysis. In
Technical Communications of the 28th International Conference on Logic Program-
ming, volume 17, pages 130–143. Leibniz International Proceedings in Informatics
(LIPIcs), 2012.

19. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, F. Steiner, and F. Teegen. PAKCS: The Portland Aachen Kiel Curry
System. Available at http://www.informatik.uni-kiel.de/~pakcs/, 2018.

20. M. Hanus, B. Peemöller, and F. Reck. Search strategies for functional logic pro-
gramming. In Proc. of the 5th Working Conference on Programming Languages
(ATPS’12), pages 61–74. Springer LNI 199, 2012.

21. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org, 2016.

22. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12:237–255, 1992.

23. J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL’93), pages 144–154.
ACM Press, 1993.

24. R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A demand driven compu-
tation strategy for lazy narrowing. In Proc. of the 5th International Symposium on
Programming Language Implementation and Logic Programming, pages 184–200.
Springer LNCS 714, 1993.

25. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative
system. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

26. W. Partain. The nofib benchmark suite of Haskell programs. In Proceedings of
the 1992 Glasgow Workshop on Functional Programming, pages 195–202. Springer,
1993.

27. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

28. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 2: Applications, Languages and Tools, pages 3–61. World
Scientific, 1999.

29. D.H.D. Warren. An abstract Prolog instruction set. Technical note 309, SRI
International, Stanford, 1983.

30. M.A. Wittorf. Generic translation of Curry programs into imperative programs
(in German). Master’s thesis, Kiel University, 2018.

16

http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-lang.org


A Improve Pull-Tabbing: The Wrong Way

This appendix discusses why pull-tabbing duplicates choice nodes even if the
task has already made a selection for this choice (stored in the fingerprint). To
be more precise, we will discuss the following question:

Is it possible to use an already selected choice alternative at any place
and not only at the root?

For a rule like

f x = C[x, . . . , x]

this means that when the argument x is bound to a non-deterministic expression
and some branch is selected for the first occurrence of x in the right-hand side,
the same selection for all further occurrences is used instead of pull-tabbing their
choices to the root.

Unfortunately, this is unsound due to sharing of non-deterministic expres-
sions. As an example, consider the expression

let { x = False ? True ; y = not x } in (x && y) ? y

With call-time choice, the left alternative (x && y) evaluates to the values False

and False and the right alternative y evaluates to True and False. These values
are also obtained with pull-tabbing.

Now consider what happens if we try to improve pull-tabbing by using already
selected choices whenever these choices occur in a computation. Figure 1 shows
the derivation of all values with this modified pull-tabbing strategy.

Fingerprint: Heap: Expression:

[] [x 7→ True ?1 False, y 7→ not x] (x && y) ?2 y (1)
[2/L] [x 7→ True ?1 False, y 7→ not x] (x && y) (2)
[2/L] [x 7→ True ?1 False, y 7→ not x] (True && y) ?1 (False && y) (3)
[2/L, 1/L] [x 7→ True ?1 False, y 7→ not x] (True && y) → y (4)
[2/L, 1/L] [x 7→ True ?1 False, y 7→ not True] y (5)

[2/L, 1/L] [x 7→ True ?1 False, y 7→ False] y → False (6)

[2/L, 1/R] [x 7→ True ?1 False, y 7→ False] (False && y) → False (7)

[2/R] [x 7→ True ?1 False, y 7→ False] y → False (8)

Fig. 1. Pull-tabbing with unrestricted selection of alternatives

In line (5), the choice for the argument x of not is reduced to True due to
the fingerprint of the task. As a consequence, y is updated to False so that the
alternative value True for y is lost in the subsequent evaluation of the task with
fingerprint [2/R]. Altogether, we obtain the values False, False, and False with
this “improvement.”

17



Example JuCS (MPT) PAKCS (SICStus) PAKCS (SWI) KiCS2 (GHC)

nrev 2.37 3.70 20.55 0.31
takPeano 12.04 16.05 130.87 0.32
addNum2 0.46 1.98 0.39 1.66
addNum5 1.61 2.00 0.45 7.67
select50 0.05 1.81 0.27 0.55

select100 0.18 1.87 1.02 10.40
select150 0.46 1.96 2.56 47.89

Table 5. Comparing JuCS with PAKCS and KiCS2

B Comparison with other Curry Systems

In order to get some idea of the efficiency of JuCS with other existing major
Curry implementations, we compared JuCS with its MPT strategy and the Curry
implementations PAKCS (based on backtracking) and KiCS2 (based on pull-
tabbing). Table 5 shows the run times (in seconds as the average of three runs)
of the examples of Table 1 executed with JuCS, PAKCS, and KiCS2. PAKCS
compiles Curry into Prolog where the table shows the results of two different
Prolog back ends: SICStus-Prolog (Version 4.3) and SWI-Prolog (Version 7.6).
KiCS2 compiles Curry into Haskell (GHC Version 8.4) where non-determinism
is implemented by pull-tabbing.

This table shows that KiCS2 is quite fast on deterministic computations
(due to the efficient Haskell implementation provided by GHC), but it might
dramatically slow down on non-deterministic computations due to pull-tabbing.
Although JuCS is not as efficient as KiCS2 on deterministic programs (but
comparable to PAKCS with its fastest back end), it is more efficient than KiCS2
on non-deterministic examples due to the memoized pull-tabbing strategy.

18


	Memoized Pull-Tabbing for Functional Logic Programming

