
Mode Analysis of Funtional Logi Programs

?

Mihael Hanus Frank Zartmann

Max-Plank-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�uken, Germany

mihael,frank�mpi-sb.mpg.de

In Pro. 1st International Stati Analysis Symposium, Namur (Belgium),

pp. 26{42, Springer LNCS 864, 1994

Abstrat. Funtional logi languages amalgamate funtional and logi

programming paradigms. They an be eÆiently implemented by extend-

ing tehniques known from logi programming. Suh implementations an

be largely improved if information about the run-time behavior, in par-

tiular the modes of funtion alls, is available at ompile time. In this

paper we present a framework to derive suh global information. The

onrete operational semantis onsidered in this paper is normalizing

innermost narrowing, whih ombines the deterministi redution prin-

iple of funtional languages with the nondeterministi searh priniple

of logi languages. Due to the normalization proess between narrowing

steps, standard analysis frameworks for logi programming annot be ap-

plied. Therefore we develop new tehniques to orretly approximate the

e�et of the intermediate normalization proess.

1 Introdution

A lot of proposals have been made to amalgamate funtional and logi pro-

gramming languages (see [15℄ for a reent survey). Funtional logi languages

with a sound and omplete operational semantis are based on narrowing (e.g.,

[9, 11, 25, 27℄), a ombination of the redution priniple of funtional languages

and the resolution priniple of logi languages. Narrowing solves equations by

�nding appropriate values for variables ourring in goal equations. This is done

by unifying an input term with the left-hand side of some rule and then replaing

the instantiated input term by the instantiated right-hand side of the rule.

Example 1. The following rules de�ne the addition of two natural numbers whih

are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

To solve the equation X+s(0)=s(s(0)), we apply a narrowing step with rule

R

2

. This instantiates X to s(M). The resulting left-hand side s(M+s(0)) is nar-

rowed with rule R

1

so that M is instantiated to 0. Sine the resulting equation,

s(s(0))=s(s(0)), is trivially true, we have omputed the solution X 7!s(0) to

the initial equation. 2

?
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In order to ensure ompleteness in general, eah rule must be uni�ed with eah

non-variable subterm of the given equation whih yields a huge searh spae.

This situation an be improved by partiular narrowing strategies whih restrit

the possible positions for the appliation of the next narrowing step (see [15℄ for

a detailed survey). In this paper we are interested in an innermost narrowing

strategy where a narrowing step is performed at the leftmost innermost position.

This orresponds to eager evaluation in funtional languages.

However, the restrition to partiular narrowing positions is not suÆient to

avoid a lot of useless derivations sine the unontrolled instantiation of variables

may ause in�nite loops. For instane, onsider the rules in Example 1 and the

equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule

R

2

produes the following in�nite derivation (the instantiation of variables o-

urring in the equation is reorded at the derivation arrow):

(X+Y)+Z=0;

X 7!s(X1)

s(X1+Y)+Z=0;

X17!s(X2)

s(s(X2+Y))+Z=0;

X27!s(X3)

� � �

To avoid suh useless derivations, narrowing an be ombined with simpli�ation

(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-

ten to normal form w.r.t. the given rules [8, 9℄ (thus this strategy is also alled

normalizing narrowing). The in�nite narrowing derivation above is avoided by

rewriting the �rst derived equation to normal form:

s(X1+Y)+Z=0 ! s((X1+Y)+Z)=0

The last equation an never be satis�ed sine the terms s((X1+Y)+Z) and 0 are

always di�erent due to the absene of rules for the symbols s and 0. Hene we

an safely terminate the unsuessful narrowing derivation at this point.

Generally, the integration of rewriting into narrowing derivations yields a

better ontrol strategy than Prolog's SLD-resolution due to the redution of the

searh spae and the preferene for deterministi omputations (see [9, 12, 13℄

for more details).

2

Therefore we onsider in this paper a normalizing innermost

narrowing strategy where the omputation of the normal form between narrow-

ing steps is performed by applying rewrite rules from innermost to outermost

positions, i.e., a rewrite rule is applied to a term only if eah of its subterms is

in normal form. Suh an operational semantis an be eÆiently implemented by

extending ompilation tehniques known from logi programming [11, 12℄.

In logi programming it has been shown that the eÆieny of programs an be

largely improved if information about partiular run-time properties is available

at ompile time (e.g., [22, 24, 28, 29, 30, 31, 32℄). Moreover, in [16℄ it has been

shown that there are useful optimizations whih are unique to funtional logi

programs based on a normalizing narrowing strategy like ALF [11, 12℄, LPG [2℄,

or SLOG [9℄. Thus we need methods to derive the neessary information about

the run-time behavior at ompile time. The following example demonstrates that

standard methods for the analysis of logi programs annot be used.

2

Note that the normalization of terms between narrowing steps is a deterministi

proess due to the uniqueness of normal forms.
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Example 2. Consider the rules of Example 1 and the following additional rule:

0*N ! 0 (R

3

)

We are interested in the instantiation state of the variables after evaluating the

goal 0*(X+Y)=Z. From a logi programming point of view, where all subgoals are

ompletely evaluated to prove the entire goal, we ould infer that the evaluation

of the innermost subterm X+Y binds X to a ground term before the outermost

funtion * is evaluated. However, this is wrong if normalization is taken into

aount. Sine the entire goal is normalized before a narrowing step is applied,

the goal is redued to 0=Z by a rewrite step with rule R

3

. Hene X remains

unbound sine the subterm X+Y is deleted during the normalization proess. The

deletion of subgoals has no orrespondene in logi programming and therefore

analysis methods for logi programming do not apply. 2

This example shows that the analysis of normalizing narrowing requires a safe

approximation of the e�et of the normalization proess before eah narrowing

step. After a preise de�nition of the operational semantis in Setion 2, we re-

view the notion of modes for funtional logi programs in Setion 3. We disuss

problems related to the automati derivation of modes in Setion 4. In Setion 5

we present our method to approximate modes at ompile time. Due to lak of

spae, some details and the orretness proofs of the framework are omitted.

They an be found in [33℄.

2 Normalizing Innermost Narrowing

In this setion, we reall basi notions of term rewriting [7℄ in order to de�ne the

operational semantis onsidered in this paper.

A signature is a set F of funtion symbols together with their arity. If X is

a ountably in�nite set of variables disjoint from F , then T (F ;X ) denotes the

set of terms built from F and X . The set of variables ourring in a term t is

denoted by Var(t). A term t is alled ground if Var(t) = ;.

Usually, funtional logi programs are onstrutor-based, i.e., a distintion is

made between operation symbols to onstrut data terms, alled onstrutors,

and operation symbols to operate on data terms, alled de�ned funtions or op-

erations (see, for instane, the funtional logi languages ALF [11℄, BABEL [25℄,

K-LEAF [10℄, SLOG [9℄). Hene we assume that the signature F is partitioned

into two sets F = C [ D with C \ D = ;. A onstrutor term t is built from

onstrutors and variables, i.e., t 2 T (C;X ). An innermost term t [9℄ is an op-

eration applied to onstrutor terms, i.e., t = f(t

1

; : : : ; t

n

) with f 2 D and

t

1

; : : : ; t

n

2 T (C;X ). A funtion all f(t

1

; : : : ; t

n

) is an operation f 2 D applied

to arbitrary terms.

A (rewrite) rule l! r is a pair of an innermost term l and a term r satisfying

Var(r) � Var(l) where l and r are alled left-hand side and right-hand side,

respetively. A rule is alled a variant of another rule if it is obtained by a unique

replaement of variables by other variables. A term rewriting system R is a set
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of rules.

3

In the following we assume a given term rewriting system R.

Substitutions and most general uni�ers (mgu) are de�ned as usual. A position

p in a term t is represented by a sequene of natural numbers, tj

p

denotes the

subterm of t at position p, and t[s℄

p

denotes the result of replaing the subterm

tj

p

by the term s (see [7℄ for details). Pos(t) denotes the set of all positions in a

term t and NPos(t) denotes the set of positions p of the term t with the property

that rj

p

2 X or rj

p

= f(�s); f 2 D. The binary relation < on Pos(t) is the union

of the relations f(p; q) j q is a proper pre�x of pg and f(p; q) j p = �:i:p

0

; q =

�:j:q

0

and i < jg. It reets the leftmost innermost ordering.

A rewrite step is an appliation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this ase we say t is reduible. A term t is alled irreduible

or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-reexive losure of the rewrite relation !

R

. R is

alled terminating if there are no in�nite rewrite sequenes t

1

!

R

t

2

!

R

� � �. R

is alled onuent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there exists

a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

.

IfR is onuent and terminating, we an deide the validity of an equation s=t

by omputing the normal form of both sides using an arbitrary sequene of rewrite

steps. In order to solve an equation, we have to �nd appropriate instantiations for

the variables in s and t. This an be done by narrowing. A term t is narrowable

into a term t

0

if there exist a non-variable position p in t (i.e., tj

p

62 X ), a

variant l ! r of a rewrite rule and a substitution � suh that � is a most

general uni�er of tj

p

and l and t

0

= �(t[r℄

p

). In this ase we write t ;

�

t

0

.

In order to solve an equation s=t, we onsider = as a new onstrutor symbol

and apply narrowing steps until we obtain an equation s

0

=t

0

where s

0

and t

0

are uni�able. The omposition of all uni�ers in the derivation restrited to the

variables of the initial equation is the omputed solution (f. Example 1). Sine

this simple narrowing proedure (enumerating all narrowing derivations) has a

huge searh spae, several authors have improved it by restriting the admissible

narrowing derivations (see [15℄ for a detailed survey). In the following we onsider

normalizing innermost narrowing derivations [9℄ where

{ the narrowing step is performed at the leftmost innermost subterm, and

{ the term is simpli�ed to its normal form before a narrowing step is performed

by applying rewrite rules from innermost to outermost positions.

The innermost strategy provides an eÆient implementation [11, 12, 19, 21℄,

whereas the normalization proess is important sine it prefers deterministi om-

putations: rewriting a term to normal form an be done in a deterministi way

3

We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in

narrowing steps to solve equations. Therefore we will sometimes distinguish between

rewrite rules and narrowing rules. Usually, the set of rewrite rules and the set of

narrowing rules are idential, but in some languages it is also possible to use some

rules only for rewrite steps or only for narrowing steps (e.g., in ALF [11, 12℄ or SLOG

[9℄).
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sine every rewrite sequene yields the same result (beause R is onuent and

terminating), whereas di�erent narrowing steps may lead to di�erent solutions

and therefore all admissible narrowing steps must be onsidered. Soundness and

ompleteness results for this strategy an be found in [9℄.

3 Modes for Funtional Logi Programs

It has been shown that mode information is useful to optimize the ompiled ode

of pure logi programs [22, 24, 29, 31, 32℄. A mode for a prediate is a desription

of the possible arguments of a prediate when it is alled [32℄. E.g., the mode

p(g; f; a) spei�es that the �rst argument is a ground term, the seond argument

is a free variable, and the third argument is an arbitrary term for all alls to

prediate p. The notion of a \mode" in funtional logi programs is di�erent from

pure logi programs beause funtions are evaluated by narrowing as well as by

rewriting. In order to provide a better understanding of the subsequent setions,

we review the notion of modes for funtional logi programs as introdued in [16℄.

Example 3. In this example we disuss a derivation w.r.t. the normalizing in-

nermost narrowing strategy. Consider the rules of Example 1 and the goal

X+(X+X)=s(s(s(0))). To ompute a solution to this equation, we iterate the

redution to normal form with a subsequent narrowing step at the leftmost in-

nermost subterm. Hene the left-hand side X+(X+X) is evaluated as follows (the

rule applied in eah step is listed in the rightmost olumn):

X+(X+X);

X 7!s(M)

s(M)+s(M+s(M)) R

2

!

R

s(M+s(M+s(M))) R

2

;

M 7!0

s(0+s(s(0))) R

1

!

R

s(s(s(0))) R

1

Sine the term is already in normal form, the �rst step is a narrowing step at

the inner subterm X+X. To normalize the resulting term, a rewrite step with rule

R

2

is applied to the outermost ourrene of +. It follows a narrowing step at

the inner subterm M+s(M) and a rewrite step at the remaining ourrene of +.

Thus fX 7! s(0)g is the omputed solution. This derivation has the following

interesting properties:

1. The operation + is evaluated both by narrowing and rewrite steps.

2. If a narrowing step is applied to +, the �rst argument is always an unbound

variable.

3. If a rewrite step is applied to +, the �rst argument is partially instantiated.

2

Therefore we distinguish between a narrowing mode and a rewrite mode for eah

funtion. The narrowing mode desribes the instantiation state of a funtion all

if a narrowing step is applied to it (+(f; a) in the previous example) and the

rewrite mode desribes the instantiation state if a rewrite step is applied (+(a; a)

in the previous example). Sine narrowing and rewrite rules are usually ompiled

into di�erent ode sequenes [11, 12℄, this distintion is neessary to optimize the

5



ompiled ode, i.e., to speialize the uni�ation/mathing instrutions and the

indexing sheme (as done in pure logi programs). Moreover, using this kind of

mode information it is possible to avoid unneessary rewrite attempts, ompile

rewrite derivations in a more eÆient way, delete unneessary rewrite or nar-

rowing rules et. (see [16℄ for more details). However, a safe approximation of

these modes is more ompliated than in the pure logi programming ase due to

some global e�ets of the normalization proess (f. Example 2). In the following

setion we disuss these problems and potential solutions.

4 Automati Derivation of Modes: Problems

Boso et al. [3℄ have shown that innermost narrowing without normalization is

equivalent to SLD-resolution if the funtional logi program is transformed into

a at program without nested funtion alls. For instane, we ould transform

the rules of Examples 1 and 2 into the at logi program

add(0,N,N).

add(s(M),N,s(Z)) :- add(M,N,Z).

mult(0,N,0).

where add and mult orrespond to the funtions + and * with their result values.

The nested funtion all in the right-hand side of rule R

2

has been replaed by

the new variable Z and the additional ondition add(M,N,Z). There is a strong

orrespondene between innermost narrowing derivations w.r.t. rules R

1

, R

2

and

R

3

and SLD-derivations w.r.t. the transformed logi program.

Due to these similarities of narrowing and SLD-resolution, one ould try to

apply abstrat interpretation tehniques developed for logi programming (e.g.,

[5, 20, 26℄) to derive the desired information. E.g., to derive the narrowing mode

of the funtion + w.r.t. the lass of initial goals x+y=z, where x and y are always

ground and z is a free variable, we ould use an abstrat interpretation framework

for logi programming to infer the all modes of the prediate add w.r.t. the lass

of initial goals add(x,y,z). In this ase we infer that the all mode is add(g; g; f)

and the argument z of the initial goal will be bound to a ground term at the end

of a suessful omputation. Hene we ould dedue that +(g; g) is the narrowing

mode of the funtion +.

However, we have shown in Example 2 that normalizing innermost narrowing

does not diretly orrespond to SLD-resolution beause of the intermediate nor-

malization proess. For instane, the at form of the equation 0*(X+Y)=Z is the

goal

add(X,Y,R), mult(0,R,Z).

The exeution of the latter goal by SLD-resolution binds variable X to a ground

term, whereas the exeution of the original goal 0*(X+Y)=Z by normalizing nar-

rowing does not bind variable X. Therefore the analysis of the attened logi

program would yield an inorret result.

This disussion shows that we annot use a framework for the analysis of

logi programs in our ase. It is neessary to develop a new framework whih
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takes into aount the e�et of normalization between narrowing steps. Sine the

aurate approximation of the normalization proess is a hallenging task, we will

use the ideas of logi program analysis as long as possible, and we will introdue

new analysis tehniques only if it is unavoidable. This is a reasonable method

sine there are many funtional logi programs where the \unpleasant" e�ets of

normalization (from an analysis point of view) do not our. Therefore we will

distinguish between \pleasant" and \unpleasant" situations.

Di�erent frameworks for the analysis of logi programs with a �xed left-to-

right omputation rule have been proposed in reent years (e.g., [5, 20, 26℄).

A ommon harateristi of these frameworks is the loality of the analysis: in

order to derive information about the run-time behavior of the entire program,

eah lause is separately analyzed. The onnetion between the lauses and the

goal literals ativating the lauses is ontrolled by well-de�ned interfaes. For

instane, from an analysis point of view a literal or prediate all L is onsidered

as a funtion from all patterns into return patterns.

4

To ompute or approximate

this funtion, we take a lause L

0

 L

1

; : : : ; L

n

, ompute the mgu of L and L

0

and restrit the uni�er to the variables ourring in this lause. The restrited

uni�er applied to L

1

yields the all pattern of the �rst literal in this lause and we

proeed the analysis of the lause body where the return pattern of L

i

is idential

to the all pattern of L

i+1

(i = 1; : : : ; n�1). The return pattern of the last literal

L

n

will be applied to L

0

and then uni�ed with L. If we omit the information

about the lause variables in this result, we obtain the result pattern of L. Sine

there is usually more than one appliable lause, we also analyze all other lauses

in this way and ompute the least upper bound of all result patterns.

Loality in this analysis means that during the analysis of the lause body

L

1

; : : : ; L

n

we do not onsider the environment of L (i.e., the goal or lause

body in whih L ours). This is justi�ed sine in a onrete omputation the

environment has no inuene to the omputation in the body. However, this is

di�erent in the ase of funtional logi programs due to the normalization proess:

Example 4. Consider the following rules:

f((a,Z)) ! a (R

1

)

g(X,Y) ! (h(X),h(Y)) (R

2

)

h(a) ! a (R

3

)

We want to ompute the result pattern (here: modes) of the goal f(g(X,Y)).

For this purpose, we analyze the right-hand side (h(X),h(Y)) of the rule for

g. A loal analysis would mean that we analyze the patterns for the funtion

alls h(X) and h(Y), and then infer the result pattern of the funtion all g(X,Y)

(in this ase: both arguments are bound to a ground term). However, we would

obtain an inorret result sine the environment of this funtion all inuene the

evaluation of the right-hand side. This an be seen in the onrete derivation:

f(g(X,Y)) !

R

f((h(X),h(Y))) ;

X 7!a

f((a,h(Y))) !

R

a

4

A pattern is an abstrat desription of a set of onrete substitutions. For instane,

the mode pattern add(g; g; f) of a literal add(X,Y,Z) desribes all substitutions whih

maps X and Y into ground terms and Z into a free variable.

7



Hene the variable Y remains free after the entire evaluation. Therefore we annot

analyze the rule for g without onsidering the environment. A more omplex

analysis method is neessary. 2

Fortunately, this unpleasant ase is rare and we often have the following situation:

If s is a subterm of t, then the de�ned funtion symbols above s do not inuene

the evaluation of s, i.e., the ordering of narrowing steps inside s is not hanged and

s is ompletely evaluated before a narrowing step is applied outside s. Instead

of giving a preise de�nition, we provide a suÆient and omputable riterion

to ensure that the ontext of s does not inuene the evaluation of s. We say

a subterm s at position p in t is loal i� all de�ned funtion symbols above s

preserve loality. The set of de�ned funtion symbols whih preserve loality is the

least set satisfying the following onditions. A de�ned funtion symbol preserves

loality i� for all rules f(�u)! r for f , where (X

1

; : : : ; X

n

) is the list of variables

of �u in leftmost innermost order, the following onditions are satis�ed:

1. For all j 2 f1; : : : ; ng there is a position p 2 NPos(r) with rj

p

= X

j

and

frj

q

j q 2 NPos(r); q < pg = fX

1

; : : : ; X

j�1

g.

2. All de�ned funtion symbols in r preserve loality.

The �rst ondition demands that the rule does not delete subterms and ensures

that the order of variables is preserved up to repetitions (this allows the rule

f(X,Y)!(X,X,Y,X) but exludes f(X,Y)!(Y,X)). In the seond ondition

we ontinue our demands on the de�ned funtions in r. We denote by LOC(r)

the set of positions of loal subterms in a term r.

If a subterm is not loal in a term, we have to take into aount the e�et

of normalization during the analysis. Sine the preise inuene of normalization

an only be approximated by the analysis, we obtain less aurate results in this

ase. In order to improve the auray of the analysis, we distinguish a lass of

subterms whih allow a better analysis than in the general ase. In many ases,

funtions with a nonloal behavior on argument terms (like multipliation in

Example 2) do not hange the order of narrowing steps but simply deletes some

possible narrowing steps (i.e., \possible" if normalization is not inluded). Sine

this allows a better analysis than in the general ase, we want to haraterize

subterms s where the de�ned funtions above s do not inuene the ordering of

narrowing steps in the derivation of s. Again, we provide a suÆient riterion for

this property. We say a subterm s at position p in t is weakly loal i� all de�ned

funtion symbols above s preserve weak loality. The set of de�ned funtions

preserving weak loality is the least set satisfying the following onditions. A

de�ned funtion symbol f preserves weak loality i� for all rules f(�u) ! r for

f , where (X

1

; : : : ; X

n

) is the list of variables in f(�u) in innermost order, the

following onditions are satis�ed:

1. If X

j

2 var(r), then there exists p 2 NPos(r) with rj

p

= X

j

and

frj

q

j q 2 NPos(r); q < pg = fX

1

; : : : ; X

j�1

g.

2. The de�ned funtion symbols in r preserve weak loality.
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This de�nition is similar to the de�nition of de�ned funtion symbols preserving

loality, but we do not require that all variables ourring in the left-hand side

must also our in the right-hand side. For instane, the funtion de�ned by

0*N!0 preserves weak loality but not loality. We denote by WLOC(r) the set

of positions of weakly loal subterms in a term r. Note that LOC(r) �WLOC(r).

The notions of loality and weak loality are suÆient to provide an au-

rate analysis for most pratial programs. Therefore we give an overview of our

analysis method in the next setion.

5 Abstrat Interpretation of Funtional Logi Programs

Abstrat interpretation is a systemati methodology to develop stati program

analysis methods [6℄. The design of an abstrat interpretation onsists in de�ning

an abstrat domain AD whih expresses relevant run-time information of pro-

grams. We assume that this abstrat domain is a �nite omplete lattie.

5

Eah

element of an abstrat domain represents a set of onrete elements, e.g., sets

of substitutions. This relation is given by a onretization funtion . It maps

an element of the abstrat domain into the powerset of the onrete domain

D. We assume that  is an ordering morphism between the abstrat domain

and the powerset of the onrete domain endowed with the inlusion ordering:

8a; b 2 AD : a � b ) (a) � (b). The image of the bottom element ? 2 AD

should be the empty set and the image of the top element should be D. a t b

denotes the least upper bound of two elements a; b 2 AD. We say that a 2 AD

approximates d 2 D, written a / d i� d 2 (a). Further essential omponents

of an abstrat interpretation are operations on AD approximating the onrete

operations on D. We assume familiarity with basi onepts of abstrat interpre-

tation.

5.1 Abstrat Domains and Operations

We are interested in a general framework for the analysis of funtional logi pro-

grams. Therefore we do not restrit ourselves to a partiular abstrat domain. We

only assume that the abstrat domain ontains elements to desribe substitutions

over a �xed �nite set V of variables. We denote the set of all these desriptions

by AS

V

. We abbreviate the abstrat substitution best approximating the iden-

tity substitution by Id. In order to present examples for the analysis of modes in

funtional logi programs, we use in subsequent examples the produt of the two

domains Mode

V

and S

V

, i.e., AS

V

=Mode

V

� S

V

. The �rst domain Mode

V

is

a mapping of eah variable in V into one of the four modes g; f; a;?. Eah mode

represents a set of onstrutor terms: (?) = ;, (a) = T (C;X ), (g) = T (C; ;)

and (f) = X . The onretization funtion onMode

V

is de�ned in the following

way: � 2 (fx

1

7! m

1

; : : : ; x

n

7! m

n

g) i� �(x

j

) 2 (m

j

) 8j 2 f1; : : : ; ng. A or-

ret analysis of freeness is not possible without onsidering the possible sharing

5

It is possible to weaken this ondition, but for the sake of simpliity we require a

�nite omplete lattie.

9



between variables. Thus the seond domain is the sharing domain S

V

= P(P(V ))

(sets of sets of variables from V ) of Jaobs and Langen [17℄ with the following

onretization funtion: � 2 (S) i� for all X 2 Var(�(v)) for some v 2 V

fy j X 2 Var(�(y))g � A for some A 2 S. We de�ne  on the entire domain

by ((M;S)) = (M) \ (S). Sine Mode

V

and S

V

are omplete latties, the

produt Mode

V

� S

V

is also a omplete lattie.

In our analysis we have to approximate the evaluation of funtions by nor-

malizing narrowing. Thus we onsider the derivation of �(r), where r is the

right-hand side of a narrowing rule R : f(�u) ! r or a part of a goal and � is a

onstrutor substitution. In Setion 2 we have seen that the onrete omputa-

tion is performed by applying narrowing steps with intermediate omputations

of the normal form, i.e., the onrete omputation has the form

�(r) !

�

R

r

0

;

�

1

r

1

!

�

R

r

0

1

;

�

2

r

2

!

�

R

r

0

2

� � � ;

�

n

r

n

!

�

R

r

0

n

As already disussed in Setion 4, the potential problem in this derivation is the

possibility that the normalization proess hanges the order of funtion alls. In

partiular, the leftmost innermost position in r

0

i

may be quite di�erent from r

i

.

In order to obtain a orret approximation of suh derivations, we will ompute

for eah right-hand side r a sequene of states whih approximates the sequene

of narrowing steps in the derivation above. For this purpose we de�ne the set of

omputation states of a narrowing rule R : f(�u)! r as

CS(R) = AS

V

� (WLOC(r) [ f?g)

where V = Var(R). The �rst omponent A of a omputation state (A; p) 2

CS(R) desribes the instantiation of the rule variables, whereas the seond om-

ponent p desribes the last narrowing position in r (or ? at the beginning of the

derivation of r).

6

In order to approximate the next narrowing position of the onrete omputa-

tion, we have to analyze the behavior of the normalization proess. For this pur-

pose we use an extension of type graphs, a data struture introdued by Janssens

and Bruynooghe [18℄ to desribe sets of onstrutor terms. Our extended type

graphs inlude additional information about the possible next narrowing posi-

tion. We all these extended type graphs term desriptions and denote the set

by TD(R). Due to lak of spae we annot disuss the preise struture of term

desriptions and the analysis of the normalization proess (see [33℄ for more de-

tails). We only summarize those operations on TD(R) whih are neessary to

understand the algorithm in Setion 5.2.

The analysis of the normalization proess is desribed as a family of funtions

norm

R

: AS

V

! TD(R)

6

The sequene of omputation states orresponds in some sense to the sequene of

abstrations omputed during the analysis of a lause body in abstrat interpretation

frameworks for logi programming [5℄. However, the analysis of a lause body follows

the left-to-right evaluation order of Prolog, whereas the sequene of omputation

states of a narrowing rule may not reet the left-to-right innermost order in r sine

the normalization may restruture the subterms in r at run time.

10



(one for eah narrowing rule R : f(�u)! r with V = Var(R)). A funtion norm

R

takes an approximation of the instantiation of the variables ourring in R and

yields a desription of the right-hand side after the normalization proess. Due to

the innermost normalization strategy, arguments are normalized before applying

a rewrite rule to a funtion all. Thus the de�nition of norm

R

omputes also the

normalization of inner subterms whih will be denoted by the funtion

norm args

R

: AS

V

�Pos(r)! AS

V

0

� T (C; V

0

)

The funtion norm args

R

takes a desription of the rule variables and a position

in the right-hand side and yields a desription of the normalized arguments of

the funtion all at this position. For instane, if the subterm f(g(X),Y) ours

in r at position 1 and the abstration A implies that X is ground and Y free, then

norm args

R

(A; 1) = (A

0

; (Z,Y)) where Z is a new variable representing the result

of g(X) and A

0

implies that Z is ground (provided that the funtion g evaluates

to a ground term if its argument is ground). Thus arguments ontaining de�ned

funtions are replaed by new variables desribing the result of the argument

evaluation, i.e., V

0

� V . In our analysis the new variables are only used to

desribe the e�et of applying a narrowing rule at this position. Thus we omit

these new variables after the rule appliation. For this purpose we need a restrit

funtion Aj

V

whih maps an abstration A 2 AS

V

0

into an abstration A

0

2 AS

V

by forgetting the information about variables in V

0

� V .

The remaining auxiliary funtions used in the analysis of a narrowing rule

R : f(�u)! r with V = Var(R) are summarized in the following table:

Auxiliary funtions for the analysis of funtional logi programs

lub : P(AS

V

)! AS

V

ons : TD(R) ! Bool

fun : TD(R) ! Bool

leftmost : TD(R) ! P(WLOC(r) [ f(g(�v); A) j g 2 D; A 2 AS

V [Var(�v)

g)

The funtion lub (least upper bound) takes a set of abstrations fA

1

; : : : ; A

n

g

and onstruts a single abstration whih is the least upper bound A

1

t � � � tA

n

of these abstrations. The prediate ons(td) is satis�ed if the denotation of

a term desription td may ontain onstrutor terms. The prediate fun is

satis�ed if the denotation may ontain a term with de�ned funtion symbols.

The funtion leftmost yields the set of possible funtion alls at the leftmost

innermost position. Note that the leftmost innermost funtion annot be uniquely

determined in the analysis. Thus leftmost returns a set of possible narrowing

andidates. This set onsists of weakly loal subterms of r (i.e., funtion alls in

the right-hand side of the rule) and new funtion alls possibly introdued during

normalization in a subterm whih is not weakly loal. For instane, onsider rule

R

2

of Example 4. If the abstration A desribes X and Y as a (any possible term),

the funtion leftmost applied to norm

R

2

(A) yields the weakly loal positions 1

and 2 of the subterms h(X) and h(Y). This is a orret approximation sine the

onrete normalization depends on the exat instantiation of X and Y.

Finally, we use in our framework two operations unify-aa : AS

V

�T (C; V )�

AS

W

� T (C;W ) ! AS

W

and unify-a : AS

V

� T (C; V ) � T (C;W ) ! AS

V

11



approximating uni�ation.

7

If we assume that the abstrat substitutions A and

B desribe substitutions � and ' over disjoint sets V and W of variables, then

unify-aa(A;

�

t; B; �s) desribes the resulting substitution mgu(�(

�

t); '(�s)) Æ '. In

ontrast unify-a(A;

�

t; �s) approximates mgu(�(

�

t); �s) Æ �, i.e., it desribes the

e�et of unifying �(

�

t) with �s on the variables in

�

t.

5.2 The Analysis Algorithm for Funtional Logi Programs

We want to analyze a rule R : f(�u) ! r.

8

As usual, the analysis of funtional

logi programs is a reursive proess, and we desribe the analysis as the least

�xpoint of a system of reursive funtions. For this purpose we de�ne a narrowing

denotation as a funtion

Æ : Rules�AS

X

� T (C;X )! AS

X

�AS

X

whih maps a narrowing rule (Rules denotes the set of all narrowing rules in

the program, where we assume that rules ontain fresh variables if they are used

in the analysis), a desription and a list of urrent arguments into two other

desriptions of the variables of the urrent arguments. Intuitively, if Æ(f(�u) !

r; A;

�

t) = (A

1

; A

2

), then A

1

desribes the possible instantiations of the variables

in

�

t during the derivation of the right-hand side r if this rule is applied to f(

�

t),

whereas A

2

desribes the instantiations after a suessful derivation of f(

�

t). This

distintion is neessary sine it is suÆient to onsider the omplete result of the

derivation only for loal funtions, whereas for weakly loal funtions it is also

neessary to onsider the intermediate states (sine weakly loal funtions an

be partially deleted, f. Setion 4).

If NDen denotes all narrowing denotations, we de�ne our analysis as om-

puting the least �xpoint of the operator 
 : NDen! NDen with


(Æ)(R;A;

�

t) = analyze

R

(Æ; A;

�

t) :

The family of funtions analyze

R

approximates the behavior of a omputation

with narrowing rule R by generating all omputation states for the right-hand

side after the head uni�ation (for onveniene, we desribe the funtions of our

algorithm with a free syntax, but it should be lear how to translate it into a

pure funtional language):

funtion analyze

R

(Æ 2 NDen;A 2 AS

X

;

�

t 2 T (C;X )) : AS

X

�AS

X

begin

 

0

= (unify-aa(A;

�

t; Id; �u);?) % �rst state ontains initial instantiations

(�; 	) = generate states

R

(Æ;  

0

) % generate subsequent states

return(bak unify

R

(�; 	;A;

�

t)) % give the results bak

end

The funtions generate states

R

ompute the transitive losure of the omputa-

tion states of the right-hand side of eah narrowing rule. Moreover, they ollet

7

For the sake of simpliity we onsider an n-tuple of onstrutor terms also as a

onstrutor term. This is always possible by introduing a pairing onstrutor symbol.

8

W.l.o.g. we assume that the initial goal is also represented as a rewrite rule.
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the intermediate patterns of loal omputations in the �rst omponent of the

result. This is neessary to orretly approximate the intermediate states of sur-

rounding weakly loal funtions (see bak unify

R

below).

funtion generate states

R

(Æ 2 NDen;  

0

2 CS(R)) : P(AS

X

)�P(CS(R))

begin % R = f(�u)! r

	 = f 

0

g ; � = ;

repeat % main loop: add new states to 	 :

for all (A; �) 2 	 do

for all l 2 leftmost(norm

R

(A)) do % onsider narrowing andidates

if l 2WLOC(r) then % andidate is weakly loal funtion

if l 6= � then % andidate not onsidered before

let h(�s) = rj

l

and (A

0

;

�

t) = norm args

R

(A; l) in

for all h( �w)! s 2 Rules do

(I; F ) = Æ(h( �w)! s; A

0

;

�

t)j

Var(R)

% analyze rules for h

	 = 	 [ f(F; l)g % add �nal state of the rule

if l 2 LOC(r) then � = � [ fIg

else 	 = 	 [ f(I; l)g � % add intermediate states

od % for nonloal funtions

�

else % global funtions (i.e., not weakly loal): ompute e�et of

let (h(

�

t); A

0

) = l in % head uni�ation with these funtions

	 = 	 [ f(unify-a(A

0

;

�

t; �w)j

Var(R)

;?) j h( �w)! s 2 Rulesg

�

od

od

until hno new states are added to 	i

return(�; 	)

end

The funtions bak unify

R

ompute upper bounds of all intermediate states and

all �nal states of a narrowing rule:

funtion bak unify

R

(� 2 P(AS

X

); 	 2 P(CS(R)); A 2 AS

X

;

�

t 2 T (C;X )) :

AS

X

�AS

X

begin % R = f(�u)! r

(I; F ) = (;; ;)

for all (A

0

; p) 2 	 do

td = norm

R

(A

0

)

% add abstration to I if rhs of R still ontains funtion alls:

if fun(td) then I = I [ funify-aa(A

0

; �u;A;

�

t)g �

% add abstration to F if the right-hand side of R is totally evaluated:

if ons(td) then F = F [ funify-aa(A

0

; �u;A;

�

t)g �

od

I = I [ funify-aa(B; �u;A;

�

t) j B 2 �g

return(lub(I), lub(F ))

end
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5.3 Derivation of Narrowing and Rewrite Modes

The main motivation of this work is the derivation of narrowing and rewrite

modes for funtional logi programs sine they an be used to optimize the om-

piled programs in various ways (see Setion 3 and [16℄). The analysis presented so

far does not derive these modes but approximates the instantiation of variables

after a suessful appliation of a narrowing rule. This is the most diÆult task

in the analysis due to the problems disussed in Setion 4. Therefore it is easy to

derive the narrowing and rewrite modes from our analysis. The narrowing modes

an be inferred by olleting the initial modes of all narrowing rules omputed in

the funtions analyze

R

and in unify-a-alls. The omputation of rewrite modes

an be integrated in the funtions generate states

R

and norm

R

by olleting all

abstrations ourring during the normalization proess.

5.4 Examples

In the following example we sketh the omputed results of our algorithm. Sine

we are mainly interested in the mode omponent Mode

V

of the abstrations, we

omit the sharing omponent in the example (although it is neessary to orretly

derive freeness information).

Example 5. We disuss the analysis of a reursively de�ned funtion. We want to

derive the modes of Example 3. For this purpose we represent the term of the

initial goal as the right-hand side of a new rule:

0 + U ! U (R

1

) three(X) ! X+(X+X) (R

3

)

s(V) + W ! s(V + W) (R

2

)

Sine all funtions are loal, it is not neessary to onsider the intermediate modes

of narrowing rules. Hene we ignore these in the following disussion. The analysis

starts by analyzing lause R

3

with the initial abstration A

0

= fX 7! fg. Nor-

malization of the right-hand side yields leftmost(norm

R

3

(A

0

)) = f2g, i.e., the

subterm X+X is the next narrowing position. The analysis of rule R

1

is performed

by analyze

R

1

(?; A

0

; (X,X)) = (: : : ; fX 7! gg) (note that we start a �xpoint om-

putation with the unde�ned narrowing denotation?). To analyze the seond rule,

we ompute the initial abstration A

1

= fV 7! f; W 7! ag of the right-hand side.

The next narrowing position is the subterm V+W: leftmost(norm

R

2

(A

1

)) = f1g.

The result of this reursive funtion all is approximated by the following hain

of �xpoint iterations (note that we do not show the sharing omponent, but it is

neessary to derive these results):

analyze

R

1

(?; A

1

; (V;W )) = (: : : ; fV 7! g;W 7! gg)

analyze

R

2

(?; A

1

; (V;W )) = (: : : ; fV 7! ?;W 7! ?g)

analyze

R

1

(
(?); A

1

; (V;W )) = (: : : ; fV 7! g;W 7! gg)

analyze

R

2

(
(?); A

1

; (V;W )) = (: : : ; fV 7! g;W 7! gg)

A further iteration does not hange the narrowing denotations. Thus the analysis

of R

2

w.r.t. A

0

yields the �nal result fX 7! gg, and we have reahed a stable

situation after one �xpoint iteration.
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The narrowing modes for + an be derived by olleting all initial modes for

the analysis of R

1

and R

2

, i.e., +(f; a) is the narrowing mode. Similarly, +(a; a)

is the derived rewrite mode. 2

Due to lak of spae we annot disuss the analysis of Example 4 in detail.

Our analysis yields as suess substitution for f(g(X,Y)) the abstrat value fX 7!

a; Y 7! ag. The omputed approximation is the worst possible one beause of the

presene of nonloal funtion symbols. However, it is orret in ontrast to an

analysis of the orresponding attened logi program.

6 Conlusions

In this paper we have presented a framework to approximate the run-time behav-

ior of funtional logi programs. The onsidered onrete operational semantis

is normalizing narrowing, a ombination of redution, as used in pure funtional

languages, and nondeterministi narrowing steps, whih are omparable to resolu-

tion steps in pure logi languages. This ombination is very useful sine it redues

the searh spae by the preferene of deterministi evaluations and the deletion

of omplete subgoals during normalization. However, these useful e�ets makes

an aurate approximation very diÆult sine the intermediate normalization

proess during narrowing steps may delete or restruture the order of subsequent

narrowing steps. In order to ath this behavior at the abstrat level, we have

desribed the evolving omputation of the right-hand side of eah narrowing rule

by a sequene of desriptions of the instantiation state of the rule variables. De-

pending on this instantiation state, the abstrat normalization funtion yields

a desription of the next narrowing position in the right-hand side. To improve

the auray of the analysis, we have distinguished two kinds of funtions. Loal

funtions annot be deleted by the normalization of surrounding funtions, and

hene they are ompletely evaluated. Therefore it is only neessary to onsider

the suess states of their orresponding narrowing rules. The order or narrowing

steps in weakly loal funtions annot be hanged, but the evaluation may be

ut o� due to the deletion of arguments. Therefore they an be treated with a

better auray than generally de�ned funtions, but it is neessary to onsider

intermediate states in ontrast to loal funtions.

The analysis of funtional logi programs is a rather new researh topi in

the general area of program analysis. As far as we know, this paper is the �rst

approah to derive mode information for funtional logi languages based on

normalizing narrowing. Boye [4℄ and Hanus [14℄ proposed methods to analyze

funtional logi programs where funtion alls are simply delayed until they are

ompletely evaluable. Alpuente et al. [1℄ presented a framework to approximate

the suess patterns of terms evaluated by narrowing in order to detet unsolv-

able equations at analysis time. However, all these approahes do not over the

derivation of modes for funtion alls. As already disussed, this is a hallenge

in the presene of an operational semantis whih dynamially restruture the

all sequene in goals. Marriott et al. [23℄ proposed a framework to analyze logi

programs where subgoals are dynamially delayed. This is in some sense related
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to the dynami restruturing of goals, but it is di�erent from our framework sine

we try to approximate also the omplete deletion of subgoals whih has no or-

respondene in logi programming. The possible deletion of subgoals is the main

reason for the omplexity of our approah.

The auray of our analysis depends on the loality of funtions and the

auray of the analysis of the normalization proess. In our urrent framework,

we use type graphs and mode information to approximate the normalization

proess and, in partiular, the appliability of a rewrite rule. It is an interesting

topi for future researh to improve this approximation by stronger appliability

onditions for rewrite rules using re�ned abstrat domains. Another topi for

future work is the implementation of this framework and the inlusion into an

existing ompiler in order to evaluate our analysis method on larger appliation

programs.
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