
Verifying Fail-Free Declarative Programs
Michael Hanus

CAU Kiel

Institut für Informatik

Kiel, Germany

mh@informatik.uni-kiel.de

ABSTRACT
Failed computations are a frequent problem in software system

development. Some failures have external reasons (e.g., missing

files) that can be caught by exception handlers. Many other failures

have internal reasons, such as calling a partially defined operation

with unintended arguments. In order to avoid the latter kind of

failures, one can try to analyze the program at compile time for

potential occurrences of these failures at run time. In this paper

we present an approach to verify the absence of such failures in

functional logic programs. Since programming with failures is a

typical technique in logic programming, we are not interested to

abandon partially defined operations at all. Instead, we want to

verify conditions which ensure that operations can be executed

without running into a failure. For this purpose, we propose to

annotate operations with non-fail conditions that are verified at

compile time with an SMT solver. For successfully verified pro-

grams, it is ensured that computations never fail provided that the

non-fail condition of the main operation is satisfied.

CCS CONCEPTS
• Software and its engineering→ Functional languages;Con-
straint and logic languages; Multiparadigm languages; Con-
trol structures; Semantics;

KEYWORDS
Declarative programming, program failures, verification

ACM Reference Format:
Michael Hanus. 2018. Verifying Fail-Free Declarative Programs. In The 20th

International Symposium on Principles and Practice of Declarative Program-

ming (PPDP ’18), September 3–5, 2018, Frankfurt am Main, Germany. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3236950.3236957

1 INTRODUCTION
The occurrence of failures during a program execution is an annoy-

ing but frequent problem when software systems are developed.

There are two main reasons for such failures. There are external

reasons which are outside the control of the program, like missing

files or access rights, unexpected formats of external data, etc. Such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6441-6/18/09. . . $15.00

https://doi.org/10.1145/3236950.3236957

failures can be caught by exception handlers in order to avoid a

crash of the entire software system. Other failures have internal

reasons which are due to programming errors, like calling a par-

tially defined operation with unintended arguments. In imperative

programs a typical error of this kind is dereferencing a pointer vari-

able whose current value is the null pointer. Although such kinds of

errors cannot occur in declarative programs, there are other errors

typical for declarative programming, like failures due to incomplete

pattern matching. For instance, consider the following operations

(shown in Haskell syntax) which compute the first element and the

tail of a list:

head :: [a] → a

head (x:xs) = x

tail :: [a] → a

tail (x:xs) = xs

Since the case for empty lists is not given, the operations are

partially defined so that a computation runs into a failure when

these operations are applied to an empty list, as in the expression

“head (tail [1])”. Hence, a careful programmer must ensure that

such calls do not occur at run time. For instance, if partially de-

fined operations are applied to unknown data, e.g., given by the

user at run time, it is good style to check the arguments before

the actual application. This is done in the following code snipped

which defines an operation to read a command together with some

arguments from standard input (the operation words breaks a string

into a list of words separated by white spaces):

readCommand = do

putStr "Input a command:"

s ← getLine

let ws = words s

if null ws then readCommand

else processCommand (head ws) (tail ws)

Here, the calls to head and tail cannot lead to a failure since it is

ensured that the variable ws is bound to a non-empty list when

entering the else branch.

The objective of this work is to provide a tool to verify a program

for the absence of such run-time failures. One possibility is to en-

rich the type system to express constraints on applying operations

like head and tail, e.g., by dependent types, as in Agda [33], Coq

[8], or Idris [9], or refinement types, as in LiquidHaskell [38, 39].

This provides safety but makes program development much harder

[37]. However, we do not consider only functional programs but

we are interested in declarative programming which also includes

logic programming. There, programming with failures is a typical

programming technique so that it is acceptable that operations

https://doi.org/10.1145/3236950.3236957
https://doi.org/10.1145/3236950.3236957

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

might fail when we search for solutions. A typical example is the

unification operation which should fail if its arguments are not

unifiable. Similarly, one can accept failing calls to head and tail

when one searches for list structures satisfying some constraints.

Therefore, we are not interested to abandon partially defined opera-

tions. Instead, we want to verify for purely functional computations,

which might contain encapsulated non-deterministic subcompu-

tations, that failing calls do not occur. We call such programs fail

free. For instance, a call to head is acceptable in a purely functional

computation only if the argument is a non-empty list, whereas

the argument can be arbitrary in encapsulated non-deterministic

subcomputations.

In order to specify when operations are fail free, we propose to

annotate operations with non-fail conditions. For instance, a non-fail

condition for head is

head'nonfail xs = not (null xs)

which specifies that the argument xs must be a non-empty list. The

intended meaning of a non-fail condition is that the evaluation of

an operation applied to arguments satisfying the non-fail condition

never fails. In this paper, we present a method to verify such non-

fail conditions at compile time by extracting conditions from the

program that are sent to an SMT solver (e.g., Z3 [15]) for verification.

The use of an SMT solver allows us also to verify non-fail conditions

involving arithmetic constraints.

Note that non-fail conditions are different from preconditions

which must be satisfied for any call of an operation. Pre- and post-

conditions as programming contracts have been proposed for func-

tional logic programming in [6]. They can be used as dynamic

run-time checks or might be verified at compile time [19]. However,

if we consider the above non-fail condition for head as a precondi-

tion, it is not allowed to use head in logic computations to search

for non-empty lists.

In the following, we present our method for the verification of

fail-free programs and present a corresponding tool for programs

written in the functional logic language Curry [22]. Since Curry

conceptually subsumes purely functional languages like Haskell

as well as logic languages, the same ideas can also be applied to

these languages. In the next section, we briefly review Curry and its

semantics. The idea of non-fail conditions is discussed in Section 3.

A formal model of verifying non-fail condictions is introduced in

Section 4. Section 5 discusses the use of contracts and emphasizes

the differences between contracts and non-fail conditions. The

current implementation is presented in Section 6 where also some

quite encouraging practical results are presented. Related work is

discussed in Section 7 before we conclude.

2 FUNCTIONAL LOGIC PROGRAMS: SYNTAX
AND SEMANTICS

The motivation for the development of functional logic languages is

to combine the most important features of functional and logic pro-

gramming in order to support a variety of declarative programming

techniques in a single language (see [18] for a survey). As a concrete

programming language, we consider the functional logic language

Curry [22] in this paper. Curry conceptually extends Haskell with

common features of logic programming, i.e., non-determinism, free

variables, and constraint solving. We briefly review those elements

of Curry that are necessary to understand our approach to ver-

ify fail-free programs presented in this paper. More details can be

found in surveys on functional logic programming [18] and in the

language report [22].

The syntax of Curry is close to Haskell [35]. Recent implemen-

tations of Curry also support type classes as in Haskell but do not

implement all extensions to the basic type class system. Since this is

not relevant for this paper, we ignore type classes here. In addition

to Haskell, Curry applies rules with overlapping left-hand sides in

a (don’t know) non-deterministic manner (where Haskell always

selects the first matching rule) and allows free (logic) variables in

conditions and right-hand sides of rules. In contrast to Prolog, these

variables must be explicitly declared unless they are anonymous.

Function calls can contain free variables, in particular, variables

without a value at call time. These calls are evaluated lazily where

free variables as demanded arguments are non-deterministically

instantiated [2].

Example 2.1. The following simple program shows the func-

tional and logic features of Curry. It defines an operation “++” to

concatenate two lists, which is identical to the Haskell encoding.

The operation ins inserts an element at some (unspecified) position

in a list:

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

ins :: a → [a] → [a]

ins x ys = x : ys

ins x (y:ys) = y : ins x ys

Note that ins is a non-deterministic operation since it might de-

liver more than one result for a given argument, e.g., the evaluation

of ins 0 [1,2] yields the values [0,1,2], [1,0,2], and [1,2,0]. Non-

deterministic operations, which are interpreted as mappings from

values into sets of values [17], are an important feature of contem-

porary functional logic languages. Hence, there is also a predefined

choice operation:

(?) :: a → a → a

x ? _ = x

_ ? y = y

Thus, “0 ? 1” evaluates to 0 and 1 with the value non-deterministi-

cally chosen.

Non-deterministic operations can be used as any other operation.

For instance, we can use ins to define an operation perm that returns

an arbitrary permutation of a list:

perm :: [a] → [a]

perm [] = []

perm (x:xs) = ins x (perm xs)

Non-deterministic operations are quite expressive since they can

be used to completely eliminate logic variables in functional logic

programs. Actually, it has been shown that non-deterministic oper-

ations and logic variables have the same expressive power [4, 14].

For instance, a Boolean logic variable can be replaced by the non-

deterministic generator operation for Booleans defined by

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

P ::= D1 . . .Dm (program)

D ::= f (x1, . . . ,xn) = e (function definition)

e ::= x (variable)

| c(e1, . . . , en) (constructor call)

| f (e1, . . . , en) (function call)

| case e of {p1 → e1; . . . ;pn → en } (case expression)

| e1 or e2 (disjunction)

| let {x1 = e1; . . . ;xn = en } in e (let binding)

p ::= c(x1, . . . ,xn) (pattern)

Figure 1: Syntax of the intermediate language FlatCurry

aBool :: Bool

aBool = False ? True

This equivalence can be exploited when Curry is implemented

by translation into a target language without support for non-

determinism and logic variables. For instance, KiCS2 [12] compiles

Curry into Haskell by adding a mechanism to handle non-deter-

ministic computations. In this paper, we exploit this fact by simply

ignoring logic variables since we consider them as syntactic sugar

for non-deterministic value generators.

Curry has many additional features not described here, like

monadic I/O [40] for declarative input/output, set functions [5]

to encapsulate non-deterministic search, functional patterns [3]

and default rules [7] to specify complex transformations in a high-

level manner, and a hierarchical module system together with a

package manager
1
that provides access to currently more than 80

packages with several hundreds modules.

Due to the complexity of the source language, language process-

ing tools for Curry, like compilers, analyzers, or optimization tools,

often use an intermediate language where the syntactic sugar of

the source language has been eliminated and the pattern matching

strategy is explicit. This intermediate language, called FlatCurry,

has also been used to specify the operational semantics of Curry

programs [1]. Since we will use FlatCurry as the basis for our

verification method, we sketch the structure of FlatCurry and its

semantics.

The abstract syntax of FlatCurry is summarized in Fig. 1. In

contrast to some other presentations (e.g., [1, 18]), we omit the

difference between rigid and flexible case expressions since we do

not consider residuation (which becomes less important in prac-

tice and is also omitted in newer implementations of Curry [12]).

A FlatCurry program consists of a sequence of function defini-

tions, where each function is defined by a single rule. Patterns

in source programs are compiled into case expressions and over-

lapping rules are joined by explicit disjunctions. For instance, the

non-deterministic insert operation ins is represented in FlatCurry

as

ins(x,xs) = (x:xs)

or

case xs of { y:ys → y : ins(x,ys) }

The semantics of FlatCurry programs is defined in [1] as an exten-

sion of Launchbury’s natural semantics for lazy evaluation [24]. For

1
http://curry-language.org/tools/cpm

this purpose, we consider only normalized FlatCurry programs, i.e.,

programs where the arguments of constructor and function calls

and the discriminating argument of case expressions are always

variables. Any FlatCurry program can be normalized by introducing

new variables with let expressions [1]. For instance, the expression

“y : ins(x,ys)” in the FlatCurry rule above is normalized into

let { z = ins(x,ys) } in y : z

In the following, we assume that all FlatCurry programs are nor-

malized.

In order to model sharing, which is important for lazy evalua-

tion and also semantically relevant in case of non-deterministic

operations [17], variables are interpreted as references into a heap.

New let bindings are stored in the heap. If a variable bound to some

function call is evaluated, the binding in the heap is updated with

its evaluated result. To be more precise, a heap, denoted by Γ,∆, or
Θ, is a partial mapping from variables to normalized expressions.

The empty heap is denoted by []. Γ[x 7→ e] denotes a heap Γ′ with
Γ′(x) = e and Γ′(y) = Γ(y) for all x , y.

Using heap structures, one can provide a high-level description

of the operational behavior of FlatCurry programs in natural seman-

tics style. The semantics uses judgements of the form “Γ : e ⇓ ∆ : v”
with the meaning that in the context of heap Γ the expression e eval-
uates to value (head normal form) v and produces a modified heap

∆. Figure 2 shows the rules defining this semantics w.r.t. a given

normalized FlatCurry program P , where ok denotes a sequence of

objects o1, . . . ,ok .
Constructor-rooted expressions (i.e., head normal forms) are just

returned by rule Val. Rule VarExp retrieves a binding for a variable

from the heap and evaluates it. In order to avoid the re-evaluation of

the same expression, VarExp updates the heap with the computed

value, which models sharing. In contrast to the original rules [1],

VarExp removes the binding from the heap. On the one hand, this

allows the detection of simple loops (“black holes”) as in functional

programming. On the other hand, it is crucial in combination with

non-determinism to avoid the binding of a variable to different

values in the same derivation (see [10] for a detailed discussion on

this issue). Rule Fun unfolds function calls by evaluating the right-

hand side after binding the formal parameters to the actual ones.

Let introduces new bindings in the heap and renames the variables

in the expressions with the fresh names introduced in the heap.

Or non-deterministically evaluates one of its arguments. Finally,

rule Select deals with case expressions. When the discriminating

http://curry-language.org/tools/cpm

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

Val Γ : v ⇓ Γ : v where v is constructor-rooted

VarExp
Γ : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f (xn) ⇓ ∆ : v
where f (yn) = e ∈ P and ρ = {yn 7→ xn }

Let
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek } in e ⇓ ∆ : v
where ρ = {xk 7→ yk } and yk are fresh variables

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : x ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : case x of {pk → ek } ⇓ Θ : v
where pi = c(xn) and ρ = {xn 7→ yn }

Figure 2: Natural semantics of normalized FlatCurry programs

argument of case evaluates to a constructor-rooted term, Select
evaluates the corresponding branch of the case expression.

FlatCurry and its operational semantics has been used for vari-

ous language-oriented tools, like compilers, partial evaluators, or

debugging and profiling tools (see [18] for references). We use it in

this paper to define our verification method.

3 NON-FAIL CONDITIONS
As discussed in the introduction, we do not want to abandon all

uses of partially defined operations since they might be used in

logic (search) oriented computations in a meaningful way. However,

we want to verify that some uses of such operations, e.g., in purely

functional computations, are not going to fail. Hence, we have

to specify when operations can be used without failure. For this

purpose, we allow to annotate operations with non-fail conditions

as discussed in this section.

In order to avoid introducing additional syntax for non-fail con-

ditions and allow the use of standard Curry operations in their

definition, a non-fail condition for an operation f of type τ → τ ′2

is an operation f ’nonfail of type τ → Bool. We have already seen

a non-fail condition for the operation head in the introduction. As

a further example, the integer division operation div has the fol-

lowing non-fail condition:

div'nonfail :: Int → Int → Bool

div'nonfail x y = y/=0

Intuitively, a non-fail condition specifies requirements on argu-

ments so that the evaluation of this operation does not fail. Note

that this does not mean that the evaluation always delivers a value,

since infinite computations are still possible.

If f is an operation of type τ → τ ′, the trivial non-fail condition
is

f 'nonfail :: τ → Bool

f 'nonfail x = True

2
For the sake of simplicity, we consider only unary operations in the formal develop-

ment. The extension to operations with more than one argument is straightforward.

Since the trivial non-fail condition does not specify any restriction

on arguments, we assume that operations without explicitly defined

non-fail conditions are implicitly annotated with trivial non-fail

conditions.

On the other hand, the unsatisfiable non-fail condition

f 'nonfail :: τ → Bool

f 'nonfail x = False

expresses that there is no explicit condition under which the op-

eration does not fail. For instance, the predefined Curry operation

failed, whose evaluation always fails, has the non-fail condition

failed'nonfail :: Bool

failed'nonfail = False

The unification operator “=:=” could fail on non-unifiable argu-

ments. Since we cannot expect to verify such a condition at compile

time, we define its non-fail condition as
3

=:='nonfail :: a → a → Bool

=:='nonfail _ _ = False

Such non-fail conditions do not mean that we cannot use a poten-

tially always failing operation in a verified program—we simply

have to encapsulate their use in order to control their failures, e.g.,

by using set functions [5], as discussed later in Section 6.3.

Verifying a non-fail condition means to prove that a computation

with arguments satisfying the non-fail condition never fails, neither

by incomplete pattern matching (as in operations like head) nor by

calling other operations that might fail. For instance, consider the

operation to compute the sign of an integer:

sig :: Int → Int

sig x | x>0 = 1

| x==0 = 0

| x<0 = -1

3
Note that the identifier of this non-fail condition is not allowed in actual Curry

programs. Thus, our verification tool accepts a specific form of non-fail conditions for

operators.

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

CaseFailCons
Γ : x ⇓ ∆ : c(yn)

Γ : case x of {pk → ek } ⇓ ∆ : Fail

if no pi is rooted by c

CaseFail
Γ : x ⇓ ∆ : Fail

Γ : case x of {pk → ek } ⇓ ∆ : Fail

ValF Γ : v ⇓ Γ : v where v is constructor-rooted or v = Fail

PrimFailed Γ : failed ⇓ Γ : Fail

Figure 3: Extension of the natural semantics to deal with failures

Since guarded rules are an abbreviation for nested if-then-else

expressions, the rule will be desugared to

sig x = if x>0 then 1

else if x==0 then 0

else if x<0 then -1

else failed

Since sig has a trivial non-fail condition (there is no explicit one),

one has to show that sig never fails. This amounts to showing that

the last alternative with the call to failed is not reachable. As we

will see later, this can be proved with an SMT solver.

In order to specify the correctness of non-fail conditions, we

have to extend the semantics of Fig. 2 in order to make failing

computations explicit. The necessary extensions and changes are

summarized in Fig. 3. In order to reason about failures, we introduce

a new constant Fail which does not occur in existing programs,

i.e., it is different from any constructor in the program. This con-

stant is intended to indicate a failed computation. Since a failure

occurs when a pattern matching is not complete, we add the rules

CaseFailCons and CaseFail shown in Fig. 3. Furthermore, we have

to consider a Fail value as a final result of a computation. For this

purpose, we replace rule Val of Fig. 2 by rule ValF. Since failures
might also occur due to the use of primitive operations, like failed,

we introduce specific rules for them, as shown in rule PrimFailed. In
the same way, we could also specify the semantics of the unification

operator “=:=” [1].

Now we can define the correctness of non-fail conditions.

Definition 3.1 (Correctness of non-fail conditions). Let f be an op-

eration of type τ → τ ′. The non-fail condition f ’nonfail is correct
if, for all (normalized) values v of type τ such that f ’nonfail(v)
holds and all heaps Γ with Γ(x) = v , there is no valid judgement

Γ : f (x) ⇓ Γ′ : Fail.

Thus, a non-fail condition is correct if there is no failing deriva-

tion for arguments satisfying the condition. This implies that, for

non-deterministic computations, all branches must be non-failing.

For instance, consider the operation

idOrTail xs = xs ? tail xs

Although idOrTail [] has value [], the trivial non-fail condition is

not correct since [] : idOrTail([]) ⇓ [] : Fail is a valid judgement.

4 VERIFICATION OF NON-FAIL CONDITIONS
In order to verify non-fail conditions, we have to analyze the pattern-

matching structure of all operations in order to prove that failures

cannot occur for computations where non-fail conditions are sat-

isfied. For simple operations, like head, the task is easy to solve.

For a call like head xs, one has to check that the conjunction of the

condition of the missing case branch (xs = []) and the non-fail

condition (not (null xs)) is not satisfiable. This can be shown by

expanding the definition of the predefined operations null and not:

not (null xs) ∧ xs = [] ≡ not (xs = []) ∧ xs = []

≡ ¬(xs = []) ∧ xs = []

≡ false

More complex operations, in particular, operations calling other

operations with non-trivial non-fail conditions, require advanced

reasoning methods. For instance, consider the following operation

(a part of the operation readCommand from the introduction):

f ws = if null ws

then readCommand

else processCommand (head ws) (tail ws)

In order to show that the non-fail conditions of head and tail

are satisfied in the calls of these operations, one has to push the

information that the if-condition (null xs) is not satisfied into the

else branch.

As a further example, consider the operation sig defined in Sec-

tion 3. In order to show that the precondition for the operation

failed (which is always False) is satisfied in the last else branch,

one has to collect the information that the conditions of the pre-

ceding if-conditions are not satisfied, i.e., one has to show that

¬(x>0) ∧ ¬(x==0) ∧ ¬(x<0)

is unsatisfiable. Since this can automatically be proved by an SMT

solver, we will integrate SMT solvers in our verification tool.

These examples demonstrate that the verification of non-fail

conditions requires to collect properties that are ensured to be valid

in particular points of the right-hand sides of program rules. In

the following, we call such properties assertions. To formalize this

process, we define an assertion-collecting semantics for FlatCurry

programs.
4
The definition follows the structure of the concrete

4
A semantics following the same idea is defined in [19] to verify contracts. Our

semantics is different from that one in order to verify non-fail conditions.

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

Val Γ : C | z ← v ⇓ C ∧ z = v where v is constructor-rooted, v = Fail, or

v is a variable not bound in Γ

VarExp

Γ : C | z ← e ⇓ D

Γ[x 7→ e] : C | z ← x ⇓ D

Fun Γ : C | z ← f (xn) ⇓ C ∧ (f ’nonfail(xn) ∨ z = Fail)

Let

Γ[yk 7→ ρ(ek)] : C | z ← ρ(e) ⇓ D

Γ : C | z ← let {xk = ek } in e ⇓ D

where ρ = {xk 7→ yk }
and yk are fresh variables

Or

Γ : C | z ← e1 ⇓ D1 Γ : C | z ← e2 ⇓ D2

Γ : C | z ← e1 or e2 ⇓ D1 ∨ D2

Select

Γ : C | x ← x ⇓ D Γ : D1 | z ← e1 ⇓ E1 . . . Γ : Dk | z ← ek ⇓ Ek
Γ : C | z ← case x of {pk → ek } ⇓ E1 ∨ . . . ∨ Ek

where Di = D ∧ x = pi (i = 1, . . . ,k)

PrimFailed Γ : C | z ← failed ⇓ C ∧ z = Fail

Figure 4: Assertion-collecting semantics

semantics shown in Fig. 2 and 3 but differs from the concrete se-

mantics in the following points:

(1) The assertion-collecting semantics computes with symbolic

values.

(2) It collects assertions and passes them from outer to inner

positions.

(3) Functions are not evaluated (in order to ensure finiteness of

derivations) but assertions about their non-fail conditions

are collected.

This semantics uses judgements of the form “Γ : C | z ← e ⇓ D”
where Γ is a heap, z is a (result) variable, e is an expression, and

C and D are assertions, i.e., Boolean formulas over the program

signature. The meaning of such a judgement is: if e is evaluated to

z in the context Γ where C holds, then D holds after the evaluation.

Figure 4 shows the rules defining the assertion-collecting se-

mantics. Here, we assume that all case branches are complete, i.e.,

branches missing for some constructors are supplemented with

failed. For instance, the FlatCurry representation of head is

head(zs) = case zs of [] → failed

(x:xs) → x

Rule Val immediately returns the assertion about the computed

result. Since the assertion-collecting semantics computes with sym-

bolic values, theremight be variableswithout a binding to a concrete

value. Hence, Val also returns such unbound variables. Rule VarExp

behaves similarly to rule VarExp of the concrete semantics and

returns the assertions collected during the evaluation of the expres-

sion. Since the assertion-collecting semantics should always return

a result, it should be possible to derive a judgement for any expres-

sion. Therefore, rule Fun does not invoke the function by evaluating

its right-hand side in order to collect their assertions. Instead, we

add a disjunction of the non-fail condition and the condition that

the result is a failure. The notation f ’nonfail(xn) in the assertion

denotes the logical formula corresponding to the non-fail condi-

tion. If the accumulated assertions imply that the non-fail condition

f ’nonfail(xn) is satisfied, the disjunction f ’nonfail(xn)∨z = Fail

is also satisfied so that the part z = Fail is irrelevant for the col-

lected assertions. Otherwise, i.e., when one cannot show that the

non-fail condition f ’nonfail(xn) is satisfied w.r.t. the accumulated

assertions, the part z = Fail becomes relevant which means that

we might deduce that this call fails. Thus, the assertion-collecting

semantics computes an over-approximation of the concrete evalu-

ation, since a concrete function application might not fail even if

the non-fail condition is not satisfied.

Rule Let adds the let bindings to the heap, similarly to the con-

crete semantics, before evaluating the argument expression. Rules

Or and Select collect all information derived from alternative com-

putations, instead of the non-deterministic concrete semantics. This

is intended since we want to approximate all potential failures oc-

curring in derivations. Rule Select also collects inside each branch

the condition that must hold in the selected branch, which is im-

portant to get precise information for successful verification. Note

that branches that cannot be selected if the non-fail condition holds

do not add information to the collected assertions. For instance,

consider the operation head above. If the non-fail condition (see

Section 1) holds for zs, then the conjunction not(null(zs)) ∧zs = []

is equivalent to false so that the assertion of this branch is irrelevant

for the disjunction obtained from the case expression.

To avoid the renaming of local variables in different branches, we

implicitly assume that all local variables are unique in a normalized

function definition.

In contrast to the concrete semantics, the assertion-collecting

semantics is deterministic:

Proposition 4.1. Let Γ be a heap, C an assertion, z a variable,

and e an expression. Then there is a unique (up to variable renamings

in let bindings) proof tree and assertion D so that the judgement

“Γ : C | z ← e ⇓ D” is derivable.

Proof. The claim follows from the fact that the rules of the

assertion-collecting semantics cover all kinds of expressions, do not

overlap, and reduce the size of the expressions in the premises. □

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

The assertion-collecting semantics is intended to verify the cor-

rectness of non-fail conditions. If we denote by Γ̂ the representation
of heap information as a logic formula, i.e.,

Γ̂ =
∧
{x = e | x 7→ e ∈ Γ, e constructor-rooted or a variable}

we can state the correct approximation of failing computations as

follows:

Theorem 4.2. Let Γ be a heap, C an assertion such that Γ̂ ⇒ C ,
e an expression where all operations in e have unsatisfiable non-fail
conditions, z a fresh variable not occurring in Γ, C , or e . Assume that

there is a valid judgement Γ : C | z ← e ⇓ D so that D ∧ z = Fail is

unsatisfiable. If there is a derivation of Γ : e ⇓ Γ′ : v , then v , Fail.

The proof is by induction on the height of the proof tree of the

natural semantics and requires some technical lemmas which we

omit here due to lack of space.

We can use this result to verify the correctness of non-fail con-

ditions. Consider an operation f of type τ → τ ′ with a non-

fail condition f ’nonfail. Assume that we derive the judgement

[] : f ’nonfail(x) | z ← f (x) ⇓ D and show that D ∧ z = Fail

is unsatisfiable. If v is a (normalized) value of type τ such that

f ’nonfail(v) holds, and Γ a heap with Γ(x) = v , then we can also

derive the judgement Γ : f ’nonfail(x) | z ← f (x) ⇓ D ′ where D ′

differs from D by replacing x with v so that D ′ ∧ z = Fail is also

unsatisfiable. By the theorem above, the evaluation of f (v) (which
is identical to f (x) w.r.t. heap Γ) never fails so that the non-fail

condition is correct. To prove the theorem also for expressions

containing operations with arbitrary non-fail conditions, one has

to use an induction on the number of applied operations under the

assumption that the non-fail conditions of them are correct.

Note that the result Fail is introduced only in rules Select (in

branches for missing constructors), Fun (when the non-fail con-

dition does not hold), and PrimFailed. Hence, we can prove that

the result of the assertion-collecting semantics is always different

from Fail by showing that, when one of these rules is used, the

assertions collected at these points are unsatisfiable. For instance,

the assertion collected at the Fail branch of operation head above

is not (null(xs)) ∧ xs = [] and, thus, unsatisfiable. The operation

sig defined in Section 3 has the following definition in FlatCurry:

sig(x) = case (x>0) of

True → 1

False → case (x==0) of

True → 0

False → case (x<0) of

True → -1

False → failed

Hence, the assertion collected at the call to failed is

(x>0) = false ∧ (x==0) = false ∧ (x<0) = false

This formula is unsatisfiable so that the result Fail is impossible

here.

The unsatisfiabilty of such formulas can be checked by SMT

solvers like Z3 [15], which can reason over a number of built-in

theories, like integers in our case. Often one needs also a combina-

tion of reasoning over integers and data structures. For instance,

consider the list index operator which selects the nth element of a

given list:

nth :: [a] → Int → a

nth (x:xs) n | n==0 = x

| n>0 = nth xs (n-1)

A non-fail condition has to ensure that the index is not negative

and the list must have enough elements for the selection. This can

be specified by the following condition:

nth'nonfail xs n =

n >= 0 && length (take (n+1) xs) == n+1

In order to allow the application of nth to infinite lists, we do not

compute the length of the entire list but ensure by the operation

take (which returns a list prefix with at most the given number of

elements) that the given list has at least n+1 elements. In order to

verify that the non-fail condition for nth is correct, one has to prove

three properties:

(1) The first argument is always non-empty. This follows from

the non-fail condition.

(2) The guards cover all possible cases. This is a consequence

of the part n>=0 of the non-fail condition which shows that

the uncovered case n<0 is not reachable. It can be proved

by reasoning on integer arithmetic, as in the operation sig

above.

(3) The non-fail condition of the recursive call holds. For this

purpose, one has to verify that the collected assertions

n ≥ 0 ∧ length(take(n + 1,xs)) = n + 1
∧ xs = (y:ys) ∧ n , 0 ∧ n > 0

imply the non-fail condition

(n − 1) ≥ 0 ∧ length(take((n − 1) + 1,ys)) = (n − 1) + 1

of the recursive call. The proof of the first conjunct uses

reasoning on integer arithmetic, as above, and the second

conjunct can also be proved by SMT solvers when the rules

of the operations length and take are axiomatized as logic

formulas (see Section 6.5).

Using our tool described below, this non-fail condition is proved in

a fully automatic manner.

5 USING CONTRACTS
Contracts have been introduced in the context of imperative and

object-oriented programming languages [28] to improve the quality

of software. Typically, a contract consists of both a pre- and a

postcondition. The precondition is an obligation for the arguments

of an operation application. The postcondition is an obligation for

both the arguments of an operation application and the result of the

operation application to those arguments. The use of contracts for

functional logic programming have been proposed in [6] where it

has been shown that the features of functional logic programming

supports writing specifications, contracts, and implementations

in the same language. Thus, contracts and specifications for some

operation are operations with the same name and a specific suffix.

If f is an operation of type τ → τ ′, then a specification for f is an

operation f ’spec of type τ → τ ′, a precondition for f is an operation
f ’pre of type τ → Bool (stating requirements on arguments), and

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

a postcondition for f is an operation f ’post of type τ → τ ′ → Bool

(stating required relations between argument and result values).

Pre- and postconditions can be used to check the intended use

and results of operations at run time (dynamic contract checking).

One can also try to verify some contracts at compile so that they do

not need to be checked dynamically (static contract checking), as

shown in [19] for Curry. Thus, contracts, in particular, preconditions

are related to non-fail conditions. However, there is an essential

difference in their semantics. Preconditions specify the intended

use of an operation—if the precondition is not satisfied for a given

argument, the operation should not be executed. In contrast, non-

fail conditions are sufficient conditions to ensure that the execution

of an operation never fails in any branch of a non-deterministic

operation. However, in a logic-oriented computation, one can still

invoke an operation where the non-fail condition is not satisfied.

For instance, if the operation head has the precondtion

head'pre xs = not (null xs)

then it would not be allowed to apply head to an empty list or to a

free variable which might be instantiated to an empty list. However,

the non-fail condition of head, as defined in Section 1, allows the

use of head with free variables, but then it is not ensured that every

computation does not fail.

Albeit from these differences, contracts can be exploited for the

verification of non-fail conditions. If we assume that contracts hold

during a computation (by static or dynamic contract checking), we

can use their information when collecting assertions for verifying

non-fail conditions. On the one hand, we can assume the validity of

the preconditionwhen verifying non-failures. For instance, consider

the definition of the factorial function

fac :: Int → Int

fac n | n==0 = 1

| n>0 = n * fac (n-1)

and its precondition to avoid the unintended application of fac to

negative numbers:

fac'pre n = n >= 0

If we assume the validity of this precondition, we can verify the

non-failure of fac without any additional non-fail condition. Thus,

preconditions can be combined with non-fail conditions in order to

make them stronger.

On the other hand, postconditions can be useful to verify the non-

fail condition of operations called by some operation. For instance,

consider the operation split (from Curry’s standard library List)

which splits a list into components delimited by separators, where

the separator elements are characterized by a given predicate:

split :: (a → Bool) → [a] → [[a]]

split _ [] = [[]]

split p (x:xs)

| p x = [] : split p xs

| otherwise = let sp = split p xs

in (x : head sp) : tail sp

In the let expression of the last line, the result of split p xs must

be a non-empty list, otherwise the definition cannot be verified as

fail free. This property can be stated as a postcondition:

split'post p xs ys = not (null ys)

Actually, this postcondition can be verified by the techniques pre-

sented in [19]. If we know that this postcondition always holds,

we can deduce that the assertion not (null sp) holds so that the

calls to head and tail are fail free. Thus, the definition of split is

verified w.r.t. the trivial non-fail condition.

Another example for using postconditions is taken from [31]:

average :: [Int] → Int

average xs = if null xs then 0

else sum xs `div` length xs

Note that the condition null xs is necessary to avoid the potential

division-by-zero failure of div. The postcondition for the operation

length

length'post xs n = (null xs && n==0) ||

(not (null xs) && n>0)

can be verified by the tool presented in [19]. If we use this postcon-

dition in the verification of average, we can deduce that the result

of the call length xs is always greater than zero so that the call to

div never fails.

Since contracts yield useful information to verify non-fail condi-

tions, our tool (see next section) has an option to include contract

information in the verification process. It is an option and not the

default case since one has to keep in mind that, when contract in-

formation is used, the verification results are valid only if contract

checking is activated. An interesting option for future work is to

integrate static contract checking into our tool so that statically ver-

ified contracts are automatically used for the verification of non-fail

conditions.

6 IMPLEMENTATION AND BENCHMARKS
In order to test our verification method, we have implemented a

fully automatic tool to verify non-fail conditions. In this section,

we discuss some aspects of the implementation.

6.1 Basic Implementation Scheme
When verifying the non-fail conditions of a given Curry module,

the tool performs the following steps:

• The module is translated into a corresponding FlatCurry pro-

gram by the standard front end of Curry. The normalization

of this FlatCurry program, as required in the rules of Fig. 4,

is done on the fly when verifying each operation, in order to

avoid an additional transformation phase.

• For all imported modules, the non-fail conditions are loaded.

This is necessary to check the validity of non-fail condi-

tions of operations occurring in right-hand sides of defined

functions (compare rule Fun, Fig. 4).

• For each operation f defined in the given FlatCurry program,

its non-fail condition is verified:

– The given non-fail condition f ’nonfail (or the trivial non-
fail condition if f has no explicit condition) is used as the

initial assertion when processing the right-hand side of

f ’s rule.
– If there is a case expression for variable x with a branch

missing for some constructor c , then, according to rule

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

Select of Fig. 4, the collected assertions together with the

condition x = c are translated into an SMT formula. This

formula is checked by the SMT solver Z3 [15]. If it is

unsatisfiable, the missing branch cannot cause a failure.

Otherwise, a warning with the missing constructor is is-

sued.

– If there is a call to some operation д in the right-hand

side of f ’s rule, its non-fail condition д’nonfail is consid-
ered. If the condition is trivial, no further action is taken.

Otherwise, the assertions collected at this point according

to Fig. 4 are translated into an SMT formula. Then it is

checked, by using the SMT solver, whether this formula

implies the non-fail condition д’nonfail applied to the

current arguments of д. If this is true, no failure can occur

due to this call of д provided that the non-fail condition

of д is also verified.

Note that a specific handling of the operation failed is not

necessary, since this operation has the non-fail condition

False. Thus, a call to failed will not cause a failure if the

SMT solver proves that the assertions collected at this call

are unsatisfiable.

If all potential failure situations are excluded in this way, the

non-fail condition of f is verified. Otherwise, the tool reports
the potential failure situations so that the programmer can

make the non-fail conditions stronger. In the worst case, the

programmer can define False as a non-fail condition, which

is always verifiable.

If one can verify the non-fail conditions of all operations defined in

the given module, the module is verified. Otherwise, all potential

failures are reported. For instance, verifying head without its non-

fail condition yields the message

POSSIBLY FAILING OPERATIONS:

head: maybe not defined on constructor 'Prelude.[]'

If a non-fail condition of some operation in the right-hand in a

rule of some operation cannot be verified, the corresponding call is

reported, e.g., the verification of the operation idOrTail (Section 3,

where the non-fail condition of tail is identical to that of head)

yields:

POSSIBLY FAILING OPERATIONS:

idOrTail (due to call 'Prelude.tail v1')

This basic implementation scheme is successful only for simple

programs, since many programs contain additional features not

covered by the rules shown in Fig. 4. Therefore, we briefly discuss

how the basic scheme can be extended.

6.2 Higher-Order Operations
An important feature of declarative languages are higher-order

operations. One can use non-fail conditions also for the definition

of higher-order operations. For instance, the accumulator operation

for non-empty lists is defined in the standard prelude of Curry as

foldr1 :: (a → a → a) → [a] → a

foldr1 f [x] = x

foldr1 f (x:y:ys) = f x (foldr1 f (y:ys))

Since this operation fails on empty lists, we add the following non-

fail condition:

foldr1'nonfail f xs = not (null xs)

The question is how to verify the call of the unknown operation f

in the definition of foldr1. For this purpose, we take a conservative

approach. We assume that functional arguments always have a

trivial non-fail condition. Thus, it is not necessary to verify these

calls. As a consequence, we have to ensure that all actual operations

passed as functional arguments have trivial non-fail conditions.

Fortunately, this is relatively easy to ensure. Since such functional

arguments are partial applications in the FlatCurry representation

(i.e., function calls where some arguments are missing), we simply

check whether the operation in a partial application has a trivial

non-fail condition, otherwise a potential failure is reported.

Surprisingly, this simple solution works well in practice. As an

example, consider the definition of the operation unwords, defined in

the standard prelude of Curry, which concatenates a list of strings

with a blank between two strings:

unwords :: [String] → String

unwords ws =

if ws==[] then []

else foldr1 (\w s → w ++ ' ':s) ws

Since the if-condition ensures that ws is a non-empty list in the

else branch and the lambda abstraction has a trivial non-fail condi-

tion, we can verify that the trivial non-fail condition is correct for

unwords.

Of course, one can refine this approach either by specializing

higher-order calls into first-order calls of specialized function defi-

nitions, or by extending our framework so that non-fail conditions

are attached to functional arguments. The preferred solution might

depend on the practical evaluation of our approach.

6.3 Encapsulated Search
If a possible failure is present in some operation, this does not

mean that we have to give up to construct a fail-free application.

As already mentioned, programming with failures is standard in

logic-oriented computations. However, in top-level computations

(e.g., the user interface with a GUI or web interface), such failures

should definitely not occur. For this purpose, functional logic lan-

guages offer features for encapsulating non-deterministic search

(e.g., [5, 11, 21, 26, 27]) so that non-determinism and failures of

subcomputations do not influence the main deterministic compu-

tation. The idea of encapsulated search is to collect all results of a

non-deterministic computation in some data structure (e.g., list or

set). Thus, one can also encapsulate failing computations which do

not contribute a result.

Although primitives for this purpose have been introduced into

logic programming long time ago [32], the combination of lazy

evaluation and non-deterministic search is more subtle [11]. There-

fore, set functions [5] were proposed for Curry as an evaluation-

independent method for encapsulated search. For every function f ,
the set function fS yields the set of all results of f applied to some

value. Thus, set functions encapsulate only the non-determinism

introduced by the definition of f but not the non-determinism

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

of the arguments. For instance, headS ([] ? [1,2]) evaluates to (a

representation of) the sets {} and {1}.

Hence, if the evaluation of some function might fail, we can

use it in a fail-free computation by evaluating its set function and

analyzing the resulting set. If we use this programming technique,

we must also extend our tool to deal with set functions. Due to

the fact that set functions encapsulate the non-determinism and

failures of the corresponding defined function, the evaluation of

a set function itself never fails. Thus, if f is a unary function, the

non-fail condition of its set function is

fS ’nonfail x = True

With such non-fail conditions for set functions, one can show that

the evaluation of the expression headS ([] ? [1,2]) is fail-free.

6.4 Run-time Errors
An interesting question is whether run-time errors should be con-

sidered as failed computations. For instance, consider the following

(Haskell-style) definition of head:

head :: [a] → a

head [] = error "head: empty list"

head (x:xs) = x

Now, the trivial non-fail condition for head is correct if error is

considered as non-failing. This might be a reasonable view since the

evaluation does not fail but shows us a result—the error message.

On the other hand, we might be interested to avoid failures as

well as run-time errors, which is reasonable in a safety-critical

application that should not terminate with an error message. This

can be obtained by specifying the following non-fail condition for

error:

error'nonfail s = False

In this case, the trivial non-fail condition for head is not correct.

Moreover, if a complete application program is fail free, i.e., the

trivial non-fail condition for the main operation is correct, then it

is ensured that no run-time error occurs. Exception handlers can

be treated similarly to encapsulated search operators as described

above.

Since there is no clear preferred interpretation of run-time er-

rors, our tool offers both views. In the default case, the operation

error is not failing. By setting an option, one can also perform the

verification under the assumption that error always fails.

6.5 Axiomatization of Defined Operations
As discussed for the list index operator nth (Section 4), it might be

necessary to use some information about user-defined operations

during verification. In particular, if non-fail conditions involve user-

defined operations, their semantics must be known to the verifier.

This requirement is implemented in our verification tool by trans-

lating user-defined functions into SMT formulas which axiomatize

their intended semantics. For this purpose, the defining rules of a

Curry function are translated into an SMT formula stating an equal-

ity between a function call and the right-hand side. For instance,

consider the computation of the length of a list:

length :: [a] → Int

length [] = 0

Table 1: Verifying various system modules

Module Operations

non-fail

conditions

pattern

tests

call

tests

Prelude 187 11 7 13

AnsiCodes 41 0 0 0

Array 23 0 0 9

Char 18 0 0 8

Combinatorial 11 2 0 0

Either 11 2 2 0

ErrorState 22 0 0 0

Integer 22 9 2 33

List 81 8 15 9

Maybe 15 1 0 0

Nat 6 2 0 2

Socket 11 0 0 0

ShowS 11 0 0 3

State 21 0 0 0

length (x:xs) = 1 + length xs

The FlatCurry representation of this operation is:

length(zs) = case zs of [] → 0

(x:xs) → 1 + length(xs)

Since SMT solvers do not support polymorphic types, we introduce

a sort in SMT to represent polymorphic arguments:

(declare-sort TVar)

Then we can define the signature of length in SMT:

(declare-fun length ((List TVar)) Int)

Finally, we translate the FlatCurry definition of length by using

appropriate test and selector functions:

(assert

(forall ((x1 (List TVar)))

(= (length x1)

(ite (= x1 nil)

0

(let ((x2 (head x1))

(x3 (tail x1)))

(+ 1 (length x3)))))))

This purely schematic translation can be improved but it is sufficient

for our first experiments. Our tool generates these axiomatizations

by collecting all user-defined operations occurring in non-fail condi-

tions, loading the FlatCurry code of these operations (which might

be stored in imported modules), and then translating this code into

SMT formulas.

6.6 Results
Although our tool is a prototype

5
whichmust be extended in various

ways, we applied it to a number of programs in order to evaluate

our approach.

5
The implementation is available as Curry package “failfree” which can be installed

with Curry’s package manager CPM.

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

Concerning smaller examples, our tool could verify all non-fail

conditions shown in this paper. To test our tool on larger examples,

we verified some standard modules of the Curry systems KiCS2

[12] and PAKCS [20]. In order to enable a successful verification,

we had to add some non-fail conditions in these modules.

Table 1 shows the results of these tests. The columns are: the

name of the module, the number of tested operations, the number of

non-trivial non-fail conditions that have been added to user-defined

operations, and the number of tests (performed by the SMT solver

Z3) for missing constructor patterns and calls to operations with

non-trivial non-fail conditions.

It should be mentioned that all these modules have been success-

fully verified after adding appropriate non-fail conditions. For the

module List, it was necessary to add four postconditions, similarly

to operation split (Section 5), in order to verify all operations. Fur-

thermore, the operation List.transpose requires a complex non-fail

condition: since this operation transposes the rows and columns

of a matrix represented by a list of lists, all input lists must have

the same length, otherwise the evaluation fails. Although one can

easily express this requirement in Curry, the SMT solver is not

able to verify it for the recursive calls of transpose. Therefore, we

use the non-fail condition False which is trivially verifiable. As a

consequence, in a verified fail-free program, clients of transpose

have to encapsulate the call and check whether a failure occurred.

This solution is applicable in general when the non-fail conditions

are too complex for automatic verification.

These initial results are quite encouraging. They indicate that

there are usually only a few operations which require non-trivial

non-fail conditions. Furthermore, most operations have case expres-

sions with complete patternmatching and call only a few operations

with non-trivial non-fail conditions. Hence, the verification effort

is limited.

7 RELATEDWORK
Avoiding run-time failures caused by incomplete definitions of

operations have a long tradition. Contracts, as introduced in the

context of imperative and object-oriented programming languages

[28], are a method to specify intended invocations of operations.

They can be tested at run time to obtain better error messages.

However, they can also be checked at compile time. For instance, the

Eiffel compiler ensures by appropriate type declarations and static

analysis that pointer dereference failures (“null pointer exceptions”)

cannot occur in a program accepted by the compiler [29].

An approach to analyze failures in logic programs is presented

in [16]. There, information about call modes of predicates is used

to distinguish between test predicates and other predicates called

in the body of a clause. Information about regular types is used

to compute cover information for predicates. Then, the proposed

analysis can show that predicates are non-failing, i.e., produce at

least one answer, by examining the call graph of predicates and

showing that the argument types are covered by each predicate.

This approach is further developed in [13] by extending it to a multi-

variant analysis yielding more precise results. The tests used in the

bodies of the predicates can be unification of Herbrand terms as well

as linear arithmetic constraints. Hence, they are more restricted

than our non-fail conditions which can also include user-defined

functions, as shown in the example of the list index operator nth

(Section 4). Moreover, the meaning of non-failing predicates differs

from our framework. In [13, 16], non-failing means that there is

at least one non-determinstic branch that does not fail, whereas

we require that all branches do not fail. Thus, we can also use our

method to verify that run-time errors do not occur, as discussed in

Section 6.4.

An approach to detect failures in dynamically typed program-

ming languages are success types, e.g., as used to detect failures

in Erlang programs [25]. Success types are an over-approximation

of possible uses of an operation. If a success type is empty for a

given operation, then one knows for sure that this operation can

never be evaluated to some value. This is in contrast to our inten-

tion where we want to detect all possible failures in a computation.

Success types are computed by deriving subtype constraints and

then solving them. Since this approach does not require any type

annotations, the inferred success types can be much weaker than

expected by the programmer.

The logic language Mercury [36] allow determinism annotations

for predicates to exclude situations where a predicate might fail. The

compiler checks these annotations and exploits them to generate

efficient target code. Since the compiler does not use an external

verifier, the checks are limited, in particular, for predicates using

constraints on numbers. Furthermore, it is not possible to constrain

determinism annotations on particular kinds of arguments, as with

our non-fail conditions.

A technique to check a Haskell program for the absence of

pattern-match errors due to functions with incomplete patterns in

their definitions is presented in [30]. The authors propose a static

checker that extracts constraints from pattern-based definitions

and tries to solve them by simplification and fixpoint iteration. The

technique is improved in [31] by adding multipattern constraints

that scale better for larger programs. Since only pattern failures are

considered in these tools, programs where the completeness arise

from case distinctions on numbers cannot be handled in contrast to

our approach. For instance, [31] mentions that their Catch tool can

prove the safety of the list indexing operator nth (Section 4) only

for infinite lists.

Another approach to prove the absence of failures at compile

time is static contract checking, which has also been explored in

purely functional languages. For instance, [41, 42] present methods

to verify contracts by a symbolic execution procedure that is applied

at verification time. Since an external verifier, like an SMT solver, is

not used when programs are symbolically executed, the approach

is more limited.

Dependently typed programming languages, such as Coq [8],

Agda [33], or Idris [9], support the development of programs with

strong correctness properties which are verified by an expressive

type system [37]. There, functions must be totally defined, i.e.,

terminating and non-failing. This can be achieved by encoding

requirements, like non-fail conditions, in the type level. For instance,

if we define the operation head in Agda [33], we exclude the failing

application of head to an empty list by requiring, as an additional

argument, a proof that the argument list is not empty. Thus, the

type signature of head could be in Agda as follows:

head : {A : Set} → (xs : List A)

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Michael Hanus

→ is-empty xs == ff → A

Thus, each client of head must provide an explicit proof for the

non-emptiness of the argument list xs. On the one hand, type-

checked Agda programs do not contain run-time errors that we

try to avoid with our approach. On the other hand, programming

in a dependently typed language is more challenging since the

programmer has to provide non-failure proofs.

Another approach to encode contracts on the type-level are

refinement types, as used in LiquidHaskell [38, 39]. Refinement

types are standard types extended by a predicate that restricts the

set of allowed values. For instance, one can exclude applications of

head to the empty list by the following refinement type [38]:

head :: {xs : [a] | 0 < len xs} → a

Then applications of head are allowed only if the refinement type

checker can verify (possibly with exploiting other refinement types)

that the actual argument is always a non-empty list. Since refine-

ment types are checked by an SMT solver, there are similaries to

our approach. However, refinement types are stronger than non-

fail conditions since refinement types must be verified in valid

programs whereas non-fail conditions are only a sufficient condi-

tion to avoid failures so that operations with non-satisfied non-fail

conditions can still be used in encapsulated subcomputations.

Refinement types are more related to contracts and the approach

presented in [19] to check contracts for Curry operations statically

with an SMT solver. The general technique used there (collecting

assertions in a FlatCurry program and sending them to an SMT

solver) is similar to our approach. Howevever, the semantics of

non-fail conditions differs from contracts so that the actual frame-

work and tool is different from a static contract checker. The latter

should eliminate dynamic contracts from a programwhereas we are

interested to derive specific failing information about the run-time

behavior of a program.

Compared to these related works, our approach is the only one

which can ensure top-level non-failing computations together with

the use of failing computations which are encapsulated in logic-

oriented subcomputations.

Although pattern matching is mainly related to declarative pro-

gramming languages, the advantages of pattern matching has also

been recognized in object-oriented programming, e.g., with Scala’s

case classes [34]. If such features are used, it is also useful for the

programming if a tool points to incomplete patterns in case expres-

sions. For instance, [23] proposes a method to check such properties.

The method is compatible with data abstraction in object-oriented

programming. Similarly to our non-fail conditions, “matching pre-

conditions” are proposed in [23] to specify sufficient conditions for

successful pattern matchings, and SMT solvers are used to verify

pattern matching w.r.t. such preconditions. On ther other hand,

their verification can be unsound due to the imperative features of

the underlying programming language.

8 CONCLUSIONS
In this paper we proposed a new technique and a tool to verify

declarative programs for the absence of failing computations caused

by partially defined operations. Our approach is based on the idea

to specify non-fail conditions for operations. If the actual argu-

ment of an operation satisfies the non-fail condition, the evaluation

should never fail. This correctness requirement can be verified

at compile time by proving specific assertions derived from an

assertion-collecting semantics as unsatisfiable. Our tool uses an

SMT solver to prove these assertions in a fully automatic manner.

The advantage of our approach is its full automation. If the veri-

fication tool cannot prove the correctness of all non-fail conditions,

it points to the potential failure situations. These can either be cor-

rected (e.g., by adding missing case branches or calling an operation

only after additional checks) or, if it is intended, by strengthening

the non-fail conditions. After these changes, one can run the verifier

again on the modified program.

Since we developed our framework for functional logic programs,

our objective is not to abandon all operations with potential failures

from programs. Instead, we support the use of partially defined op-

erations and failing evaluations in logic-oriented subcomputations

provided that they are encapsulated in order to control possible

failures. On the other hand, top-level deterministic computations

should never fail. Thus, one has to ensure that all operations called

there must satisfy the non-fail conditions. Of course, the same rea-

soning is also possible for purely functional programs, i.e., we can

apply our verification method also to Haskell programs.

Initial experiments with some standard modules show that our

approach can successfully be applied by adding a few non-fail

conditions to a module. Although programming with verified non-

fail conditions requires some effort to define appropriate conditions,

it has the advantage that an important class of run-time errors can

be excluded at compile time.

For future work, we will improve our tool in order to test the

effectiveness of our approach on more programs and evaluate the

necessary efforts to verify existing Curry applications. Since the use

of contracts might be required for this task, the combination of non-

fail conditions and contracts should be further improved, e.g., by

combining static contract verification methods with the methods

developed in this paper. Finally, it would also be interesting to

develop methods to extract appropriate non-fail conditions from a

given program which could not be verified.

ACKNOWLEDGMENTS
The author is grateful to the anonymous referees for their con-

structive remarks. The research described in this paper has been

partially supported by the German Federal Ministry of Education

and Research (BMBF) under Grant No. 01IH15006B.

REFERENCES
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. 2005. Operational Semantics

for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation 40,

1 (2005), 795–829.

[2] S. Antoy, R. Echahed, and M. Hanus. 2000. A Needed Narrowing Strategy. J.

ACM 47, 4 (2000), 776–822. https://doi.org/10.1145/347476.347484

[3] S. Antoy and M. Hanus. 2005. Declarative Programming with Function Patterns.

In Proceedings of the International Symposium on Logic-based Program Synthesis

and Transformation (LOPSTR’05). Springer LNCS 3901, 6–22.

[4] S. Antoy andM. Hanus. 2006. Overlapping Rules and Logic Variables in Functional

Logic Programs. In Proceedings of the 22nd International Conference on Logic

Programming (ICLP 2006). Springer LNCS 4079, 87–101.

[5] S. Antoy and M. Hanus. 2009. Set Functions for Functional Logic Programming.

In Proceedings of the 11th ACM SIGPLAN International Conference on Principles

https://doi.org/10.1145/347476.347484

Verifying Fail-Free Declarative Programs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

and Practice of Declarative Programming (PPDP’09). ACM Press, 73–82. https:

//doi.org/10.1145/1599410.1599420

[6] S. Antoy and M. Hanus. 2012. Contracts and Specifications for Functional Logic

Programming. In Proc. of the 14th International Symposium on Practical Aspects of

Declarative Languages (PADL 2012). Springer LNCS 7149, 33–47. https://doi.org/

10.1007/978-3-642-27694-1_4

[7] S. Antoy andM. Hanus. 2017. Default Rules for Curry. Theory and Practice of Logic

Programming 17, 2 (2017), 121–147. https://doi.org/10.1017/S1471068416000168

[8] Y. Bertot and P. Castéran. 2004. Interactive Theorem Proving and Program De-

velopment - Coq’Art: The Calculus of Inductive Constructions. Springer. https:

//doi.org/10.1007/978-3-662-07964-5

[9] E. Brady. 2013. Idris, a general-purpose dependently typed programming lan-

guage: Design and implementation. Journal of Functional Programming 23, 5

(2013), 552–593. https://doi.org/10.1017/S095679681300018X

[10] B. Braßel. 2011. Implementing Functional Logic Programs by Translation into

Purely Functional Programs. Ph.D. Dissertation. Christian-Albrechts-Universität

zu Kiel.

[11] B. Braßel, M. Hanus, and F. Huch. 2004. Encapsulating Non-Determinism in

Functional Logic Computations. Journal of Functional and Logic Programming

2004, 6 (2004).

[12] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. 2011. KiCS2: A New Compiler

from Curry to Haskell. In Proc. of the 20th International Workshop on Functional

and (Constraint) Logic Programming (WFLP 2011). Springer LNCS 6816, 1–18.

https://doi.org/10.1007/978-3-642-22531-4_1

[13] F. Bueno, P. López-García, andM.V. Hermenegildo. 2004. Multivariant Non-failure

Analysis via Standard Abstract Interpretation. In 7th International Symposium on

Functional and Logic Programming (FLOPS 2004). Springer LNCS 2998, 100–116.

https://doi.org/10.1007/978-3-540-24754-8_9

[14] J. de Dios Castro and F.J. López-Fraguas. 2007. Extra variables can be eliminated

from functional logic programs. Electronic Notes in Theoretical Computer Science

188 (2007), 3–19.

[15] L. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Proc. of

the 14th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2008). Springer LNCS 4963, 337–340. https:

//doi.org/10.1007/978-3-540-78800-3

[16] S. Debray, P. López-García, andM.V. Hermenegildo. 1997. Non-failure Analysis for

Logic Programs. In 14th International Conference on Logic Programming (ICLP’97).

MIT Press, 48–62.

[17] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M.

Rodríguez-Artalejo. 1999. An approach to declarative programming based on a

rewriting logic. Journal of Logic Programming 40 (1999), 47–87.

[18] M. Hanus. 2013. Functional Logic Programming: From Theory to Curry. In

Programming Logics - Essays in Memory of Harald Ganzinger. Springer LNCS

7797, 123–168. https://doi.org/10.1007/978-3-642-37651-1_6

[19] M. Hanus. 2017. Combining Static and Dynamic Contract Checking for Curry. In

Proceedings of the 27th International Symposium on Logic-Based Program Synthesis

and Transformation (LOPSTR 2017). Spriner LNCS 10855, 323–340. https://doi.

org/10.1007/978-3-319-94460-9_19

[20] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R.

Sadre, and F. Steiner. 2017. PAKCS: The Portland Aachen Kiel Curry System.

Available at http://www.informatik.uni-kiel.de/~pakcs/.

[21] M. Hanus and F. Steiner. 1998. Controlling Search in Declarative Programs.

In Principles of Declarative Programming (Proc. Joint International Symposium

PLILP/ALP’98). Springer LNCS 1490, 374–390.

[22] M. Hanus (ed.). 2016. Curry: An Integrated Functional Logic Language (Vers.

0.9.0). Available at http://www.curry-language.org.

[23] C. Isradisaikul and A.C. Myers. 2013. Reconciling exhaustive pattern matching

with objects. In ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’13). ACM, 343–354. https://doi.org/10.1145/2462156.

2462194

[24] J. Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proc. 20th

ACM Symposium on Principles of Programming Languages (POPL’93). ACM Press,

144–154.

[25] T. Lindahl and K. Sagonas. 2006. Practical Type Inference Based on Success

Typings. In Proceedings of the 8th International ACM SIGPLAN Conference on

Principles and Practice of Declarative Programming (PPDP 2006). ACM Press, 167–

178. https://doi.org/10.1145/1140335.1140356

[26] F.J. López-Fraguas and J. Sánchez-Hernández. 2004. A Proof Theoretic Approach

to Failure in Functional Logic Programming. Theory and Practice of Logic Pro-

gramming 4, 1 (2004), 41–74.

[27] W. Lux. 1999. Implementing Encapsulated Search for a Lazy Functional Logic

Language. In Proc. 4th Fuji International Symposium on Functional and Logic

Programming (FLOPS’99). Springer LNCS 1722, 100–113.

[28] B. Meyer. 1997. Object-oriented Software Construction (second ed.). Prentice Hall.

[29] B. Meyer. 2017. Ending null pointer crashes. Commun. ACM 60, 5 (2017), 8–9.

https://doi.org/10.1145/3057284

[30] N. Mitchell and C. Runciman. 2007. A Static Checker for Safe Pattern Matching

in Haskell. In Trends in Functional Programming, Vol. 6. Intellect, 15–30.

[31] N. Mitchell and C. Runciman. 2008. Not all patterns, but enough: an automatic

verifier for partial but sufficient patternmatching. In Proc. of the 1st ACM SIGPLAN

Symposium on Haskell (Haskell 2008). ACM, 49–60. https://doi.org/10.1145/

1411286.1411293

[32] L. Naish. 1985. All Solutions Predicates in Prolog. In Proc. IEEE Internat. Sympo-

sium on Logic Programming. IEEE-CS, Boston, 73–77.

[33] U. Norell. 2008. Dependently Typed Programming in Agda. In Proceedings of the

6th International School on Advanced Functional Programming (AFP’08). Springer

LNCS 5832, 230–266. https://doi.org/10.1007/978-3-642-04652-0_5

[34] M. Odersky and T. Rompf. 2014. Unifying Functional and Object-Oriented Pro-

gramming with Scala. Commun. ACM 57, 4 (2014), 76–86. https://doi.org/10.

1145/2591013

[35] S. Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press.

[36] Z. Somogyi, F. Henderson, and T. Conway. 1996. The execution algorithm of

Mercury, an efficient purely declarative logic programming language. Journal of

Logic Programming 29, 1-3 (1996), 17–64.

[37] A. Stump. 2016. Verified Functional Programming in Agda. ACM and Morgan &

Claypool. https://doi.org/10.1145/2841316

[38] N. Vazou, E.L. Seidel, and R. Jhala. 2014. LiquidHaskell: Experience with Refine-

ment Types in the Real World. In Proceedings of the 2014 ACM SIGPLAN Sympo-

sium on Haskell. ACM Press, 39–51. https://doi.org/10.1145/2633357.2633366

[39] N. Vazou, E.L. Seidel, R. Jhala, and S. Peyton Jones. 2014. Refinement Types for

Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on

Functional Programming (ICFP). ACM Press, 269–282. https://doi.org/10.1145/

2628136.2628161

[40] P. Wadler. 1997. How to Declare an Imperative. Comput. Surveys 29, 3 (1997),

240–263.

[41] D.N. Xu. 2006. Extended static checking for Haskell. In Proc. of the 36th ACM

SIGPLAN Workshop on Haskell (Haskell 2006). 48–59. https://doi.org/10.1145/

1159842.1159849

[42] D.N. Xu, S.L. Peyton Jones, and K. Claessen. 2009. Static contract checking

for Haskell. In Proc. of the 36th ACM Symposium on Principles of Programming

Languages (POPL 2009). 41–52. https://doi.org/10.1145/1480881.1480889

https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1017/S1471068416000168
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-94460-9_19
https://doi.org/10.1007/978-3-319-94460-9_19
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org
https://doi.org/10.1145/2462156.2462194
https://doi.org/10.1145/2462156.2462194
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.1145/3057284
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2841316
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/1159842.1159849
https://doi.org/10.1145/1159842.1159849
https://doi.org/10.1145/1480881.1480889

	Abstract
	1 Introduction
	2 Functional Logic Programs: Syntax and Semantics
	3 Non-Fail Conditions
	4 Verification of Non-Fail Conditions
	5 Using Contracts
	6 Implementation and Benchmarks
	6.1 Basic Implementation Scheme
	6.2 Higher-Order Operations
	6.3 Encapsulated Search
	6.4 Run-time Errors
	6.5 Axiomatization of Defined Operations
	6.6 Results

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

