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Abstrat

Narrowing is the operational priniple of languages that

integrate funtional and logi programming. We pro-

pose a notion of a needed narrowing step that, for in-

dutively sequential rewrite systems, extends the Huet

and L�evy notion of a needed redution step. We de-

�ne a strategy, based on this notion, that omputes

only needed narrowing steps. Our strategy is sound

and omplete for a large lass of rewrite systems, is op-

timal w.r.t. the ost measure that ounts the number of

distint steps of a derivation, omputes only indepen-

dent uni�ers, and is eÆiently implemented by pattern

mathing.

1 Introdution

In reent years, most proposals with a sound and om-

plete operational semantis for the integration of fun-

tional and logi programming languages [5, 10℄ were

based on narrowing, e.g., [6, 15, 17, 19, 37, 44℄. Narrow-

ing, originally introdued in automated theorem proving

[46℄, solves equations by omputing uni�ers with respet

to an equational theory [14℄. Informally, narrowing uni-

�es a term with the left-hand side of a rewrite rule and

�res the rule on the instantiated term.

Example 1 Consider the following rewrite rules de�n-

ing the operations \less than or equal to" and addition

for natural numbers, whih are represented by terms

built with 0 and s:

0 � X ! true R

1

s(X) � 0 ! false R

2

s(X) � s(Y ) ! X � Y R

3

0 +X ! X R

4

s(X) + Y ! s(X + Y ) R

5

The rules of \�" will be used in following examples.

To narrow the equation Z + s(0) � s(s(0)), rule R

5

is applied by instantiating Z to s(X). To narrow the

resulting equation, s(X + s(0)) � s(s(0)), R

4

is ap-

plied by instantiating X to 0. The resulting equation,

s(s(0)) � s(s(0)), is trivially true. Thus, fZ 7! s(0)g is

the equation's solution.

A brute-fore approah to �nding all the solutions of

an equation would attempt to unify eah rule with eah

non-variable subterm of the given equation. The result-

ing searh spae would be huge even for small rewrite

programs. Therefore, many narrowing strategies for

limiting the size of the searh spae have been pro-

posed, e.g., basi [25℄, innermost [15℄, outermost [12℄,

outer [49℄, lazy [9, 36, 44℄, or narrowing with redun-

dany tests [31℄. Eah strategy demands ertain ondi-

tions of the rewrite relation to ensure the ompleteness

of narrowing (the ability to ompute all the solutions of

an equation.)

Our ontribution is a strategy that, for indutively se-

quential systems [1℄, preserves the ompleteness of nar-

rowing and performs only steps that are \unavoidable"

for solving equations. This haraterization leads to the

optimality of our strategy with respet to the number

of \distint" steps of a derivation. Advantages of our

strategy over existing ones inlude: the large lass of

rewrite systems to whih it is appliable, both the op-

timality of the derivations and the independene of the

uni�ers it omputes, and the ease of its implementation.

The notion of an unavoidable step is well-known for

rewriting. Orthogonal systems have the property that

in every term t not in normal form there exists a re-

dex, alled needed, that must \eventually" be redued

to ompute the normal form of t [24, 30, 39℄. Further-

more, repeated rewriting of needed redexes in a term

suÆes to ompute its normal form, if it exists. Loosely

speaking, only needed redexes really matter for rewrit-

ing in orthogonal systems. We extend this fat to nar-

rowing in indutively sequential systems, a sublass of

the orthogonal systems.

Restriting our disussion to this sublass is not a

limitation for the use of narrowing in programming lan-



guages. Computing a needed redex in a term is an un-

solvable problem. Strongly sequential systems are, in

pratie, the largest lass for whih the problem be-

omes solvable. Indutively sequential systems are a

large onstrutor-based sublass of the strongly sequen-

tial systems.

After some preliminaries in Setion 2, we present our

strategy in Setion 3. We formulate the soundness and

ompleteness results in Setion 4. We address our strat-

egy's optimality in Setion 5. We ompare related work

in Setion 6. Our onlusion is in Setion 7. Due to

lak of spae we omit the proofs of the theorems, but

the interested reader will �nd them in [3℄.

2 Preliminaries

We reall some key notions and notations about rewrit-

ing. See [11, 29℄ for tutorials.

Terms are onstruted w.r.t. a given many-sorted sig-

nature �. We write Var(t) for the set of variables our-

ring in a term t. Equational logi programs are gener-

ally onstrutor-based, i.e., symbols, alled onstrutors,

that onstrut data terms are distinguished from those,

alled de�ned funtions or operations, that operate on

data terms (see, for instane, the Equational Interpreter

[40℄ and the funtional logi languages ALF [19℄, BA-

BEL [37℄, K-LEAF [16℄, LPG [6℄, SLOG [15℄). Hene,

we assume that R is a onstrutor-based term rewriting

system onsisting of rewrite rules of the form l ! r,

where l is an innermost term, i.e., the root of l is an

operation and the arguments of l do not ontain any

operation symbol.

Substitutions and uni�ers are de�ned as usual [11℄,

where we write mgu(s; t) for the most general uni�er of

s and t. We write � � �

0

[V ℄ i� there is a substitution �

with �

0

(x) = �(�(x)) for all variables x 2 V . Two sub-

stitutions � and �

0

are independent on a set of variables

V i� there exists some x 2 V suh that �(x) and �

0

(x)

are not uni�able.

An ourrene or position p is a path identifying a

subterm in a term. tj

p

denotes the subterm of t at posi-

tion p, and t[s℄

p

denotes the result of replaing tj

p

with

s in t.

A term rewriting system R is orthogonal if for eah

rule l ! r 2 R the left-hand side l does not ontain

multiple ourrenes of one variable (left-linearity) and

for eah non-variable subterm lj

p

of l there exists no rule

l

0

! r

0

2 R suh that lj

p

and l

0

unify (non-overlapping).

A rewrite step t!

p; l!r

s is the appliation of the rule

l ! r to the redex tj

p

, i.e., s = t[�(r)℄

p

for some sub-

stitution � with tj

p

= �(l). A term is in normal form

if it annot be rewritten. Funtional logi programs

ompute with partial information, i.e., a funtional ex-

pression may ontain logial variables. The goal is to

ompute values for these variables suh that the expres-

sion is evaluable to a partiular normal form, e.g., a

onstrutor term [16, 37℄. This is done by narrowing.

De�nition 1 A term t is narrowable to a term s if there

exist a non-variable position p in t (i.e., tj

p

is not a

variable), a variant l ! r of a rewrite rule in R with

Var(t)\Var(l ! r) = ; and a uni�er � of tj

p

and l suh

that s = �(t[r℄

p

). In this ase we write t;

p; l!r;�

s. If

� is a most general uni�er of tj

p

and l, the narrowing

step is alled most general. We write t

0

�

;

�

t

n

if there

is a narrowing sequene t

0

;

p

1

;R

1

;�

1

t

1

;

p

2

;R

2

;�

2

� � �;

p

n

;R

n

;�

n

t

n

with � = �

n

Æ � � � Æ �

2

Æ �

1

.

Sine the instantiation of the variables in the rule l! r

by � is not relevant for the omputed result of a narrow-

ing derivation, we will omit this part of � in the example

derivations in this paper.

Example 2 Referring to Example 1,

A+B ;

�;R

5

;fA7!s(0);B 7!0g

s(0 + 0)

and

A+B ;

�;R

5

;fA7!s(X)g

s(X +B)

are narrowing steps of A + B, but only the latter is a

most general narrowing step.

Padawitz [42℄ too distinguishes between narrowing and

most general narrowing, but in most papers narrowing

is intended as most general narrowing (e.g., [25℄). Most

general narrowing has the advantage that most general

uni�ers are uniquely omputable, whereas there exist

many independent uni�ers. Dropping the requirement

that uni�ers be most general is ruial to the de�ni-

tion of needed narrowing step, sine these steps may be

impossible with most general uni�ers.

Narrowing solves equations, i.e., omputes values for

the variables in an equation suh that the equation be-

omes true, where an equation is a pair t � t

0

of terms of

the same sort. Sine we do not require terminating term

rewriting systems, normal forms may not exist. Hene,

we de�ne the validity of an equation as a strit equal-

ity on terms in the spirit of funtional logi languages

with a lazy operational semantis suh as K-LEAF [16℄

and BABEL [37℄. Thus, a substitution � is a solution

for an equation t � t

0

i� �(t) and �(t

0

) are reduible

to a same ground onstrutor term. Equations an also

be interpreted as terms by de�ning the symbol � as a

binary operation symbol, more preisely, one operation

symbol for eah sort. Therefore all notions for terms,

suh as substitution, rewriting, narrowing et., will also

be used for equations. The semantis of � is de�ned by

the following rules, where ^ is assumed to be a right-

assoiative in�x symbol, and  is a onstrutor of arity

0 in the �rst rule and arity n > 0 is the seond rule.

 �  ! true

(X

1

; : : : ; X

n

) � (Y

1

; : : : ; Y

n

) ! ^

n

i=1

(X

i

� Y

i

)

true ^X ! X

2



These are the equality rules of a signature. It is easy to

see that the orthogonality status of a rewrite system is

not hanged by these rules. The same holds true for the

indutive sequentiality, whih will be de�ned shortly.

With these rules a solution of an equation is omputed

by narrowing it to true|an approah also taken in K-

LEAF [16℄ and BABEL [37℄. The equivalene between

the reduibility to a same ground onstrutor term and

the reduibility to true using the equality rules is ad-

dressed by Proposition 1.

Our strategy extends to narrowing the rewriting no-

tion of need. The idea, for rewriting, is to redue in

a term only ertain redexes whih must be redued to

ompute the normal form of t. In orthogonal term

rewriting systems, every term not in normal form has a

redex that must be redued to ompute the term's nor-

mal form. The following de�nition [24℄ formalizes this

idea.

De�nition 2 Let A = t!

u; l!r

t

0

be a rewrite step of

some term t into t

0

at position u with rule l ! r. The

set of desendants (or residuals) of a position v by A,

denoted v nA, is

v nA =

8

>

>

>

>

<

>

>

>

>

:

; if u = v,

fvg if u 6� v,

fup

0

q suh that rj

p

0

= xg

if v = upq and lj

p

= x,

where x is a variable.

The set of desendants of a position v by a rewrite

derivation B is de�ned by indution as follows

v nB =

(

fvg if B = ;,

S

w2vnB

0

w nB

00

if B = B

0

B

00

.

A position u of a term t is alled needed i� in every

rewrite derivation of t to a normal form a desendant of

tj

u

is rewritten at its root.

A position uniquely identi�es a subterm of a term. The

notion of desendant for terms stems diretly from the

orresponding notion for positions.

A more intuitive de�nition of desendant of a position

or term is proposed in [30℄. Let t

�

! t

0

be a redution

sequene and s a subterm of t. The desendants of s

in t

0

are omputed as follows: Underline the root of s

and perform the redution sequene t

�

! t

0

. Then, every

subterm of t

0

with an underlined root is a desendant of

s.

Example 3 Consider the operation that doubles its ar-

gument by means of an addition. The rules of addition

are in Example 1.

double(X) ! X +X R

6

In the following redution of double(0 + 0) we show, by

means of underlining, the desendants of 0 + 0.

double(0 + 0)!

�;R

6

(0 + 0) + (0 + 0)

The set of desendants of position 1 by the above re-

dution is f1; 2g.

3 Outermost-needed narrowing

An eÆient narrowing strategy must limit the searh

spae. No suitable rule an be ignored, but some posi-

tions in a term may be negleted without losing om-

pleteness. For instane, Hullot [25℄ has introdued ba-

si narrowing, where narrowing is not applied at po-

sitions introdued by substitutions, Fribourg [15℄ has

proposed innermost narrowing, where narrowing is ap-

plied only at an innermost position, and H�olldobler [22℄

has ombined innermost and basi narrowing. Narrow-

ing only at outermost positions is omplete only if the

rewrite system satis�es strong restritions suh as non-

uni�ability of subterms of the left-hand sides of rewrite

rules [12℄. Lazy narrowing [9, 36, 44℄, akin to lazy eval-

uation in funtional languages, attempts to avoid un-

neessary evaluations of expressions. A lazy narrowing

step is applied at outermost positions with the exep-

tion that inner arguments of a funtion are evaluated,

by narrowing them to their head normal forms, if their

values are required for an outermost narrowing step.

Unfortunately, the property \required" depends on the

rules tried in following steps, and looking-ahead is not

a viable option.

We want to perform only narrowing steps that are

neessary for omputing solutions. Naively, one ould

say that a narrowing step t;

p; l!r;�

t

0

is needed i� p is

a position of t, � is the most general uni�er of tj

p

and

l, and �(tj

p

) is a needed redex. Unfortunately, a sub-

stantial ompliation arises from this simple approah.

If t

0

is a normal form, the step is trivially needed. How-

ever, some instantiation performed later in the deriva-

tion ould \undo" this need.

Example 4 Referring to Example 1, onsider the term

t = X � Y + Z. Aording to the naive approah, the

following narrowing step of t at position 2

X � Y + Z ;

2;R

4

;fY 7!0g

X � Z

would be needed, sine X � Z is a normal form. This

step is indeed neessary to solve the inequality if s(x),

for some term x, is eventually substituted for X , al-

though this laim may not be obvious without the re-

sults presented in this note. However, the same step

beomes unneessary if 0 is substituted for X , as shown

by the following derivation, whih omputes a more gen-

eral solution of the inequation without ever narrowing

any desendant of t at 2.

X � Y + Z ;

�;R

1

;fX 7!0g

true

Thus, in our de�nition, we impose a ondition strong

enough to ensure the neessity of a narrowing step, no

3



matter whih uni�ers might be used later in the deriva-

tion.

De�nition 3 A narrowing step t ;

p;R;�

t

0

is alled

needed or outermost-needed i�, for every � � �, p is the

position of a needed or outermost-needed redex of �(t),

respetively. A narrowing derivation is alled needed

or outermost-needed i� every step of the derivation is

needed or outermost-needed, respetively.

Our de�nition adds, with respet to rewriting, a new di-

mension to the diÆulty of omputing needed narrowing

steps. We must take into aount any instantiation of

a term in addition to any derivation to normal form.

Lukily, as for rewriting, the problem has an eÆient

solution in indutively sequential systems. We forgo

the requirement that the uni�er of a narrowing step be

most general. The instantiation that we demand in ad-

dition to that for the most general uni�ation ensures

the need of the position irrespetive of future uni�ers.

It turns out that this extra instantiation would eventu-

ally be performed later in the derivation. Thus we are

only \antiipating" it, and the ompleteness of narrow-

ing is preserved. This approah, however, ompliates

the notion of narrowing strategy.

Aording to [12, 42℄, a narrowing strategy is a fun-

tion from terms into non-variable positions in these

terms so that exatly one position is seleted for the

next narrowing step. Unfortunately, this notion of nar-

rowing strategy is inadequate for narrowing with arbi-

trary uni�ers, whih, as Example 4 shows, are essential

to apture the need of a narrowing step.

De�nition 4 A narrowing strategy is a funtion from

terms into sets of triples. If S is a narrowing strategy, t

is a term, and (p; l ! r; �) 2 S(t), then p is a position

of t, l ! r is a rewrite rule, and � a substitution suh

that t;

p; l!r;�

�(t[r℄

p

) is a narrowing step.

We now de�ne a lass of rewrite systems for whih there

exists an eÆiently omputable needed narrowing strat-

egy. Systems in this lass have the property that the

rules de�ning any operation an be organized in a hi-

erarhial struture alled de�nitional tree [1℄, whih is

used to implement needed rewriting. This note gener-

alizes that result to narrowing.

The symbols branh, rule, and exempt, used in the

next de�nition, are uninterpreted funtions used to las-

sify the nodes of the tree. A pattern is an innermost

term ontained in eah node.

De�nition 5 T is a partial de�nitional tree, or pdt,

with pattern � w.r.t. a onstrutor-based rewrite sys-

tem R i� one of the following ases holds:

T = branh(�; o; T

1

; : : : ; T

k

); where � is a pattern, o

is the ourrene of a variable of �, the sort of

�j

o

has onstrutors 

1

; : : : ; 

k

, for some k > 0,

and for all i in f1; : : : ; kg, T

i

is a pdt with pattern

�[

i

(X

1

; : : : ; X

n

)℄

o

, where n is the arity of 

i

and

X

1

; : : : ; X

n

are new variables.

T = rule(�; l! r); where � is a pattern and l ! r is

a rewrite rule in R suh that l = �.

T = exempt(�); where � is a pattern and l 6� � for

every rule l! r in R.

T is a de�nitional tree of an operation f i� T is a pdt

with f(X

1

; : : : ; X

n

) as the pattern argument, where n

is the arity of f and X

1

; : : : ; X

n

are new variables.

We all indutively sequential an operation f of a

rewrite system R i� there exists a de�nitional tree T

of f suh that the rules ontained in T are all and only

the rules de�ning f in R. We all indutively sequential

a rewrite system R i� any operation of R is indutively

sequential.

Example 5 We show a pitorial representations of def-

initional trees of the operations de�ned in Example 1.

A branh node of the piture shows the pattern of a or-

responding node of the de�nitional tree. A leaf node of

the piture shows the right sides of a rule ontained in

a rule node of the tree. The ourrene argument of a

branh node is shown by emboldening the orresponding

subterm in the pattern argument.

X

1

� X

2

0 � X

2

true

s(X

3

) �X

2

s(X

3

) � 0

false

s(X

3

) � s(X

4

)

X

3

� X

4

Y

1

+ Y

2

0 + Y

2

s(Y

3

) + Y

2

Y

2

s(Y

3

+ Y

2

)

Indutively sequential systems are onstrutor-based

and strongly sequential [1℄. We onjeture that these

two lasses are the same. Indutively sequential systems

model the �rst-order funtional omponent of program-

ming languages, suh as ML and Haskell, that establish

priorities among rules by textual preedene or spei-

�ity [28℄. We now give an informal aount of our

strategy.

4



The patterns of a de�nitional tree are a �nite set par-

tially ordered by the subsumption preordering and om-

plete in the sense of [23℄. Let t = f(t

1

; : : : ; t

k

) be a term

to narrow. We unify t with some maximal element of

the set of patterns of a de�nitional tree of f . Let � de-

note suh a pattern, � the most general uni�er of t and

�, and T the pdt in whih � is ontained. If T is a rule

pdt , then we narrow �(t) at the root with the rule on-

tained in T . If T is an exempt pdt , then �(t) annot be

narrowed to a onstrutor-rooted term. If T is a branh

pdt , then we reur on �(tj

o

), where o is the ourrene

ontained in T and � is the antiipated substitution.

The result of the reursive invoation is suitably om-

posed with � and o. The details of this omposition are

in the formal de�nition presented below.

We derive our outermost-needed strategy from a

mapping, �, that implements the above omputation.

� takes two arguments, an operation-rooted term t

and a de�nitional tree T of the root of t, and non-

deterministially returns a triple, (p;R; �), where p is

a position of t, R is either a rule l ! r of R or the

distinguished symbol \?", and � is a substitution. If

R = l ! r, then our strategy performs the narrowing

step t ;

p; l!r;�

�(t[r℄

p

). If R = ?, then our strat-

egy gives up, sine it is impossible to narrow t to a

onstrutor-rooted term.

In the following de�nition, pattern(T ) denotes the

pattern argument of T .

De�nition 6 The funtion � takes two arguments,

an operation-rooted term t and a pdt T suh that

pattern(T ) and t unify. The funtion � yields a set

of triples of the form (p;R; �), where p is a position of

t, R is either a rewrite rule or the distinguished symbol

\?", and � is a uni�er of pattern(T ) and t. Thus, let t

be a term and T a pdt in the domain of �. The fun-

tion � is de�ned by strong arithmetial indution on the

number of ourrenes of operation symbols in t and by

strutural indution on T in Figure 1. The funtion

� is well-de�ned in the third ase sine, by the de�ni-

tion of pdt , there exists a proper subpdt T

i

of T suh

that pattern(T

i

) and t unify if tj

o

is onstrutor-rooted

or a variable. Similarly, � is well-de�ned in the fourth

ase sine this ase an only our if tj

o

is operation-

rooted. In this ase �

jVar(t)

is a onstrutor substitution

sine � is a linear innermost term. Sine t is operation-

rooted and o 6= �, �(tj

o

) has fewer ourrenes of oper-

ation symbols than t. Sine tj

o

is operation-rooted, so

is �(tj

o

). By the de�nition of pdt , pattern(T

0

) � �(tj

o

),

i.e., pattern(T

0

) and �(tj

o

) unify. This implies that � is

well-de�ned in this ase too.

As in proof proedures for logi programming, we have

to apply variants of the rewrite rules with fresh variables

to the urrent term. Therefore, we assume in the fol-

lowing that the de�nitional trees ontain new variables

if they are used in a narrowing step.

The omputation of �(t; T ) may entail a non-deter-

ministi hoie when T is a branh pdt|the integer i

when tj

o

is onstrutor-rooted or a variable. The substi-

tution � when tj

o

is operation-rooted is the antiipated

substitution guaranteeing the need of the omputed po-

sition. It is pushed down in the reursive all to � to

ensure the onsisteny of the omputation when t is non-

linear. The antiipated substitution is negleted when

tj

o

is not operation-rooted, sine the pattern in T

i

is an

instane of �. Hene, � extends the antiipated substi-

tution.

Example 6 We trae the omputation of � for the ini-

tial step of a derivation of X � Y + Z, whih was dis-

ussed in Example 4.

�(X � Y + Z; branh(X

1

� X

2

; 1; : : :))

�(X � Y + Z; branh(s(X

3

) � X

2

; 2; : : :))

�(Y + Z; branh(Y

1

+ Y

2

; 1; : : :))

�(Y + Z; rule(0 + Y

2

;R

4

))

(�;R

4

; fY 7! 0; Y

2

7! Zg)

(�;R

4

; fY 7! 0; Y

2

7! Zg)

(2;R

4

; fX 7! s(X

3

); X

2

7! 0 + Z; Y 7! 0; Y

2

7! Zg)

(2;R

4

; fX 7! s(X

3

); X

2

7! 0 + Z; Y 7! 0; Y

2

7! Zg)

We are interested only in narrowing derivations that end

in a onstrutor term. Our key result is that if �, on

input of a term t, omputes a position p and a substitu-

tion �, and � extends �, then �(t) must \eventually" be

narrowed at p to obtain a onstrutor term. \Eventu-

ally" is formalized by the notion of desendant, whih,

initially proposed for rewriting [24℄, is extended to nar-

rowing simply by replaing !

u; l!r

with ;

u; l!r;�

in

De�nition 2.

Theorem 1 Let R be an indutively sequential rewrite

system, t an operation-rooted term, and T a de�nitional

tree of the root of t. Let (p;R; �) 2 �(t; T ) and � extend

�, i.e., � � �.

1. In any narrowing derivation of �(t) to a onstru-

tor-rooted term a desendant of �(tj

p

) is narrowed

to a onstrutor-rooted term.

2. If R = l ! r, then t ;

p;R;�

�(t[r℄

p

) is an outer-

most-needed narrowing step.

3. If R = ?, then �(t) annot be narrowed to a on-

strutor-rooted term.

We say that a narrowing derivation is omputed by �

i� for eah step t ;

p;R;�

t

0

of the derivation, (p;R; �)

belongs to �(t; T ). The funtion � implements our nar-

rowing strategy as disussed next. The theorem shows

(laim 2) that our strategy � omputes only outermost-

needed narrowing steps. The theorem, however, does

not show that the omputation sueeds, i.e., a narrow-

ing step is omputed for any operation-rooted, hene ex-

petedly narrowable, term. This requirement may seem
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�(t; T ) 3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(�; R;mgu(t; �)) if T = rule(�;R);

(�; ?;mgu(t; �)) if T = exempt(�);

(p;R; �) if T = branh(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) unify, for some i, and

(p;R; �) 2 �(t; T

i

);

(o � p;R; � Æ �) if T = branh(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) do not unify, for any i,

� = mgu(t; �),

T

0

is a de�nitional tree of the root of �(tj

o

), and

(p;R; �) 2 �(�(tj

o

); T

0

).

Figure 1: De�nition of �

essential, sine to narrow a term \all the way" a strategy

should ompute a narrowing step, when one exists. In-

deed, in inomplete rewrite systems, � may fail to om-

pute any narrowing step even when some step ould be

omputed.

Example 7 Consider an inompletely de�ned opera-

tion, f , taking and returning a natural number.

f(0)! 0

The term t = f(s(f(0))) an be narrowed (atually

rewritten, sine it is ground) to its normal form, f(s(0)).

The only redex position of t is 1 � 1, but � returns the

set f(1; ?; fg)g.

The inability of � to ompute ertain outermost-needed

narrowing steps is a blessing in disguise. The theorem

(laim 3) justi�es giving up a narrowing attempt as soon

as the failure to �nd a rule ours|without further at-

tempts to narrow t at other positions with the hope

that a di�erent rule might be found after other nar-

rowing steps or that the position might be deleted [7℄

by another narrowing step. If (p; ?; �) 2 �(t; T ), no

equation having �(t) as one side an be solved. Any

amount of work applied toward �nding a solution would

be wasted. This is an opportunity for optimization. In

fat �(t) may be narrowable at other positions di�erent

from p and an equation with �(t) as a side may even

have an in�nite searh spae. However, any amount of

work applied toward �nding a solution would be wasted.

Example 8 Consider the following term rewriting sys-

tem for subtration:

X � 0 ! X R

1

s(X)� s(Y ) ! X � Y R

2

This term rewriting system is indutively sequential and

a de�nitional tree, T , of the operation \�" has an ex-

empt node for the pattern 0� s(X), i.e., the system is

inomplete and (�; ?; fg) 2 �(0�s(X); T ). Therefore we

an immediately stop the needed narrowing derivation

of the equation 0� s(X) � Y �Z while there would be

in�nitely many narrowing derivations for the right-hand

side of this equation.

The de�nition of our outermost-needed narrowing strat-

egy does not determine the omputation spae for a

given indutively sequential rewrite system in a unique

way. The onrete strategy depends on the de�nitional

trees, and there is some freedom to onstrut these.

For a disussion on how to ompute de�nitional trees

from rewrite rules and the impliations of some non-

deterministi hoies of this omputation see [1℄. As

we will show in Setion 5, this does not a�et the op-

timality of our strategy w.r.t. omputed solutions. But

in ase of failing derivations a de�nitional tree whih is

\unneessarily large" ould result in unneessary deriva-

tion steps.

E.g., a minimal de�nitional tree of the operation

\�" in Example 8 has an exempt node for the pattern

0 � s(X). However, De�nition 5 also allows a de�ni-

tional tree with a branh node for the pattern 0� s(X)

whih has exempt nodes for the patterns 0 � s(0) and

0 � s(s(X

1

)). Our strategy would perform some un-

neessary steps if this de�nitional tree were used for

narrowing the term 0 � s(t), where t is an operation-

rooted term. These unneessary steps an be avoided

if all branh nodes in a de�nitional tree are useful, i.e.,

there is at least one rule node in eah branh subpdt .

However, the non-determinism of the trees of ertain

operations makes it possible that some work may be

wasted when a narrowing derivation omputed by �

terminates with a non-onstrutor term. The problem

seems inevitable and is due to the inherent parallelism

of ertain operations, suh as �; this issue is disussed

in some depth in [1, Display (8)℄. The problem ours

only in terms with two or more outermost-needed nar-

rowing positions, one of whih annot be narrowed to a

onstrutor-rooted term.
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4 Soundness and ompleteness

Outermost-needed narrowing is a sound and omplete

proedure to solve equations if we add the equality rules

to narrow equations to true. The following proposition

shows the equivalene between the reduibility to a same

ground onstrutor term and the reduibility to true

using the equality rules.

Proposition 1 Let R be a term rewriting system with-

out rules for � and ^. Let R

0

be the system obtained

by adding the equality rules to R. The following propo-

sitions are equivalent for all terms t and t

0

:

1. t and t

0

are reduible in R to a same ground on-

strutor term.

2. t � t

0

is reduible in R

0

to `true'.

The soundness of outermost-needed narrowing is easy

to prove, sine outermost-needed narrowing is a speial

ase of general narrowing.

Theorem 2 (Soundness of outermost-needed narrow-

ing) Let R be an indutively sequential rewrite system

extended by the equality rules. If t � t

0

�

;

�

true is

an outermost-needed narrowing derivation, then � is a

solution for t � t

0

.

Outermost-needed narrowing instantiates variables to

onstrutor terms. Thus, we only show that outermost-

needed narrowing is omplete for onstrutor substitu-

tions as solutions of equations. This is not a limitation

in pratie, sine more general solutions would ontain

unevaluated or unde�ned expressions. This is not a lim-

itation with respet to related work, sine most general

narrowing is known to be omplete only for irreduible

solutions [42℄, and lazy narrowing is omplete only for

onstrutor substitutions [16, 37℄. The following the-

orem shows the ompleteness of our strategy, �, and

onsequently of outermost-needed narrowing.

Theorem 3 (Completeness of outermost-needed nar-

rowing) Let R be an indutively sequential rewrite sys-

tem extended by the equality rules. Let � be a on-

strutor substitution that is a solution of an equation

t � t

0

and V be a �nite set of variables ontain-

ing Var(t) [ Var(t

0

). Then there exists a derivation

t � t

0

�

;

�

0

true omputed by � suh that �

0

� �[V ℄.

The theorem justi�es our earlier remark on the rela-

tionship between ompleteness and antiipated substi-

tutions. Any antiipated substitution of a needed nar-

rowing step is irrelevant or would eventually be done

later in the derivation, and thus, it does not a�et

the ompleteness. Antiipating substitutions is appeal-

ing, even without the bene�ts related to the need of a

step, sine less general substitutions are likely to yield

a smaller searh spae to ompute the same set of solu-

tions.

5 Optimality

In Setion 3 we showed that our strategy omputes only

neessary steps. We now strengthen this harateriza-

tion by showing that our strategy omputes only nees-

sary derivations of minumum length. The next theorem

laims that no redundant derivation is omputed by �.

Theorem 4 (Independene of solutions) Let R be an

indutively sequential rewrite system extended by the

equality rules, e an equation to solve and V = Var(e).

Let e

+

;

�

true and e

+

;

�

0

true be two distint deriva-

tions omputed by �. Then, � and �

0

are independent

on V .

We now disuss the ost and length of a derivation

omputed by our strategy.

If p is a needed position of some term t, then in any

narrowing derivation of t to a onstrutor term there is

at least one step assoiated with p. If this step is de-

layed and p is not outermost, then several desendants

of p may be reated and several steps may beome ne-

essary to narrow this set of desendants, e.g., see Ex-

ample 3. However, from a pratial standpoint, if terms

are appropriately represented, the ost of narrowing t at

(some desendant of) p is largely independent of where

the step ours in the derivation of t. We formalize this

viewpoint, whih leads to another optimality result for

our strategy.

De�nition 7 Let t ;

p

i

; l

i

!r

i

;�

i
t

i

, for i in some set

of indies I = f1; : : : ; ng, be a narrowing step suh

that for any distint i and j in I , p

i

and p

j

are dis-

joint and �

i

Æ �

j

= �

j

Æ �

i

. We say that t is narrow-

able to t

0

in a multistep, denoted t ;

hp

i

;l

i

!r

i

;�

i

i

i2I

t

0

,

i� t

0

= Æ

i2I

�

i

(((t[r

1

℄

p

1

)[r

2

℄

p

2

) : : : [r

n

℄

p

n

), where Æ

i2I

�

i

denotes the omposition �

n

Æ : : : Æ �

2

Æ �

1

(the order is

irrelevant.)

When we want to emphasize the di�erene between a

step as de�ned in De�nition 1 and a multistep, we re-

fer to the former as elementary. Otherwise, we identify

an elementary step with a multistep in whih the set of

narrowed positions has just one element. A narrowing

multistep an be thought of as a set of elementary steps

performed in parallel. In fat, the onditions that we

impose on the positions and substitutions of eah ele-

mentary step from whih a multistep is de�ned imply

that in a multistep the order in whih substitutions are

omposed and positions are narrowed is irrelevant.

To laim that our strategy is optimal, we assign a

\ost" to both a step and a derivation. By onvention,

an elementary step has unit ost. However, it does not

seem appropriate, for pratial reasons, to set the ost

of a multistep equal to the number of positions narrowed

in the step. We will justify our hoie after giving our

de�nition of ost.
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For any set I and equivalene relation � on I , jI j de-

notes the ardinality of I , and I=� denotes the quotient

of I modulo �.

De�nition 8 Let � =

t

0

;

hp

i

1

;R

i

1

;�

i

1

i

i2I

1

t

1

;

hp

i

2

;R

i

2

;�

i

2

i

i2I

2

� � � be a narrowing

(multi)derivation. The symbol �

n

denotes the equiv-

alene relation on I

n

de�ned as follows: for any i and j

in I

n

, i�

n

j i� the subterms identi�ed by these indies

have a ommon anestor, more preisely, there exists

somem, less than n, suh that for some position q in t

m

,

both Æ

k2I

n+1

�

k

n+1

(t

n

j

p

i

n+1

) and Æ

k2I

n+1

�

k

n+1

(t

n

j

p

j

n+1

)

are desendants of Æ

k2I

m+1

�

k

m+1

(t

m

j

q

).

We all a family any maximal subset of equivalent

indies. The ost of the n-th step of � is the number

of families in I

n

, i.e., jI

n

=�

n

j. The ost of �, denoted

ost(�), is the total ost of its steps.

We say that a family is omplete i� it annot be en-

larged, and we say that a step is omplete i� all its

families are omplete, more preisely, I

n

is omplete i�

if i is in I

n

, then for any position q of Æ

k2I

n

�

k

n+1

(t

n�1

)

suh that p

i

n

and q have a ommon anestor in some

term of �, there exists some j in I

n

suh that q = p

j

n

.

We say that a derivation is omplete i� all its steps are

omplete.

If I is the set of indies of a narrowing step and i and

j belong to I , then i� j i� p

i

and p

j

are, using an

anthropomorphi metaphor, blood related. A omplete

derivation is haraterized by narrowing omplete \fam-

ilies," i.e., sets ontaining all the pairwise blood related

subterms of a term. Note that the blood related sub-

terms of a term are all equal and that their positions

are pairwise disjoint, thus all of them an be inluded

in a multistep. Our hoie of ost measure is suggested

by the observation that if t ;

p;R;�

t

0

, and q and p are

blood related positions, then narrowing t at q \when t

is being narrowed at p" involves no additional omputa-

tion of a substitution and/or a rule, and onsequently no

additional omputation of a substituting term (the in-

stantiation of the right side of a rule,) sine the reduts

of blood related subterms are all equal, too. This im-

plies that all the members of a family ould be \shared"

in the representation of t. When this is being done (as

in eÆient implementations of narrowing [19℄), a multi-

step entailing a whole family does not di�er, in pratie,

from an elementary step.

Theorem 5 If � = t

�

;

�

u is a omplete outermost-

needed narrowing multiderivation of a term t into a on-

strutor term u, then � has minimum ost. I.e., for any

multiderivation � = t

�

;

�

u, ost(�) � ost(�).

Elementary steps are easier to understand and to imple-

ment than multisteps. To ahieve optimality, we need

multisteps only as far as blood related terms are on-

erned. Full sharing of blood related subterms implies

that no family ever ontains more than a single member,

in pratie, and thus any elementary step beomes triv-

ially omplete. In turn, this equates derivations of min-

imum ost with those of minimum length. Tehniques

for rewriting \terms" with shared subterms go under the

name of term graph rewriting [47℄ and adapting them

to narrowing, for the systems we are onsidering, poses

no major problem [4℄.

6 Related work

There are three researh topis related to our work: (1)

the onept of need as the foundation of laziness, (2)

strategies for using narrowing in programming, and (3)

implementations of narrowing in Prolog.

6.1 Narrowing and need

Seminal studies on the onept of need in rewriting ap-

pear in [24, 39℄. Subsequent variations and extensions,

e.g., [7, 21, 27, 30, 33, 40, 41, 45, 48℄, do not address nar-

rowing, but limit the disussion to rewriting. We have

introdued a onept of need for narrowing that extends

a similar onept for rewriting. We have shown that the

onept of need for narrowing is inherently more om-

pliated than that for rewriting. In orthogonal systems,

a redution step has one degree of freedom, the seletion

of the position, but a narrowing step has two, both the

position and the uni�er.

We have disussed only indutively sequential sys-

tems. Further researh will extend this lass to strongly

sequential and/or weakly orthogonal systems. The ex-

tension to weakly orthogonal systems would weaken

our strong optimality result, but inlude additional

non-determinism. Sekar and Ramakrishnan [45℄ pro-

pose neessary sets as a generalization of the notion

of need for weakly orthogonal systems. Antoy [1℄ sug-

gests rewriting neessary sets of redexes using parallel

de�nitional trees and a funtion analogous to �. This

approah an be extended to narrowing without major

problems.

6.2 Narrowing strategies

The trade-o� between power and eÆieny is entral to

the use of narrowing, espeially in programming. To this

aim, several narrowing strategies, e.g., [9, 12, 13, 14, 15,

16, 18, 20, 22, 31, 35, 36, 37, 38, 44, 49℄ have been pro-

posed. The notion of ompleteness has evolved aord-

ingly. Plotkin's lassi formulation [43℄ has been relaxed

to ompleteness w.r.t. ground solutions (e.g. [15℄) or

ompleteness w.r.t. strit equality and domain-based in-

terpretations, as in [16, 37℄. The latter appear more ap-

propriate for narrowing as the omputational paradigm
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of funtional logi programming languages in the pres-

ene of in�nite data strutures and omputations.

We briey reall the underlying ideas of a few major

strategies and ompare them with ours using the follow-

ing example. We hoose a strongly terminating rewrite

system with ompletely de�ned operations, otherwise

all the eager strategies would be immediately exluded.

Example 9 The symbols a, b, and  are onstrutors,

whereas f and g are de�ned operations.

f(a) ! a R

1

f(b(X)) ! b(f(X)) R

2

f((X)) ! a R

3

g(a;X) ! b(a) R

4

g(b(X); a) ! a R

5

g(b(X); b(Y )) ! (a) R

6

g(b(X); (Y )) ! b(a) R

7

g((X); Y ) ! b(a) R

8

The equation to solve is g(X; f(X)) � (a). Our strat-

egy omputes only three derivations, only one of whih

yields a solution.

g(X; f(X)) � (a) ;

1;R

4

;fX 7!ag

b(a) � (a)

g(X; f(X)) � (a) ;

1;R

8

;fX 7!(X

1

)g

b(a) � (a)

g(X; f(X)) � (a) ;

1:2;R

2

;fX 7!b(X

1

)g

g(b(X

1

); b(f(X

1

))) � (a)

�

;

fg

true

Basi narrowing [25℄ avoids positions introdued by

the instantiations of previous steps. Its ompleteness,

and that of its variations, e.g., [20, 22, 31, 35, 38℄, is

known for onvergent rewrite systems (see [35℄ for a sys-

temati study.) This strategy may perform useless steps

and omputes an in�nite searh spae for our benh-

mark example.

Innermost narrowing [15℄ narrows only innermost

terms. It is ground omplete only for strongly terminat-

ing onstrutor-based systems with ompletely de�ned

operations. It may perform useless steps and it om-

putes an in�nite number of derivations for our benh-

mark example.

Outermost narrowing [12, 13℄ narrows outermost

operation-rooted terms. This strategy is omplete only

for a restritive lass of rewrite systems. It omputes

no solution for our benhmark example.

Outer narrowing [49℄ selets an inner position only

when a step at an outer position is impossible. This

strategy is omplete for onstrutor-based systems.

Outer narrowing behaves as needed narrowing on the

benhmark example, however the strategy is not har-

aterized as omputing needed steps. Furthermore,

[49℄ desribes the enumeration of derivations for E-

mathing, but not the omputation of derivations for

general E-uni�ation.

Lazy narrowing [9, 16, 18, 37, 36, 44℄, similar to outer,

narrows an inner term only when the step is demanded

to narrow an outer term. For these strategies, the qual-

i�er \lazy" is used as a synonym of \outermost" or \de-

mand driven," rather than in the tehnial sense we pro-

pose. The ompleteness of these strategies is generally

expensive to ahieve: [18℄ requires an ad-ho implemen-

tation of baktraking, with the potential of evaluat-

ing some term several times; [16℄ requires attening of

funtional nesting and a speialized WAM-like mahine

in whih terms are dynamially reordered; [37℄ requires

a transformation of the rewrite system whih, for our

benhmark example, inreases the number of operations

and lengthen the derivations.

To summarize, the distinguishing features of our strat-

egy are the following: with respet to eager strategies,

ompleteness for non-terminating rewrite systems; with

respet to the so-alled lazy strategies, a sharp har-

aterization of laziness; with respet to any strategy,

optimality and ease of omputation.

6.3 Narrowing in Prolog

Implementations of narrowing in Prolog [2, 8, 26, 32℄

are proposed as a prototypial and portable integration

of funtional and logi languages. For example, [8, 26℄

have been proposed as an alternative to the speialized

mahines required for K-LEAF [16℄ and BABEL [37℄ re-

spetively. The most reent proposals [2, 32℄ are based

on de�nitional trees and appear to ompute needed

steps for indutively sequential systems, although both

methods neither formalize nor laim this property. The

sheme in [2℄ omputes � diretly by pattern mathing.

The patterns involved in the omputation of � are a su-

perset of those ontained in a de�nitional tree. This is

suggested by laim 1 of Theorem 1 that shows a \strong"

need for the positions omputed using �|not only the

terms at these positions must be eventually narrowed,

but they must be eventually narrowed to head normal

forms. The resulting implementation takes advantage

of this harateristi and its performane appears to be

superior to the other proposals.

7 Conluding remarks

We have proposed a new narrowing strategy obtained by

extending to narrowing the well-known notion of need

for rewriting. Need for narrowing appears harder to

handle than need for rewriting|to ompute a needed

narrowing step one must also look ahead a potentially

in�nite number of substitutions. Remarkably, there is

an eÆiently algorithm for this omputation in indu-

tively sequential systems.
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We have ontained our disussion to narrowing oper-

ation-rooted terms. This limitation shortens our disus-

sion and suÆes for solving equations. Extending our

results also to onstrutor-rooted terms is straightfor-

ward. To ompute an outermost-needed narrowing step

of a onstrutor-rooted term it suÆes to ompute an

outermost-needed narrowing step of any of its maximal

operation-rooted subterms.

We have shown how our strategy is easily imple-

mented by pattern mathing, and we have reported,

in the previous setion, its good performane in Pro-

log with respet to other similar attempts. We have

also shown that our strategy omputes only indepen-

dent and optimal derivations. Although all the previ-

ously proposed lazy strategies have the latter as their

primary goal, our strategy is the only one for whih this

result is formalized and proved.

We want to onlude with a general assessment of

the \overall quality" of the narrowing strategy used by

a programming language. The key fator is the trade-o�

between the size of the lass of rewrite systems for whih

the strategy is omplete and the eÆieny of its om-

putations. We prove both ompleteness and optimality

for indutively sequential systems. We believe that it

is possible to extend our result to strongly sequential

systems and, in a weaker form, to weakly orthogonal

systems.
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