
Combining Lazy Narrowing and Simpli�ation

?

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�uken, Germany.

mihael�mpi-sb.mpg.de

In Pro. Sixth International Symposium on Programming Language

Implementation and Logi Programming, Madrid (Spain),

pp. 370{384, Springer LNCS 844, 1994

Abstrat. Languages that integrate funtional and logi programming

styles with a omplete operational semantis are based on narrowing. In

order to avoid useless omputations and to deal with in�nite data stru-

tures, lazy narrowing strategies have been proposed in the past. This

paper presents an important improvement of lazy narrowing by inorpo-

rating deterministi simpli�ation steps into lazy narrowing derivations.

These simpli�ation steps redue the searh spae so that in some ases

in�nite searh spaes are redued to �nite ones. We show that the om-

pleteness of lazy narrowing is not destroyed by the simpli�ation proess

and demonstrate the improved operational behavior by means of several

examples.

1 Introdution

In reent years, a lot of proposals have been made to amalgamate funtional and

logi programming languages [19℄. Funtional logi languages with a sound and

omplete operational semantis are based on narrowing, a ombination of the

redution priniple of funtional languages and the resolution priniple of logi

languages. Narrowing, originally introdued in automated theorem proving [34℄,

is used to solve equations by �nding appropriate values for variables ourring

in arguments of funtions. This is done by unifying (rather than mathing) an

input term with the left-hand side of some rule and then replaing the instantiated

input term by the instantiated right-hand side of the rule.

Example 1. Consider the following rules de�ning the addition of two natural num-

bers whih are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

The equation X+s(0)�s(s(0)) an be solved by a narrowing step with rule R

2

followed by a narrowing step with rule R

1

so that X is instantiated to s(0) and

the instantiated equation is redued to the trivial equation s(s(0))�s(s(0)):

X+s(0)�s(s(0)) ;

fX7!s(M)g

s(M+s(0))�s(s(0)) ;

fM 7!0g

s(s(0))�s(s(0))

Hene we have found the solution X 7!s(0) to the given equation. 2

?

The researh desribed in this paper was supported in part by the German Ministry

for Researh and Tehnology (BMFT) under grant ITS 9103 and by the ESPRIT

Basi Researh Working Group 6028 (Constrution of Computational Logis). The

responsibility for the ontents of this publiation lies with the author.

In order to ensure ompleteness in general, the left-hand side of eah rule must

be uni�ed with eah non-variable subterm of the given equation. Clearly, this

yields a huge searh spae. The situation an be improved by partiular nar-

rowing strategies whih restrit the possible positions for the appliation of the

next narrowing step, e.g., basi [22℄, innermost [13℄, outermost [10℄, lazy [32℄, or

needed narrowing [2℄. In this paper we onsider a lazy narrowing strategy where

narrowing steps are applied at outermost positions in general and at an inner

position only if it is demanded and ontributes to some later narrowing step at

an outer position. Similarly to pure funtional programming, suh a lazy strat-

egy avoids some useless steps in omparison to an eager strategy. However, in the

ontext of funtional logi programming a lazy narrowing strategy an also have

an unpleasant behavior if a demanded argument term has in�nitely many head

normal forms (i.e., if it an be derived to in�nitely many terms with a variable

or onstrutor at the top).

Example 2. Consider the following rules whih may be part of a program for

arithmeti operations:

0 * N ! 0 (R

3

) one(0) ! s(0) (R

5

)

N * 0 ! 0 (R

4

) one(s(N)) ! one(N) (R

6

)

If we want to ompute a solution to the equation one(X)*0�0 by lazy narrowing,

we ould try to apply rule R

3

to evaluate the left-hand side. In this ase the

�rst argument one(X) is demanded and must be evaluated to a term with a

onstrutor at the top. Unfortunately, there are in�nitely many possibilities to

ompute a head normal form s(0) of the term one(X) by instantiating X with

s(� � � s

| {z }

n

(0) � � �) for arbitrary n. Hene lazy narrowing has an in�nite searh spae

in this example and does not ompute a solution in a sequential implementation

(see [15℄ for a disussion of problems with sequential implementations of lazy

narrowing). However, we ould avoid this in�nite searh spae by omputing the

normal form of both sides of the equation before applying a narrowing step. The

normal form of the initial equation is 0�0 (redution of the left-hand side with

rule R

4

) whih is trivially true. 2

The idea of redution to normal form before applying a narrowing step has been

mainly proposed with respet to eager narrowing strategies [12, 13, 21, 30, 33℄.

It has been shown that eager narrowing with normalization is a more eÆient

ontrol strategy than left-to-right SLD-resolution for equivalent logi programs

[13, 18℄. The main ontribution of this paper is the ombination of lazy narrowing

with intermediate simpli�ation steps. We show that this ombination does not

destroy the ompleteness of lazy narrowing and disuss its usefulness for various

lasses of funtional logi programs. The previous example has shown that the

integration of simpli�ation an improve the operational behavior of lazy narrow-

ing if there are rules with overlapping left-hand sides, but we will also provide

examples where all rules have non-overlapping left-hand sides.

In the next setion we reall basi notions from term rewriting and funtional

logi programming. In Setion 3 we show how to inlude a deterministi simpli-

2

�ation proess into lazy narrowing derivations. Finally, we disuss in Setion 4

the usefulness of this simpli�ation proess for di�erent lasses of funtional logi

programs.

2 Preliminaries

In this setion we reall basi notions of term rewriting [7℄ and funtional logi

programming [19℄.

A signature is a set F of funtion symbols.

2

Every f 2 F is assoiated with an

arity n, denoted f=n. Let X be a ountably in�nite set of variables. Then the set

T (F ;X) of terms built from F and X is the smallest set ontaining X suh that

f(t

1

; : : : ; t

n

) 2 T (F ;X) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X).

We write f instead of f() whenever f has arity 0. The set of variables ourring

in a term t is denoted by Var(t). A term t is alled ground if Var(t) = ;.

Usually, funtional logi programs are onstrutor-based, i.e., a distintion is

made between operation symbols to onstrut data terms, alled onstrutors,

and operation symbols to operate on data terms, alled de�ned funtions or op-

erations (see, for instane, the funtional logi languages ALF [16℄, BABEL [29℄,

K-LEAF [14℄, SLOG [13℄). Hene we assume that the signature F is partitioned

into two sets F = C [D with C \ D = ;. A onstrutor term t is built from

onstrutors and variables, i.e., t 2 T (C;X).

A (rewrite) rule l ! r is a pair of terms l and r satisfying Var(r) � Var(l)

where l has the form f(t

1

; : : : ; t

n

) with f 2 D and t

1

; : : : ; t

n

2 T (C;X). l and

r are alled left-hand side and right-hand side, respetively.

3

A rule is alled a

variant of another rule if it is obtained by a unique replaement of variables by

other variables. A term rewriting system R is a set of rules.

The exeution of funtional logi programs requires notions like substitution,

uni�er, position et. A substitution � is a mapping from X into T (F ;X) suh

that the set fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution

� with the set fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms

on T (F ;X) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er �

is alled most general (mgu) if for every other uni�er �

0

there is a substitution

� with �

0

= � Æ � (onatenation of � and �). Most general uni�ers are unique

up to variable renaming. By introduing a total ordering on variables we an

uniquely hoose the most general uni�er of two terms. A position p in a term t

is represented by a sequene of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of replaing the subterm tj

p

by the term

s (see [7℄ for details).

2

In this paper we onsider only single-sorted programs. The extension to many-sorted

signatures is straightforward [31℄. Sine sorts are not relevant to the subjet of this

paper, we omit them for the sake of simpliity.

3

For the sake of simpliity we onsider only unonditional rules, but our results an

easily be extended to onditional rules with the restritions of the funtional logi

language BABEL [29℄.

3

A rewrite step is an appliation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this ase we say t is reduible (at position p). A term t is

alled irreduible or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-reexive losure of the rewrite relation !

R

. R is

alled terminating if there are no in�nite rewrite sequenes t

1

!

R

t

2

!

R

t

3

!

R

� � �. R is alled onuent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there

exists a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

.

If R is onuent and terminating, normal forms uniquely exist and we an

deide the validity of an equation s � t by omputing the normal form of both

sides using an arbitrary sequene of rewrite steps. In order to solve an equation,

we have to �nd appropriate instantiations for the variables in s and t. This an

be done by narrowing. A term t is narrowable into a term t

0

if there exist a

non-variable position p in t (i.e., tj

p

62 X), a variant l ! r of a rewrite rule with

Var(t) \ Var(l) = ;, a substitution � suh that � is a most general uni�er of tj

p

and l, and t

0

= �(t[r℄

p

). In this ase we write t;

�

t

0

.

4

Narrowing is able to solve equations w.r.t. R by deriving both sides of an

equation to syntatially uni�able terms [22℄. Due to the huge searh spae of

simple narrowing, several authors have proposed restritions on the admissible

narrowing derivations like basi narrowing [22℄, innermost narrowing [13℄, or out-

ermost narrowing [10℄. Lazy narrowing [5, 27, 32℄ is inuened by the idea of

lazy evaluation in funtional programming languages. Lazy narrowing steps are

applied to outermost positions with the exeption that arguments are evaluated

by narrowing to their head normal form if their values are demanded for an

outermost narrowing step (see [29℄ for an exat de�nition of a lazy narrowing

position). Lazy narrowing has at least two advantages in omparison to other

narrowing strategies:

1. Sine lazy narrowing applies narrowing steps at inner positions only if it is

demanded by some rule, useless narrowing steps (steps at inner positions

whih do not ontribute to the result) are avoided.

5

2. Sine lazy narrowing evaluates funtions only if their results are demanded,

it an deal with nonterminating funtions and in�nite data strutures. The

other narrowing strategies ited above require a terminating set of rewrite

rules and annot deal with in�nite data strutures.

The next example should emphasize the latter point.

Example 3. The following rules de�ne a funtion from(N) whih omputes an

in�nite list of naturals starting from N and a funtion first(N,L)whih omputes

the �rst N elements of the list L:

from(N) ! [N|from(s(N))℄

4

Sine the instantiation of the variables in the rule l ! r by � is not relevant for

the omputed solution of a narrowing derivation, we will omit this part of � in the

example derivations in this paper.

5

To be preise, the avoidane of useless narrowing steps depends on the lazy narrowing

strategy. Although this is one of the motivations of all lazy strategies, the only strategy

for whih this property has been formally proved is needed narrowing [2℄.

4

first(0,L) ! [℄

first(s(N),[E|L℄) ! [E|first(N,L)℄

Then lazy evaluation of the expression first(s(s(0)),from(0)) yields the re-

sult [0,s(0)℄ while an eager evaluation does not terminate due to the nontermi-

nating eager evaluation of from(0). Similarly, lazy narrowing applied to the equa-

tion first(X,from(Y))�[0,s(0)℄ omputes the solution fX 7!s(s(0)),Y 7!0g

while an eager narrowing strategy runs into an in�nite loop. 2

Sine narrowing applies rules only in one diretion from left to right, the onu-

ene of the rewrite relation is an essential requirement for the ompleteness of

all narrowing strategies. But onuene is an undeidable property of a rewrite

system if it is not terminating. Therefore funtional logi languages based on a

lazy evaluation strategy have the following requirements on the rewrite rules in

order to ensure ompleteness:

1. Left-linearity: All rules are left-linear, i.e., no variable appears more than

one in the left-hand side of any rule.

2. Nonambiguity: If l

1

! r

1

and l

2

! r

2

are two di�erent rules, then l

1

and l

2

are not uni�able (strong nonambiguity), or if l

1

and l

2

have a most general

uni�er �, then �(r

1

) and �(r

2

) are idential (weak nonambiguity).

These onditions ensure the uniqueness of normal forms if they exist. Due to the

presene of nonterminating funtions, the ompleteness results for lazy strategies

are stated with respet to domain-based interpretations of rewrite rules [14, 29℄.

In partiular, the equality of two expressions holds only if both sides are reduible

to the same ground onstrutor term.

The nonambiguity ondition does not exlude appliations from logi pro-

gramming. In fat, if we allow also onditional rules (as in BABEL [29℄), any

logi program an be translated into a set of weakly nonambiguous rules by

representing prediates as Boolean funtions [29℄.

Another important improvement of simple narrowing is normalizing narrow-

ing [12℄ where the term is rewritten to its normal form before a narrowing step

is applied. This optimization is important sine it prefers deterministi omputa-

tions: rewriting a term to normal form an be done in a deterministi way sine

every rewriting sequene yields the same result (if R is onuent and terminat-

ing). As shown in [13, 18℄, normalizing narrowing has the e�et that funtional

logi programs are more eÆiently exeutable than pure logi programs. It has

been shown that normalization an also be ombined with other eager narrow-

ing strategies. R�ety [33℄ has proved ompleteness of normalizing basi narrowing,

Fribourg [13℄ has proposed normalizing innermost narrowing and H�olldobler [21℄

has ombined innermost basi narrowing with normalization. Beause of these

advantages, normalizing narrowing is the foundation of several programming lan-

guages whih ombines funtional and logi programming like ALF [16℄, LPG [3℄

or SLOG [13℄. However, normalization has not been inluded in lazy narrowing

strategies. Therefore we will show that deterministi simpli�ation steps ould

be performed before nondeterministi lazy narrowing steps without destroying

the ompleteness of lazy narrowing. The problems of integrating normalization

into basi narrowing [33℄ shows that suh a result is not obvious.

5

3 Integrating Simpli�ation into Lazy Narrowing

In this setion we show that deterministi simpli�ation steps an be inluded

in lazy narrowing derivations without destroying ompleteness. Sine we are in-

terested in a lazy narrowing strategy, we onsider a funtional logi program

onsisting of a onstrutor-based term rewriting system R whih satis�es the

left-linearity and nonambiguity ondition.

Loogen and Winkler [26℄ have shown how to inrease deterministi omputa-

tions in the implementation of suh programs: if no goal variable has been bound

in a narrowing step, then all attempts to apply alternative rules at the same

position an be ignored due to the nonambiguity of the rules. In this ase a \ut"

an be exeuted to eliminate the hoie point for alternative rules. Sine the ex-

eution of this \ut" depends on the run-time behavior of the program (whether

or not a goal variable has been bound during uni�ation), it is alled dynami

ut in [26℄. The dynami ut an be implemented by a speial POP instrution

whih heks whether a goal variable has been bound during uni�ation and, if

this did not happen, removes the last hoie point. The advantage of this method

is its simple implementation, but it has also two disadvantages:

1. The dynami ut removes hoie points whih have been reated but are

not needed in the further omputation proess. Hene it does not avoid the

reation of hoie points (one of the most expensive operations in the imple-

mentation of logi languages): if a hoie point is not needed in a deterministi

omputation, it is reated and then deleted after the uni�ation of the rule's

left-hand side.

2. The detetion of deterministi omputations depends on the order of the

rules. If a rule whih enables a deterministi omputation step is not at the

beginning, nondeterministi steps may be performed even if a deterministi

step is possible.

The seond disadvantage is disussed in more detail in the following example.

Example 4. Consider the rules of Example 2 and the goal equation 0*one(X)�0.

Using the dynami ut tehnique, �rst a hoie point for the rules R

3

and R

4

is

reated, then rule R

3

is applied to narrow the left-hand side yielding the trivial

equation 0�0, and after that the hoie point is removed sine no goal variable

(X) has been bound in the narrowing step (dynami ut). Hene the attempt to

apply rule R

4

is avoided by the dynami ut. But if we try to solve the equation

one(X)*0�0, the dynami ut has no e�et. As before, �rst a hoie point for the

rules R

3

and R

4

is reated, then an attempt to apply rule R

3

is made.

6

Sine it

is neessary to evaluate the �rst argument in order to deide the appliability of

this rule, one(X) is a lazy narrowing redex whih is evaluated by applying rules

R

5

or R

6

(this evaluation has an in�nite searh spae and does not terminate in

a sequential implementation, f. Example 2). In any ase the goal variable X will

be bound and therefore the dynami ut has no e�et. 2

6

Note that we onsider a sequential implementation where the rules are applied in the

given textual order.

6

Although the dynami ut has some disadvantages sine it is applied after a nar-

rowing attempt, the nonambiguity of the rules is the key to exploit deterministi

omputations in funtional logi programs. In the following we will show that

we an apply deterministi rewrite steps before a narrowing step. This tehnique

avoids the reation of superuous hoie points and is independent on the order

of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [26℄ and shows that it is not

neessary to onsider alternative rules for narrowing if one rule is appliable with-

out binding goal variables. This is a onsequene of the nonambiguity ondition

on rewrite rules.

Lemma1. Let R

1

= l

1

! r

1

and R

2

= l

2

! r

2

be two di�erent program rules

and t be a term whih has no variables in ommon with R

1

and R

2

. If �(l

1

) = t,

i.e., t is narrowable by rule R

1

without instantiating any goal variables, then rule

R

2

does not need to be onsidered, beause either R

2

is not appliable or the result

of applying R

2

yields an instane of the appliation of R

1

.

Hene we ould try to math the left-hand side of some rule with the urrent goal

before applying a narrowing step. If this is possible, we an perform the orre-

sponding rewrite step and, by the previous lemma, ignore all other rules, i.e., we

perform a deterministi omputation step. Although this solves the problems ex-

empli�ed in Example 4, it is not suÆient to exploit many possible deterministi

omputations. In general, rewrite steps must also be performed at inner positions

in order to enable rewrite steps at outer positions. For instane, onsider the rules

of Examples 1 and 2 and the goal equation (0+0)*N�0. A rewrite step by apply-

ing rules R

3

or R

4

to the left-hand side of the equation is not possible. Hene

we try to perform a narrowing step, i.e., generate a hoie point for the rules

R

3

or R

4

, and so on. However, if we apply a rewrite step to the subterm (0+0)

before the narrowing attempt, the equation is simpli�ed to 0*N�0 using rule R

1

,

and we ould further simplify the equation to the trivial one 0�0 using rule R

3

.

Therefore we ould solve the equation without any nondeterministi narrowing

step. The following lemma justi�es deterministi rewrite steps at inner positions.

Lemma2. Let t; t

0

be terms suh that t!

R

t

0

is a rewrite step at position p.

1. It is not neessary to onsider alternative rules applied to t at position p.

2. All narrowing rules whih are appliable to t at a position p

0

, where p

0

6= p is

a position not below p, are also appliable to t

0

.

The appliability of narrowing rules at positions below p does not need to be

onsidered: Due to the lazy narrowing strategy, narrowing steps at suh posi-

tions would only be performed in order to apply some step at position p, but

Proposition 1 of this lemma states that this is unneessary sine alternative rules

do not need to be onsidered at position p.

Proof. Proposition 1 follows from Lemma 1 applied to position p. Proposition 2

is a onsequene of the requirement for onstrutor-based rules: the subterm tj

p

must have a de�ned funtion symbol at the top sine t !

R

t

0

is a rewrite step

at position p. If a narrowing rule is appliable to t at position p

0

, i.e., there is

7

a rule l ! r and a mgu � of tj

p

0

and l, and p

0

is a position above p (the ase

of independent positions is trivial sine variables in t are not instantiated by the

rewrite step), then there must be a variable position p

00

in l (i.e., lj

p

00

2 X) suh

that �(l)j

p

00

ontains the subterm tj

p

(sine all proper subterms of l ontain only

onstrutors and variables). But then there is also a uni�er �

0

of t

0

j

p

0

and l whih

an be obtained by modifying � for the variable lj

p

00

(note that l has no multiple

ourrenes of variables). Hene we an apply rule l ! r to t

0

at position p

0

. ut

As a onsequene of this lemma we an deterministially apply rewrite rules at

any position before a narrowing step. The simpli�ation of the goal by rewrite

rules an be done in any order and in any depth. For instane, if the set of

rewrite rules is terminating, normal forms uniquely exist and an be omputed

by repeated appliation of rewrite steps in any order until no more rewrite steps

are appliable. This approah has been taken in normalizing narrowing [12, 13,

21, 30, 33℄ and in the funtional logi languages ALF [16℄, LPG [3℄ and SLOG [13℄.

However, in the presene of nonterminating funtions, an arbitrary simpli�ation

proess ould destroy the ompleteness of lazy narrowing as the following example

shows.

Example 5. Consider the rules of Example 3 and the term first(s(0),from(0)).

Lazy narrowing redues this goal term to the term [0℄. If we allow arbitrary

simpli�ation steps, we ould apply in�nitely many rewrite steps to evaluate the

subterm from(0):

first(s(0),from(0)) !

R

first(s(0),[0|from(s(0))℄)

!

R

first(s(0),[0,s(0)|from(s(s(0)))℄)

!

R

� � �

Hene we would run into an in�nite loop instead of omputing the normal form

of the initial term. 2

In order to avoid suh problems and to do not introdue additional superuous

work by the simpli�ation proess, we require to perform simpli�ation steps

lazily with the same strategy as narrowing, i.e., we onsider the ombination

of lazy narrowing with lazy simpli�ation. Sine rewrite steps are also partiular

narrowing steps, an in�nite loop aused by simpli�ation ours in lazy narrowing

derivations without simpli�ation, too. The only di�erene is that the order of

rule appliations in simpli�ation steps may be di�erent from the order of rule

appliations in narrowing steps. Hene it may be the ase that the simpli�ation

proess runs into an in�nite loop while lazy narrowing without simpli�ation �rst

omputes an answer and then runs into an in�nite loop.

Example 6. Consider the rules of Example 2 and the following rule de�ning a

nonterminating funtion:

f(0) ! f(0)

If the goal equation X*f(0)�0 should be solved, a lazy simpli�ation strategy

tries to evaluate the subterm f(0) to the onstrutor 0 in order to apply rule

8

R

4

to the left-hand side of the equation. Sine the evaluation of f(0) loops, the

simpli�ation proess does not terminate and no solution is omputed. On the

other hand, lazy narrowing without simpli�ation narrows the left-hand side of

the equation by applying rule R

3

. This binds goal variable X to 0 and yields the

trivial equation 0�0. However, after the omputation of this solution an attempt

to apply the alternative rule R

4

to the left-hand side is made whih yields the

same in�nite loop as in the simpli�ation proess. 2

Note that this di�erent behavior is due to a partiular sequential implementation

of the strategy. In an implementation whih ollets all answers until the entire

searh spae has been examined we would obtain no answer in both ases due to

the in�nite searh spae.

A simple solution to avoid a nonterminating simpli�ation proess is the in-

lusion of a terminating subset of the program rules for simpli�ation. Sine lazy

narrowing is already omplete without simpli�ation, it is not neessary to per-

form rewrite steps with all possible program rules but we an arbitrarily restrit

the set of rules used for rewrite steps. In the light of the previous example it is a

reasonable deision to inlude a rule set with a terminating rewrite relation for

simpli�ation. This ensures the termination of the simpli�ation proess. The se-

letion of this subset of rewrite rules ould be done by the programmer or by the

system (e.g., inlude only those rewrite rules for whih a termination proof an

be onstruted). We have made the experiene that for most pratial examples

termination proofs an be automatially onstruted using syntati termination

orderings from term rewriting [6℄. This is the ase for all rules presented so far (of

ourse, exept for the first-rule of Example 3 and the f-rule of Example 6). An

example where a terminating subset of all program rules is used for simpli�ation

will be given in Setion 4.3.

4 Appliation to Funtional Logi Programs

In this setion we disuss the usefulness of integrating simpli�ation into lazy

narrowing derivations with respet to di�erent lasses of funtional logi pro-

grams. In general, we onsider onstrutor-based rewrite systems satisfying the

left-linearity and nonambiguity onditions. However, there are important sub-

lasses of suh rewrite systems with di�erent impliations on the usefulness of

integrating simpli�ation. In this setion we onsider the following three sub-

lasses in more detail: indutively sequential systems [1℄ where the rules for eah

funtion an be organized in a hierarhial struture, orthogonal systems satisfy-

ing the strong nonambiguity ondition (no overlapping in the left-hand sides of

the rules), and weakly orthogonal systems with overlapping left-hand sides.

4.1 Indutively Sequential Programs

In many funtional as well as funtional logi programs funtions are de�ned

by a ase distintion on the di�erent onstrutors ourring in the data type of

9

the arguments. For instane, the de�nition of the addition funtion on natural

numbers (f. Example 1) is based on a ase distintion for the �rst argument with

respet to the onstrutors 0 and s. As another example onsider the following

rules de�ning a less-or-equal funtion on naturals:

0 � X ! true (R

1

)

s(X) � 0 ! false (R

2

)

s(X) � s(Y) ! X � Y (R

3

)

Here is the main ase distintion on the onstrutors of the �rst argument: if this

argument is 0, then only ruleR

1

is appliable. If this argument has the onstrutor

s at the top, then a further ase distintion on the seond argument is neessary to

distinguish between rules R

2

and R

3

. Altogether, the rules an be organized in a

hierarhial struture representing the various ase distintions. Suh hierarhial

strutures have been introdued by Antoy [1℄ under the name de�nitional trees.

A program for whih the rules of eah funtion symbol an be organized in a

de�nitional tree is alled indutively sequential. Antoy, Ehahed and Hanus [2℄

have de�ned for indutively sequential programs a narrowing strategy, alled

needed narrowing, whih is optimal in the following sense: (1) it redues only

needed subterms in a narrowing step, i.e., subterms whih must be redued in any

possible suessful narrowing derivation, (2) it omputes the shortest narrowing

derivations if ommon subterms are shared, and (3) the solutions omputed by

two di�erent narrowing derivations are independent. The needed narrowing steps

are omputed using the struture of de�nitional trees. Thus it an be eÆiently

implemented by pattern mathing, and the strategy has an outermost (lazy)

behavior.

Due to the optimality of needed narrowing the natural question arises whether

the inlusion of simpli�ation has an e�et for this lass of programs. To answer

this question we reall the appliability onditions for a rewrite step. A funtional

expression an be redued by a rewrite step if the arguments of the funtion all

are suÆiently instantiated suh that the left-hand side of some rule an be

mathed with the urrent all. Sine the program is indutively sequential, there

is always at most one rule mathing the urrent all and this rule will be seleted

in the next narrowing step without instantiating any goal variables (see [2℄ for

a detailed desription of the strategy). Therefore a possible lazy redution step

is also omputed by the needed narrowing strategy as a narrowing step, i.e., the

inlusion of simpli�ation steps has no e�et. This is formally justi�ed by the

following proposition.

Proposition 3. Let R be a set of indutively sequential rules. Then the integra-

tion of simpli�ation does not shorten any needed narrowing derivation.

Proof. By de�nition, rewrite steps are also partiular narrowing steps. Thus any

narrowing derivation with intermediate simpli�ation steps is also a pure narrow-

ing derivation. Sine needed narrowing omputes the shortest narrowing deriva-

tions [2℄, simpli�ation annot shorten any needed narrowing derivation. ut

Hene it is unneessary to integrate simpli�ation in narrowing derivations for

the lass of indutively sequential programs.

10

4.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simpli�a-

tion with respet to lazy narrowing (Example 2) has the property that two rules

have overlapping left-hand sides. In the following we will show that the inlusion

of simpli�ation is useful even if there are no overlapping rules.

Example 7. Consider the following rewrite rules:

f(0,s(M),N) ! 0 (R

1

) one(0) ! s(0) (R

4

)

f(s(M),N,0) ! 0 (R

2

) one(s(N)) ! one(N) (R

5

)

f(N,0,s(M)) ! 0 (R

3

)

This is a orthogonal term rewriting system sine all rules are left-linear and do

not overlap in the left-hand sides. However, it is not indutively sequential sine

there is no argument whih represents a ase distintion on the onstrutors 0 and

s. In fat, simpli�ation has an important e�et if we onsider the goal equation

f(one(X),0,s(0))�0. Naive lazy narrowing �rst tries to apply rule R

1

to the

left-hand side of this equation. Sine the �rst argument of the rule's left-hand side

is 0, the evaluation of the atual argument one(X) is required in order to deide

the uni�ability of the �rst argument.

7

Similarly to Example 2, the evaluation

of one(X) has an in�nite searh spae and a sequential implementation does not

ompute any result sine all evaluations of one(X) yields s(0) as the result whih

is not uni�able with the demanded value 0. But if we simplify the goal equation

before the attempt to apply a narrowing step, we use rule R

3

for a rewrite step

whih yields the trivial equation 0�0. Hene the in�nite searh spae is avoided.

2

4.3 Weakly Orthogonal Programs

In Setions 4.1 and 4.2 we have shown that the boundary of the usefulness of

simpli�ation in lazy narrowing derivations is between indutively sequential and

orthogonal systems. We onjeture that for pratial appliations the most in-

teresting lass where simpli�ation is useful is the lass of weakly orthogonal

programs whih have rules with overlapping left-hand sides. Example 2 ontains

suh a simple program, but the reursively de�ned onstant funtion one may

not onvine the reader. Therefore we will demonstrate the positive e�ets of

simpli�ation by a more natural example.

Example 8. [20℄ Consider the following rules de�ning the Boolean operator _ and

the prediate even on natural numbers:

true _ B ! true (R

1

) even(0) ! true (R

4

)

B _ true ! true (R

2

) even(s(0)) ! false (R

5

)

false _ false ! false (R

3

) even(s(s(X))) ! even(X) (R

6

)

This rewrite system is weakly orthogonal sine rules R

1

and R

2

overlap. Now

onsider the goal equation even(Z)_true�true (note that this goal equation

7

We assume that arguments are uni�ed from left to right, otherwise a similar example

an be onstruted.

11

ould also be the result of the more general equation even(Z)_B�true where

the Boolean variable B has been bound to true in the preeding omputation).

Naive lazy narrowing without simpli�ation tries to apply a narrowing step with

rule R

1

. Sine the value of the �rst _-argument is demanded by this rule, the

subterm even(Z) is evaluated to a onstrutor-headed term by narrowing. There

are in�nitely many possibilities to do this, in partiular the onstrutor true is

derived by instantiating variable Z with the values s

2�i

(0), i � 0. Therefore lazy

narrowing without simpli�ation has an in�nite searh spae and omputes the

additional speial solutions fZ 7!s

2�i

(0)g. On the other hand, if the equation is

�rst simpli�ed by applying rule R

2

to the left-hand side, we immediately obtain

the trivial equation true�true and avoid the in�nite searh spae. 2

We have mentioned that our method is omplete even in the presene of non-

terminating funtions if a terminating subset of the program rules is used for

simpli�ation. This is demonstrated by a modi�ation of the previous example.

Example 9. Consider the rules for _ of Example 8 (R

1

; R

2

; R

3

) and the following

new rules for not, even and odd:

not(true) ! false (R

4

) even(X) ! not(odd(X)) (R

6

)

not(false) ! true (R

5

) odd(X) ! not(even(X)) (R

7

)

Although even and odd are nonterminating funtions, it is an admissible program.

We use the terminating subset of the rules fR

1

; R

2

; R

3

; R

4

; R

5

g for simpli�ation.

8

Consider the goal equation even(Z)_not(false)�true. Lazy narrowing with-

out simpli�ation tries to ompute the head normal form of the subterm even(Z)

sine its value is demanded by rule R

1

. Sine this omputation is nonterminating,

naive lazy narrowing has an in�nite searh spae. The same holds for lazy narrow-

ing with the dynami ut operator [26℄. But lazy narrowing with simpli�ation

tries to apply rewrite steps �rst. No simpli�ation rule is appliable to the entire

left-hand side of the goal equation sine the arguments are not in head normal

form. Due to the lazy simpli�ation strategy, we try to evaluate the arguments

by simpli�ation steps. The subterm even(Z) annot be further simpli�ed sine

rule R

6

is not inluded in the set of simpli�ation rules. The seond argument

not(false) an be simpli�ed to true by R

5

whih auses the simpli�ation of

the omplete left-hand side to true by R

2

. Hene we obtain the trivial equation

true�true. Thus the in�nite searh spae is avoided. 2

5 Conlusions and Related Work

In this paper we have shown how to improve the exeution mehanism of fun-

tional logi programs. The basi idea is the integration of a deterministi sim-

pli�ation proess into lazy narrowing derivations. This an be done in a simple

way by using the program rules or a terminating subset of the program rules as

simpli�ation rules. The simpli�ation strategy should be idential to the narrow-

ing strategy. For partiular and pratially important lasses of funtional logi

8

Note that the termination property of this subset an be automatially heked.

12

programs (orthogonal and weakly orthogonal programs) this has the positive ef-

fet that the searh spae is redued without destroying ompleteness. Although

we have emphasized the e�et of simpli�ation to the searh spae, the inlu-

sion of simpli�ation an also have an e�et on the run time even if the searh

spae is not redued. For instane, if all program rules are used for simpli�ation,

ground goals are evaluated by simpli�ation without generating any hoie point

while a lazy narrowing implementation would generate (and afterwards delete)

hoie points. Hene lazy narrowing with simpli�ation ombines the features

from funtional and logi programming also from an implementational point of

view.

We have mentioned in the introdution and in Setion 2 that the idea of

exploiting deterministi omputations by inluding simpli�ation in funtional

logi languages has been proposed mainly for eager narrowing strategies like ba-

si [30, 33℄, innermost [13℄ or innermost basi narrowing [21℄. Ehahed [11℄ has

shown how to integrate normalization (with indutive onsequenes) in any nar-

rowing strategy, but he requires strong restritions on the set of rules (termination

and uniformity, whih is stronger than indutive sequentiality). The inlusion of

simpli�ation into lazy strategies has been onsidered only in the ontext of

lazy uni�ation.

9

In [8, 20℄ lazy uni�ation aluli are proposed where terms are

redued to their normal form before a nondeterministi transformation step is

applied to the equation system. But these approahes require a terminating set

of rules in order to ensure the existene of normal forms and the ompleteness of

the aluli.

As far as we know, the present paper is the �rst attempt to inlude simpli�a-

tion into narrowing derivations even in the presene of nonterminating funtions.

The only related work for this lass of programs is the paper of Loogen and

Winkler [26℄ whih proposes the dynami ut to detet deterministi narrowing

steps after the uni�ation phase. As disussed at the beginning of Setion 3, this

does not avoid the generation of hoie points, and the ut of in�nite derivation

paths depends on the order of rules. The basi di�erene of our method is that

we hek the appliability of a deterministi omputation step before we apply

a nondeterministi step. Hene we prefer deterministi omputations to nonde-

terministi omputations. This quali�es our exeution method as the operational

priniple of eÆient funtional logi languages.

Loogen et al. [25℄ have proposed to improve lazy narrowing strategies by re-

ordering the uni�ation steps in rule appliations. For this purpose they use a

version of de�nitional trees [1℄ extended to weakly orthogonal rewrite systems. In

order to handle partial overlapping left-hand sides, they introdue nondetermin-

isti hoie nodes in de�nitional trees. But these hoie nodes have the e�et that

possible deterministi omputations are not deteted. For instane, the in�nite

9

The ombination of lazy narrowing with deterministi redution steps has been also

onsidered by Josephson and Dershowitz [23℄. However, they provide no ompleteness

proof but refer to [9℄ where only the ompleteness of naive narrowing without simpli-

�ation and without a partiular lazy strategy is proved for terminating onditional

rules.

13

searh spaes of naive lazy narrowing in Examples 2, 7 and 8 would also our

with respet to their improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-

Navarro et al. [28℄. They use information about demanded arguments to avoid

reevaluations of expressions during uni�ation with di�erent rules. Sine they do

not hange the order of argument evaluations and rules, the in�nite searh spaes

avoided by simpli�ation still our in their approah.

The integration of simpli�ation into lazy narrowing derivations requires new

implementation tehniques for funtional logi languages. Current eÆient im-

plementations of lazy narrowing are mainly based on extensions of redution

mahines used for the implementation of funtional languages [4, 15, 24, 27℄.

The inlusion of simpli�ation requires the implementation of an intermediate

redution proess. This ould be done by tehniques proposed for the eÆient

implementation of normalizing narrowing [16, 17℄ or by the implementation of

demons waiting for the suÆient instantiation of funtion arguments [23℄.

Referenes

1. S. Antoy. De�nitional Trees. In Pro. of the 3rd Int. Conf. on Algebrai and Logi

Programming, pp. 143{157. Springer LNCS 632, 1992.

2. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. In Pro. 21st

ACM Symp. on Priniples of Programming Languages, pp. 268{279, Portland, 1994.

3. D. Bert and R. Ehahed. Design and Implementation of a Generi, Logi and Fun-

tional Programming Language. In Pro. European Symposium on Programming, pp.

119{132. Springer LNCS 213, 1986.

4. M.M.T. Chakravarty and H.C.R. Lok. The Implementation of Lazy Narrowing. In

Pro. of the 3rd Int. Symp. on Programming Language Implementation and Logi

Programming, pp. 123{134. Springer LNCS 528, 1991.

5. J. Darlington and Y. Guo. Narrowing and uni�ation in funtional programming

- an evaluation mehanism for absolute set abstration. In Pro. of the Conf. on

Rewriting Tehniques and Appliations, pp. 92{108. Springer LNCS 355, 1989.

6. N. Dershowitz. Termination of Rewriting. J. Symboli Computation, Vol. 3, pp.

69{116, 1987.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier, 1990.

8. N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-

Theories. In Pro. of the 2nd Int. Conf. on Algebrai and Logi Programming, pp.

283{297. Springer LNCS 463, 1990.

9. N. Dershowitz and D.A. Plaisted. Equational Programming. In Mahine Intelli-

gene 11, pp. 21{56. Oxford Press, 1988.

10. R. Ehahed. On Completeness of Narrowing Strategies. In Pro. CAAP'88, pp.

89{101. Springer LNCS 299, 1988.

11. R. Ehahed. Uniform Narrowing Strategies. In Pro. of the 3rd Int. Conf. on

Algebrai and Logi Programming, pp. 259{275. Springer LNCS 632, 1992.

12. M.J. Fay. First-Order Uni�ation in an Equational Theory. In Pro. 4th Workshop

on Automated Dedution, pp. 161{167, Austin (Texas), 1979. Aademi Press.

13. L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Int. Symp. on Logi Programming,

pp. 172{184, Boston, 1985.

14. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi plus

Funtional Language. Journal of Computer and System Sienes, Vol. 42, No. 2,

pp. 139{185, 1991.

14

15. W. Hans, R. Loogen, and S. Winkler. On the Interation of Lazy Evaluation and

Baktraking. In Pro. of the 4th Int. Symp. on Programming Language Implemen-

tation and Logi Programming, pp. 355{369. Springer LNCS 631, 1992.

16. M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming, pp.

387{401. Springer LNCS 456, 1990.

17. M. Hanus. EÆient Implementation of Narrowing and Rewriting. In Pro. Int.

Workshop on Proessing Delarative Knowledge, pp. 344{365. Springer LNAI 567,

1991.

18. M. Hanus. Improving Control of Logi Programs by Using Funtional Logi Lan-

guages. In Pro. of the 4th Int. Symp. on Programming Language Implementation

and Logi Programming, pp. 1{23. Springer LNCS 631, 1992.

19. M. Hanus. The Integration of Funtions into Logi Programming: From Theory

to Pratie. To appear in Journal of Logi Programming, 1994. Also available as

Tehnial Report MPI-I-94-201, Max-Plank-Institut f�ur Informatik, Saarbr�uken.

20. M. Hanus. Lazy Uni�ation with Simpli�ation. In Pro. 5th European Symposium

on Programming, pp. 272{286. Springer LNCS 788, 1994.

21. S. H�olldobler. Foundations of Equational Logi Programming. Springer LNCS 353,

1989.

22. J.-M. Hullot. Canonial Forms and Uni�ation. In Pro. 5th Conf. on Automated

Dedution, pp. 318{334. Springer LNCS 87, 1980.

23. A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of

Logi Programming (6), pp. 57{77, 1989.

24. R. Loogen. Relating the Implementation Tehniques of Funtional and Funtional

Logi Languages. New Generation Computing, Vol. 11, pp. 179{215, 1993.

25. R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Com-

putation Strategy for Lazy Narrowing. In Pro. of the 5th Int. Symp. on Pro-

gramming Language Implementation and Logi Programming, pp. 184{200. Springer

LNCS 714, 1993.

26. R. Loogen and S. Winkler. Dynami Detetion of Determinism in Funtional Logi

Languages. In Pro. of the 3rd Int. Symp. on Programming Language Implementa-

tion and Logi Programming, pp. 335{346. Springer LNCS 528, 1991.

27. J.J. Moreno-Navarro, H. Kuhen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy

Narrowing in a Graph Mahine. In Pro. Seond Int. Conf. on Algebrai and Logi

Programming, pp. 298{317. Springer LNCS 463, 1990.

28. J.J. Moreno-Navarro, H. Kuhen, J. Marino-Carballo, S. Winkler, and W. Hans.

EÆient Lazy Narrowing Using Demandedness Analysis. In Pro. of the 5th Int.

Symp. on Programming Language Implementation and Logi Programming, pp. 167{

183. Springer LNCS 714, 1993.

29. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-

tions and Prediates: The Language BABEL. Journal of Logi Programming,

Vol. 12, pp. 191{223, 1992.

30. W. Nutt, P. R�ety, and G. Smolka. Basi Narrowing Revisited. Journal of Symboli

Computation, Vol. 7, pp. 295{317, 1989.

31. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Mono-

graphs on Theoretial Computer Siene. Springer, 1988.

32. U.S. Reddy. Narrowing as the Operational Semantis of Funtional Languages. In

Pro. IEEE Int. Symp. on Logi Programming, pp. 138{151, Boston, 1985.

33. P. R�ety. Improving basi narrowing tehniques. In Pro. of the Conf. on Rewriting

Tehniques and Appliations, pp. 228{241. Springer LNCS 256, 1987.

34. J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Commu-

tativity, and Assoiativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642, 1974.

15

